Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [185,2,Mod(68,185)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(185, base_ring=CyclotomicField(4))
chi = DirichletCharacter(H, H._module([3, 1]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("185.68");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 185 = 5 \cdot 37 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 185.k (of order \(4\), degree \(2\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(1.47723243739\) |
Analytic rank: | \(0\) |
Dimension: | \(24\) |
Relative dimension: | \(12\) over \(\Q(i)\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{4}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
68.1 | −2.69386 | 0.437197 | − | 0.437197i | 5.25686 | 0.0742518 | + | 2.23483i | −1.17775 | + | 1.17775i | 0.705745 | − | 0.705745i | −8.77351 | 2.61772i | −0.200024 | − | 6.02032i | ||||||||
68.2 | −2.35455 | −2.15478 | + | 2.15478i | 3.54389 | 2.11516 | − | 0.725340i | 5.07354 | − | 5.07354i | 0.853954 | − | 0.853954i | −3.63515 | − | 6.28619i | −4.98023 | + | 1.70785i | |||||||
68.3 | −1.89107 | 1.70537 | − | 1.70537i | 1.57614 | 2.17906 | − | 0.501674i | −3.22498 | + | 3.22498i | 0.431915 | − | 0.431915i | 0.801541 | − | 2.81659i | −4.12076 | + | 0.948700i | |||||||
68.4 | −1.55778 | −0.374562 | + | 0.374562i | 0.426681 | −2.16545 | − | 0.557533i | 0.583485 | − | 0.583485i | 2.24838 | − | 2.24838i | 2.45089 | 2.71941i | 3.37329 | + | 0.868515i | ||||||||
68.5 | −0.165127 | 1.77117 | − | 1.77117i | −1.97273 | −0.673884 | − | 2.13211i | −0.292468 | + | 0.292468i | −0.477215 | + | 0.477215i | 0.656006 | − | 3.27410i | 0.111276 | + | 0.352069i | |||||||
68.6 | −0.0562904 | 0.608697 | − | 0.608697i | −1.99683 | 1.52355 | + | 1.63670i | −0.0342638 | + | 0.0342638i | 3.37670 | − | 3.37670i | 0.224983 | 2.25898i | −0.0857611 | − | 0.0921308i | ||||||||
68.7 | 0.917493 | −1.17965 | + | 1.17965i | −1.15821 | −2.08950 | − | 0.796235i | −1.08232 | + | 1.08232i | −2.45118 | + | 2.45118i | −2.89763 | 0.216841i | −1.91710 | − | 0.730540i | ||||||||
68.8 | 1.40625 | −1.57253 | + | 1.57253i | −0.0224648 | 0.843869 | + | 2.07072i | −2.21137 | + | 2.21137i | −0.0416138 | + | 0.0416138i | −2.84409 | − | 1.94570i | 1.18669 | + | 2.91195i | |||||||
68.9 | 1.64338 | 1.31039 | − | 1.31039i | 0.700698 | 1.85881 | + | 1.24291i | 2.15347 | − | 2.15347i | −2.64033 | + | 2.64033i | −2.13525 | − | 0.434259i | 3.05473 | + | 2.04257i | |||||||
68.10 | 1.72182 | 0.229804 | − | 0.229804i | 0.964650 | 0.786516 | − | 2.09318i | 0.395681 | − | 0.395681i | 1.16936 | − | 1.16936i | −1.78268 | 2.89438i | 1.35424 | − | 3.60407i | ||||||||
68.11 | 2.38796 | −0.646256 | + | 0.646256i | 3.70235 | −1.64985 | + | 1.50931i | −1.54323 | + | 1.54323i | 2.20744 | − | 2.20744i | 4.06513 | 2.16471i | −3.93976 | + | 3.60417i | ||||||||
68.12 | 2.64177 | −2.13485 | + | 2.13485i | 4.97897 | 1.19746 | − | 1.88841i | −5.63980 | + | 5.63980i | −2.38316 | + | 2.38316i | 7.86977 | − | 6.11519i | 3.16342 | − | 4.98875i | |||||||
117.1 | −2.69386 | 0.437197 | + | 0.437197i | 5.25686 | 0.0742518 | − | 2.23483i | −1.17775 | − | 1.17775i | 0.705745 | + | 0.705745i | −8.77351 | − | 2.61772i | −0.200024 | + | 6.02032i | |||||||
117.2 | −2.35455 | −2.15478 | − | 2.15478i | 3.54389 | 2.11516 | + | 0.725340i | 5.07354 | + | 5.07354i | 0.853954 | + | 0.853954i | −3.63515 | 6.28619i | −4.98023 | − | 1.70785i | ||||||||
117.3 | −1.89107 | 1.70537 | + | 1.70537i | 1.57614 | 2.17906 | + | 0.501674i | −3.22498 | − | 3.22498i | 0.431915 | + | 0.431915i | 0.801541 | 2.81659i | −4.12076 | − | 0.948700i | ||||||||
117.4 | −1.55778 | −0.374562 | − | 0.374562i | 0.426681 | −2.16545 | + | 0.557533i | 0.583485 | + | 0.583485i | 2.24838 | + | 2.24838i | 2.45089 | − | 2.71941i | 3.37329 | − | 0.868515i | |||||||
117.5 | −0.165127 | 1.77117 | + | 1.77117i | −1.97273 | −0.673884 | + | 2.13211i | −0.292468 | − | 0.292468i | −0.477215 | − | 0.477215i | 0.656006 | 3.27410i | 0.111276 | − | 0.352069i | ||||||||
117.6 | −0.0562904 | 0.608697 | + | 0.608697i | −1.99683 | 1.52355 | − | 1.63670i | −0.0342638 | − | 0.0342638i | 3.37670 | + | 3.37670i | 0.224983 | − | 2.25898i | −0.0857611 | + | 0.0921308i | |||||||
117.7 | 0.917493 | −1.17965 | − | 1.17965i | −1.15821 | −2.08950 | + | 0.796235i | −1.08232 | − | 1.08232i | −2.45118 | − | 2.45118i | −2.89763 | − | 0.216841i | −1.91710 | + | 0.730540i | |||||||
117.8 | 1.40625 | −1.57253 | − | 1.57253i | −0.0224648 | 0.843869 | − | 2.07072i | −2.21137 | − | 2.21137i | −0.0416138 | − | 0.0416138i | −2.84409 | 1.94570i | 1.18669 | − | 2.91195i | ||||||||
See all 24 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
185.k | even | 4 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 185.2.k.d | yes | 24 |
5.b | even | 2 | 1 | 925.2.k.d | 24 | ||
5.c | odd | 4 | 1 | 185.2.f.d | ✓ | 24 | |
5.c | odd | 4 | 1 | 925.2.f.d | 24 | ||
37.d | odd | 4 | 1 | 185.2.f.d | ✓ | 24 | |
185.f | even | 4 | 1 | 925.2.k.d | 24 | ||
185.j | odd | 4 | 1 | 925.2.f.d | 24 | ||
185.k | even | 4 | 1 | inner | 185.2.k.d | yes | 24 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
185.2.f.d | ✓ | 24 | 5.c | odd | 4 | 1 | |
185.2.f.d | ✓ | 24 | 37.d | odd | 4 | 1 | |
185.2.k.d | yes | 24 | 1.a | even | 1 | 1 | trivial |
185.2.k.d | yes | 24 | 185.k | even | 4 | 1 | inner |
925.2.f.d | 24 | 5.c | odd | 4 | 1 | ||
925.2.f.d | 24 | 185.j | odd | 4 | 1 | ||
925.2.k.d | 24 | 5.b | even | 2 | 1 | ||
925.2.k.d | 24 | 185.f | even | 4 | 1 |
Hecke kernels
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(185, [\chi])\):
\( T_{2}^{12} - 2 T_{2}^{11} - 18 T_{2}^{10} + 38 T_{2}^{9} + 111 T_{2}^{8} - 258 T_{2}^{7} - 256 T_{2}^{6} + \cdots + 4 \)
|
\( T_{3}^{24} + 4 T_{3}^{23} + 8 T_{3}^{22} - 6 T_{3}^{21} + 88 T_{3}^{20} + 344 T_{3}^{19} + 690 T_{3}^{18} + \cdots + 1024 \)
|