Defining parameters
Level: | \( N \) | \(=\) | \( 185 = 5 \cdot 37 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 185.k (of order \(4\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 185 \) |
Character field: | \(\Q(i)\) | ||
Newform subspaces: | \( 4 \) | ||
Sturm bound: | \(38\) | ||
Trace bound: | \(3\) | ||
Distinguishing \(T_p\): | \(2\), \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(185, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 42 | 42 | 0 |
Cusp forms | 34 | 34 | 0 |
Eisenstein series | 8 | 8 | 0 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(185, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
185.2.k.a | $2$ | $1.477$ | \(\Q(\sqrt{-1}) \) | None | \(-2\) | \(-4\) | \(-2\) | \(0\) | \(q-q^{2}+(2 i-2)q^{3}-q^{4}+(2 i-1)q^{5}+\cdots\) |
185.2.k.b | $2$ | $1.477$ | \(\Q(\sqrt{-1}) \) | None | \(-2\) | \(2\) | \(-2\) | \(-6\) | \(q-q^{2}+(-i+1)q^{3}-q^{4}+(2 i-1)q^{5}+\cdots\) |
185.2.k.c | $6$ | $1.477$ | 6.0.350464.1 | None | \(-2\) | \(2\) | \(0\) | \(-4\) | \(q+\beta _{3}q^{2}+(1-\beta _{2}+\beta _{3}-\beta _{4}+\beta _{5})q^{3}+\cdots\) |
185.2.k.d | $24$ | $1.477$ | None | \(4\) | \(-4\) | \(8\) | \(6\) |