Properties

Label 185.2.k
Level $185$
Weight $2$
Character orbit 185.k
Rep. character $\chi_{185}(68,\cdot)$
Character field $\Q(\zeta_{4})$
Dimension $34$
Newform subspaces $4$
Sturm bound $38$
Trace bound $3$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 185 = 5 \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 185.k (of order \(4\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 185 \)
Character field: \(\Q(i)\)
Newform subspaces: \( 4 \)
Sturm bound: \(38\)
Trace bound: \(3\)
Distinguishing \(T_p\): \(2\), \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(185, [\chi])\).

Total New Old
Modular forms 42 42 0
Cusp forms 34 34 0
Eisenstein series 8 8 0

Trace form

\( 34 q - 2 q^{2} - 4 q^{3} + 30 q^{4} + 4 q^{5} - 4 q^{6} - 4 q^{7} - 6 q^{8} - 6 q^{10} - 32 q^{12} - 12 q^{14} + 2 q^{15} + 14 q^{16} - 4 q^{19} + 18 q^{20} - 36 q^{24} - 10 q^{25} + 20 q^{27} + 8 q^{28}+ \cdots + 64 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(185, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
185.2.k.a 185.k 185.k $2$ $1.477$ \(\Q(\sqrt{-1}) \) None 185.2.f.b \(-2\) \(-4\) \(-2\) \(0\) $\mathrm{SU}(2)[C_{4}]$ \(q-q^{2}+(2 i-2)q^{3}-q^{4}+(2 i-1)q^{5}+\cdots\)
185.2.k.b 185.k 185.k $2$ $1.477$ \(\Q(\sqrt{-1}) \) None 185.2.f.a \(-2\) \(2\) \(-2\) \(-6\) $\mathrm{SU}(2)[C_{4}]$ \(q-q^{2}+(-i+1)q^{3}-q^{4}+(2 i-1)q^{5}+\cdots\)
185.2.k.c 185.k 185.k $6$ $1.477$ 6.0.350464.1 None 185.2.f.c \(-2\) \(2\) \(0\) \(-4\) $\mathrm{SU}(2)[C_{4}]$ \(q+\beta _{3}q^{2}+(1-\beta _{2}+\beta _{3}-\beta _{4}+\beta _{5})q^{3}+\cdots\)
185.2.k.d 185.k 185.k $24$ $1.477$ None 185.2.f.d \(4\) \(-4\) \(8\) \(6\) $\mathrm{SU}(2)[C_{4}]$