Properties

Label 185.2.f
Level $185$
Weight $2$
Character orbit 185.f
Rep. character $\chi_{185}(43,\cdot)$
Character field $\Q(\zeta_{4})$
Dimension $34$
Newform subspaces $4$
Sturm bound $38$
Trace bound $3$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 185 = 5 \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 185.f (of order \(4\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 185 \)
Character field: \(\Q(i)\)
Newform subspaces: \( 4 \)
Sturm bound: \(38\)
Trace bound: \(3\)
Distinguishing \(T_p\): \(2\), \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(185, [\chi])\).

Total New Old
Modular forms 42 42 0
Cusp forms 34 34 0
Eisenstein series 8 8 0

Trace form

\( 34 q + 4 q^{3} - 30 q^{4} - 6 q^{5} - 4 q^{6} - 4 q^{7} - 6 q^{10} - 32 q^{12} + 12 q^{14} + 10 q^{15} + 14 q^{16} - 20 q^{17} - 22 q^{18} + 4 q^{19} - 8 q^{20} + 20 q^{22} + 36 q^{24} + 10 q^{25} - 20 q^{27}+ \cdots - 64 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(185, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
185.2.f.a 185.f 185.f $2$ $1.477$ \(\Q(\sqrt{-1}) \) None 185.2.f.a \(0\) \(-2\) \(-4\) \(-6\) $\mathrm{SU}(2)[C_{4}]$ \(q-i q^{2}+(-i-1)q^{3}+q^{4}+(i-2)q^{5}+\cdots\)
185.2.f.b 185.f 185.f $2$ $1.477$ \(\Q(\sqrt{-1}) \) None 185.2.f.b \(0\) \(4\) \(-4\) \(0\) $\mathrm{SU}(2)[C_{4}]$ \(q-i q^{2}+(2 i+2)q^{3}+q^{4}+(i-2)q^{5}+\cdots\)
185.2.f.c 185.f 185.f $6$ $1.477$ 6.0.350464.1 None 185.2.f.c \(0\) \(-2\) \(2\) \(-4\) $\mathrm{SU}(2)[C_{4}]$ \(q-\beta _{5}q^{2}+(-1+\beta _{1}-\beta _{3}-\beta _{4}+\beta _{5})q^{3}+\cdots\)
185.2.f.d 185.f 185.f $24$ $1.477$ None 185.2.f.d \(0\) \(4\) \(0\) \(6\) $\mathrm{SU}(2)[C_{4}]$