Defining parameters
Level: | \( N \) | \(=\) | \( 185 = 5 \cdot 37 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 185.d (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 185 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 1 \) | ||
Sturm bound: | \(38\) | ||
Trace bound: | \(0\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(185, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 20 | 20 | 0 |
Cusp forms | 16 | 16 | 0 |
Eisenstein series | 4 | 4 | 0 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(185, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
185.2.d.a | $16$ | $1.477$ | \(\mathbb{Q}[x]/(x^{16} + \cdots)\) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q+\beta _{7}q^{2}-\beta _{9}q^{3}+(1-\beta _{2})q^{4}-\beta _{1}q^{5}+\cdots\) |