Properties

Label 185.2.d
Level $185$
Weight $2$
Character orbit 185.d
Rep. character $\chi_{185}(184,\cdot)$
Character field $\Q$
Dimension $16$
Newform subspaces $1$
Sturm bound $38$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 185 = 5 \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 185.d (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 185 \)
Character field: \(\Q\)
Newform subspaces: \( 1 \)
Sturm bound: \(38\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(185, [\chi])\).

Total New Old
Modular forms 20 20 0
Cusp forms 16 16 0
Eisenstein series 4 4 0

Trace form

\( 16 q + 8 q^{4} - 16 q^{9} - 12 q^{10} - 8 q^{16} + 24 q^{21} - 12 q^{25} - 4 q^{30} + 8 q^{34} - 8 q^{36} - 16 q^{40} + 24 q^{46} - 16 q^{49} - 88 q^{64} + 12 q^{65} + 44 q^{70} - 24 q^{71} + 48 q^{74}+ \cdots + 24 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(185, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
185.2.d.a 185.d 185.d $16$ $1.477$ \(\mathbb{Q}[x]/(x^{16} + \cdots)\) None 185.2.d.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{7}q^{2}-\beta _{9}q^{3}+(1-\beta _{2})q^{4}-\beta _{1}q^{5}+\cdots\)