# Properties

 Label 1849.4.a.c Level $1849$ Weight $4$ Character orbit 1849.a Self dual yes Analytic conductor $109.095$ Analytic rank $1$ Dimension $6$ CM no Inner twists $1$

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$1849 = 43^{2}$$ Weight: $$k$$ $$=$$ $$4$$ Character orbit: $$[\chi]$$ $$=$$ 1849.a (trivial)

## Newform invariants

 Self dual: yes Analytic conductor: $$109.094531601$$ Analytic rank: $$1$$ Dimension: $$6$$ Coefficient field: $$\mathbb{Q}[x]/(x^{6} - \cdots)$$ Defining polynomial: $$x^{6} - 32 x^{4} - 16 x^{3} + 251 x^{2} + 276 x + 60$$ Coefficient ring: $$\Z[a_1, a_2, a_3]$$ Coefficient ring index: $$2$$ Twist minimal: no (minimal twist has level 43) Fricke sign: $$-1$$ Sato-Tate group: $\mathrm{SU}(2)$

## $q$-expansion

Coefficients of the $$q$$-expansion are expressed in terms of a basis $$1,\beta_1,\ldots,\beta_{5}$$ for the coefficient ring described below. We also show the integral $$q$$-expansion of the trace form.

 $$f(q)$$ $$=$$ $$q + ( -1 + \beta_{1} ) q^{2} + ( -1 + \beta_{3} ) q^{3} + ( 4 - \beta_{1} + \beta_{3} - \beta_{4} ) q^{4} + ( -7 + \beta_{2} - \beta_{3} - \beta_{4} ) q^{5} + ( -1 + \beta_{1} + 2 \beta_{2} - 2 \beta_{3} + 2 \beta_{4} - \beta_{5} ) q^{6} + ( -2 - 2 \beta_{1} - \beta_{2} - 3 \beta_{5} ) q^{7} + ( -10 + \beta_{2} - 4 \beta_{3} + 3 \beta_{4} ) q^{8} + ( 12 + 4 \beta_{1} - 2 \beta_{2} - \beta_{3} + \beta_{4} - 5 \beta_{5} ) q^{9} +O(q^{10})$$ $$q + ( -1 + \beta_{1} ) q^{2} + ( -1 + \beta_{3} ) q^{3} + ( 4 - \beta_{1} + \beta_{3} - \beta_{4} ) q^{4} + ( -7 + \beta_{2} - \beta_{3} - \beta_{4} ) q^{5} + ( -1 + \beta_{1} + 2 \beta_{2} - 2 \beta_{3} + 2 \beta_{4} - \beta_{5} ) q^{6} + ( -2 - 2 \beta_{1} - \beta_{2} - 3 \beta_{5} ) q^{7} + ( -10 + \beta_{2} - 4 \beta_{3} + 3 \beta_{4} ) q^{8} + ( 12 + 4 \beta_{1} - 2 \beta_{2} - \beta_{3} + \beta_{4} - 5 \beta_{5} ) q^{9} + ( 9 - 5 \beta_{1} - 5 \beta_{2} + 4 \beta_{3} + \beta_{4} - \beta_{5} ) q^{10} + ( -3 + 6 \beta_{1} + 3 \beta_{2} - 2 \beta_{3} - 5 \beta_{4} + 4 \beta_{5} ) q^{11} + ( 25 - 4 \beta_{1} - 5 \beta_{2} + 5 \beta_{3} + 2 \beta_{4} - 5 \beta_{5} ) q^{12} + ( 7 + 2 \beta_{1} - \beta_{2} - 2 \beta_{3} + 3 \beta_{4} - 8 \beta_{5} ) q^{13} + ( -30 - \beta_{1} + 5 \beta_{2} - 5 \beta_{3} + 2 \beta_{4} + 6 \beta_{5} ) q^{14} + ( -22 + 2 \beta_{1} + \beta_{2} - 8 \beta_{3} + 3 \beta_{4} + 2 \beta_{5} ) q^{15} + ( -10 - 14 \beta_{1} - 7 \beta_{2} + 6 \beta_{3} + 3 \beta_{4} - 2 \beta_{5} ) q^{16} + ( 4 + 2 \beta_{1} + 4 \beta_{2} + 3 \beta_{3} + \beta_{4} - \beta_{5} ) q^{17} + ( 18 + 9 \beta_{1} + 8 \beta_{2} + \beta_{3} - 7 \beta_{4} + 11 \beta_{5} ) q^{18} + ( 11 + 10 \beta_{1} - 2 \beta_{2} - 3 \beta_{3} + \beta_{4} - 3 \beta_{5} ) q^{19} + ( -23 + 6 \beta_{1} + 12 \beta_{2} - 19 \beta_{3} + 7 \beta_{4} + 11 \beta_{5} ) q^{20} + ( 4 - 6 \beta_{1} - 4 \beta_{2} + 16 \beta_{3} - 14 \beta_{4} + 16 \beta_{5} ) q^{21} + ( 83 + 5 \beta_{1} - 19 \beta_{2} + 14 \beta_{3} - 5 \beta_{4} - 6 \beta_{5} ) q^{22} + ( 24 + 6 \beta_{1} + 5 \beta_{2} + 5 \beta_{3} - 10 \beta_{4} - 7 \beta_{5} ) q^{23} + ( -89 + 18 \beta_{1} + 11 \beta_{2} - 11 \beta_{3} - 12 \beta_{4} + 21 \beta_{5} ) q^{24} + ( 18 - 20 \beta_{1} - 9 \beta_{2} + 13 \beta_{3} + 12 \beta_{4} + 11 \beta_{5} ) q^{25} + ( -3 + 3 \beta_{1} + 9 \beta_{2} + 6 \beta_{3} - \beta_{4} + 10 \beta_{5} ) q^{26} + ( -30 - 4 \beta_{1} + 11 \beta_{2} + 8 \beta_{3} - 13 \beta_{4} + 26 \beta_{5} ) q^{27} + ( 70 - 24 \beta_{1} - 16 \beta_{2} + 26 \beta_{3} + 6 \beta_{5} ) q^{28} + ( -81 - 24 \beta_{1} - 2 \beta_{2} + 5 \beta_{3} - 18 \beta_{4} + 8 \beta_{5} ) q^{29} + ( 70 - 44 \beta_{1} - 17 \beta_{2} + 24 \beta_{3} - 17 \beta_{4} ) q^{30} + ( 42 - 18 \beta_{1} - 6 \beta_{2} + \beta_{3} - 21 \beta_{4} - \beta_{5} ) q^{31} + ( -86 - 16 \beta_{1} + 23 \beta_{2} - 12 \beta_{3} - 17 \beta_{4} + 14 \beta_{5} ) q^{32} + ( -104 - 10 \beta_{1} + 11 \beta_{2} - 32 \beta_{3} + 40 \beta_{4} - 23 \beta_{5} ) q^{33} + ( 14 + 17 \beta_{1} + 9 \beta_{3} + 17 \beta_{4} - 15 \beta_{5} ) q^{34} + ( 32 + 18 \beta_{1} + 8 \beta_{2} - 16 \beta_{3} + 28 \beta_{4} + 30 \beta_{5} ) q^{35} + ( 17 + 7 \beta_{1} - 16 \beta_{2} + 32 \beta_{3} - 2 \beta_{4} + 11 \beta_{5} ) q^{36} + ( -47 + 18 \beta_{1} - 31 \beta_{2} + 3 \beta_{3} - 6 \beta_{4} + 9 \beta_{5} ) q^{37} + ( 95 + 2 \beta_{1} + 2 \beta_{2} + 11 \beta_{3} - 19 \beta_{4} + 11 \beta_{5} ) q^{38} + ( -26 + 26 \beta_{1} + 11 \beta_{2} + 46 \beta_{3} - 32 \beta_{4} + 45 \beta_{5} ) q^{39} + ( 107 - 22 \beta_{1} - 26 \beta_{2} + 55 \beta_{3} - 27 \beta_{4} - 27 \beta_{5} ) q^{40} + ( 78 - 28 \beta_{1} + 27 \beta_{2} - 17 \beta_{3} + 16 \beta_{4} + 3 \beta_{5} ) q^{41} + ( -72 + 40 \beta_{1} + 10 \beta_{2} - 64 \beta_{3} + 10 \beta_{4} - 6 \beta_{5} ) q^{42} + ( -74 + 41 \beta_{1} + 43 \beta_{2} - 69 \beta_{3} + 12 \beta_{4} + 22 \beta_{5} ) q^{44} + ( -56 - 2 \beta_{1} - 4 \beta_{2} - 8 \beta_{3} + 21 \beta_{4} + 31 \beta_{5} ) q^{45} + ( 6 + 71 \beta_{1} - 3 \beta_{2} + \beta_{3} + 26 \beta_{4} - 3 \beta_{5} ) q^{46} + ( 79 - 44 \beta_{1} - 9 \beta_{2} + 5 \beta_{3} - 40 \beta_{4} + 23 \beta_{5} ) q^{47} + ( 171 - 54 \beta_{1} - 37 \beta_{2} + 21 \beta_{3} - 44 \beta_{4} + 9 \beta_{5} ) q^{48} + ( 43 - 30 \beta_{1} - 32 \beta_{2} - 6 \beta_{3} + 46 \beta_{4} - 8 \beta_{5} ) q^{49} + ( -228 - 9 \beta_{1} + 45 \beta_{2} - 61 \beta_{3} + 8 \beta_{4} - 9 \beta_{5} ) q^{50} + ( 203 + 76 \beta_{1} - \beta_{2} + 3 \beta_{3} + 5 \beta_{4} - 20 \beta_{5} ) q^{51} + ( 6 + 3 \beta_{1} - 9 \beta_{2} + 33 \beta_{3} + 2 \beta_{4} + 22 \beta_{5} ) q^{52} + ( 67 + 20 \beta_{1} - 37 \beta_{2} - 30 \beta_{3} + 7 \beta_{4} + 26 \beta_{5} ) q^{53} + ( 46 + 8 \beta_{1} - 45 \beta_{2} + 27 \beta_{4} - 54 \beta_{5} ) q^{54} + ( 290 - 78 \beta_{1} - 27 \beta_{2} + 40 \beta_{3} + 6 \beta_{4} + \beta_{5} ) q^{55} + ( -144 + 92 \beta_{1} + 38 \beta_{2} - 84 \beta_{3} + 6 \beta_{4} - 32 \beta_{5} ) q^{56} + ( -156 - 12 \beta_{1} + 27 \beta_{2} + 18 \beta_{3} + 3 \beta_{4} + 22 \beta_{5} ) q^{57} + ( -189 - 47 \beta_{1} - 12 \beta_{2} - 58 \beta_{3} + 20 \beta_{4} + 11 \beta_{5} ) q^{58} + ( 62 + 42 \beta_{1} - 8 \beta_{2} + 30 \beta_{3} - 4 \beta_{4} - 10 \beta_{5} ) q^{59} + ( -460 + 102 \beta_{1} + 57 \beta_{2} - 96 \beta_{3} + 17 \beta_{4} + 28 \beta_{5} ) q^{60} + ( 208 - 46 \beta_{1} - 25 \beta_{2} + 4 \beta_{3} + 46 \beta_{4} - 13 \beta_{5} ) q^{61} + ( -272 + 75 \beta_{1} - 6 \beta_{2} - 59 \beta_{3} + 3 \beta_{4} + 39 \beta_{5} ) q^{62} + ( 340 - 86 \beta_{1} - 31 \beta_{2} - 66 \beta_{3} + 90 \beta_{4} - 63 \beta_{5} ) q^{63} + ( 62 + 68 \beta_{1} - 45 \beta_{2} + 12 \beta_{3} + 23 \beta_{4} - 38 \beta_{5} ) q^{64} + ( 12 - 18 \beta_{1} - 9 \beta_{2} - 6 \beta_{3} + 28 \beta_{4} + 53 \beta_{5} ) q^{65} + ( 40 - 203 \beta_{1} - 23 \beta_{2} + 127 \beta_{3} + 2 \beta_{4} - 18 \beta_{5} ) q^{66} + ( -113 + 14 \beta_{1} - 69 \beta_{2} + 78 \beta_{3} - \beta_{4} - 56 \beta_{5} ) q^{67} + ( 95 - 3 \beta_{1} + 18 \beta_{2} - 8 \beta_{3} + 8 \beta_{4} - 3 \beta_{5} ) q^{68} + ( 186 + 42 \beta_{1} - 8 \beta_{2} + 48 \beta_{3} + 31 \beta_{4} - 23 \beta_{5} ) q^{69} + ( 324 - 70 \beta_{1} - 50 \beta_{2} + 102 \beta_{3} - 56 \beta_{4} - 66 \beta_{5} ) q^{70} + ( 62 + 56 \beta_{1} + 38 \beta_{2} + 28 \beta_{3} - 116 \beta_{4} + 46 \beta_{5} ) q^{71} + ( -133 - 30 \beta_{1} + 19 \beta_{2} - 115 \beta_{3} + 54 \beta_{4} - 81 \beta_{5} ) q^{72} + ( -148 - 146 \beta_{1} + 51 \beta_{2} - 92 \beta_{3} - 26 \beta_{4} - 9 \beta_{5} ) q^{73} + ( 229 - 100 \beta_{1} + 53 \beta_{2} - 87 \beta_{3} - 114 \beta_{4} + 87 \beta_{5} ) q^{74} + ( 402 - 34 \beta_{1} - 54 \beta_{2} - 8 \beta_{3} - 39 \beta_{4} - 59 \beta_{5} ) q^{75} + ( -167 + 68 \beta_{1} + 4 \beta_{2} - 9 \beta_{3} + 7 \beta_{4} + 15 \beta_{5} ) q^{76} + ( -434 + 14 \beta_{1} + 55 \beta_{2} - 24 \beta_{3} + 50 \beta_{4} + 75 \beta_{5} ) q^{77} + ( 334 + 107 \beta_{1} - 7 \beta_{2} - 65 \beta_{3} + 54 \beta_{4} - 92 \beta_{5} ) q^{78} + ( -297 + 96 \beta_{1} + 14 \beta_{2} - 53 \beta_{3} + 95 \beta_{4} - 35 \beta_{5} ) q^{79} + ( -409 + 198 \beta_{1} + 66 \beta_{2} - 85 \beta_{3} + 25 \beta_{4} - 11 \beta_{5} ) q^{80} + ( -61 - 106 \beta_{1} + 17 \beta_{2} - 140 \beta_{3} + 101 \beta_{4} - 40 \beta_{5} ) q^{81} + ( -300 + 63 \beta_{1} - 75 \beta_{2} + 103 \beta_{3} + 72 \beta_{4} - 83 \beta_{5} ) q^{82} + ( -79 - 136 \beta_{1} + 37 \beta_{2} + 102 \beta_{3} - 5 \beta_{4} + 64 \beta_{5} ) q^{83} + ( 610 - 146 \beta_{1} - 100 \beta_{2} + 80 \beta_{3} - 20 \beta_{4} - 98 \beta_{5} ) q^{84} + ( -14 - 74 \beta_{1} - 8 \beta_{2} - 26 \beta_{3} - 7 \beta_{4} + 27 \beta_{5} ) q^{85} + ( 33 - 180 \beta_{1} - 76 \beta_{2} - 95 \beta_{3} + 33 \beta_{4} - 47 \beta_{5} ) q^{87} + ( 120 - 212 \beta_{1} - 82 \beta_{2} + 208 \beta_{3} - 32 \beta_{4} - 46 \beta_{5} ) q^{88} + ( -576 + 2 \beta_{1} - 89 \beta_{2} + 62 \beta_{3} + 34 \beta_{4} - 17 \beta_{5} ) q^{89} + ( 160 - 153 \beta_{1} - 18 \beta_{2} + 23 \beta_{3} - 57 \beta_{4} - 32 \beta_{5} ) q^{90} + ( 594 - 66 \beta_{1} - 51 \beta_{2} - 108 \beta_{3} + 114 \beta_{4} - 63 \beta_{5} ) q^{91} + ( 595 - 95 \beta_{1} - 3 \beta_{2} + 46 \beta_{3} + 5 \beta_{4} + 41 \beta_{5} ) q^{92} + ( -313 - 236 \beta_{1} - 59 \beta_{2} + 71 \beta_{3} + 19 \beta_{4} + 8 \beta_{5} ) q^{93} + ( -553 + 128 \beta_{1} - 35 \beta_{2} - 121 \beta_{3} + 4 \beta_{4} + 39 \beta_{5} ) q^{94} + ( -13 - 30 \beta_{1} - 33 \beta_{2} + 37 \beta_{3} + 2 \beta_{4} - \beta_{5} ) q^{95} + ( -149 + 74 \beta_{1} - 25 \beta_{2} - 163 \beta_{3} + 72 \beta_{4} - 43 \beta_{5} ) q^{96} + ( 4 + 102 \beta_{1} - 3 \beta_{2} - 29 \beta_{3} + 22 \beta_{4} + 133 \beta_{5} ) q^{97} + ( -371 - 117 \beta_{1} + 106 \beta_{2} - 68 \beta_{3} - 70 \beta_{4} + 64 \beta_{5} ) q^{98} + ( -213 + 192 \beta_{1} + 3 \beta_{2} + 64 \beta_{3} - 95 \beta_{4} + 172 \beta_{5} ) q^{99} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$6q - 6q^{2} - 7q^{3} + 22q^{4} - 43q^{5} - 3q^{6} - 8q^{7} - 54q^{8} + 81q^{9} + O(q^{10})$$ $$6q - 6q^{2} - 7q^{3} + 22q^{4} - 43q^{5} - 3q^{6} - 8q^{7} - 54q^{8} + 81q^{9} + 57q^{10} - 28q^{11} + 157q^{12} + 56q^{13} - 184q^{14} - 124q^{15} - 54q^{16} + 19q^{17} + 81q^{18} + 75q^{19} - 135q^{20} - 18q^{21} + 504q^{22} + 131q^{23} - 567q^{24} + 105q^{25} - 44q^{26} - 238q^{27} + 404q^{28} - 515q^{29} + 396q^{30} + 237q^{31} - 558q^{32} - 540q^{33} + 107q^{34} + 198q^{35} + 73q^{36} - 269q^{37} + 527q^{38} - 290q^{39} + 613q^{40} + 471q^{41} - 362q^{42} - 428q^{44} - 334q^{45} + 67q^{46} + 415q^{47} + 989q^{48} + 350q^{49} - 1335q^{50} + 1241q^{51} - 8q^{52} + 450q^{53} + 402q^{54} + 1732q^{55} - 780q^{56} - 1000q^{57} - 1055q^{58} + 356q^{59} - 2732q^{60} + 1328q^{61} - 1603q^{62} + 2290q^{63} + 466q^{64} + 62q^{65} + 156q^{66} - 632q^{67} + 571q^{68} + 1130q^{69} + 1902q^{70} + 144q^{71} - 567q^{72} - 864q^{73} + 1207q^{74} + 2494q^{75} - 1005q^{76} - 2660q^{77} + 2222q^{78} - 1613q^{79} - 2399q^{80} - 102q^{81} - 1673q^{82} - 682q^{83} + 3758q^{84} - 84q^{85} + 449q^{87} + 608q^{88} - 3378q^{89} + 930q^{90} + 3900q^{91} + 3491q^{92} - 1879q^{93} - 3197q^{94} - 79q^{95} - 591q^{96} - 55q^{97} - 2398q^{98} - 1612q^{99} + O(q^{100})$$

Basis of coefficient ring in terms of a root $$\nu$$ of $$x^{6} - 32 x^{4} - 16 x^{3} + 251 x^{2} + 276 x + 60$$:

 $$\beta_{0}$$ $$=$$ $$1$$ $$\beta_{1}$$ $$=$$ $$\nu$$ $$\beta_{2}$$ $$=$$ $$($$$$\nu^{5} + 2 \nu^{4} - 16 \nu^{3} - 36 \nu^{2} - 25 \nu - 34$$$$)/8$$ $$\beta_{3}$$ $$=$$ $$($$$$\nu^{5} + 2 \nu^{4} - 24 \nu^{3} - 36 \nu^{2} + 103 \nu + 30$$$$)/8$$ $$\beta_{4}$$ $$=$$ $$($$$$\nu^{5} + 2 \nu^{4} - 24 \nu^{3} - 44 \nu^{2} + 111 \nu + 118$$$$)/8$$ $$\beta_{5}$$ $$=$$ $$($$$$\nu^{5} - 2 \nu^{4} - 36 \nu^{3} + 24 \nu^{2} + 331 \nu + 182$$$$)/8$$
 $$1$$ $$=$$ $$\beta_0$$ $$\nu$$ $$=$$ $$\beta_{1}$$ $$\nu^{2}$$ $$=$$ $$-\beta_{4} + \beta_{3} + \beta_{1} + 11$$ $$\nu^{3}$$ $$=$$ $$-\beta_{3} + \beta_{2} + 16 \beta_{1} + 8$$ $$\nu^{4}$$ $$=$$ $$-2 \beta_{5} - 15 \beta_{4} + 20 \beta_{3} - 3 \beta_{2} + 24 \beta_{1} + 179$$ $$\nu^{5}$$ $$=$$ $$4 \beta_{5} - 6 \beta_{4} - 20 \beta_{3} + 30 \beta_{2} + 269 \beta_{1} + 200$$

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

Label $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
1.1
 −4.15251 −3.17112 −0.847740 −0.299707 4.15653 4.31455
−5.15251 6.49933 18.5484 −17.2665 −33.4879 23.3206 −54.3507 15.2413 88.9661
1.2 −4.17112 −2.46717 9.39827 7.54340 10.2909 −4.58222 −5.83236 −20.9131 −31.4645
1.3 −1.84774 −9.49653 −4.58586 −2.98245 17.5471 26.0720 23.2554 63.1842 5.51080
1.4 −1.29971 −1.43046 −6.31076 −20.4116 1.85918 −29.9522 18.5998 −24.9538 26.5291
1.5 3.15653 −7.20925 1.96369 −1.36370 −22.7562 −13.0131 −19.0538 24.9733 −4.30455
1.6 3.31455 7.10409 2.98627 −8.51910 23.5469 −9.84502 −16.6183 23.4681 −28.2370
 $$n$$: e.g. 2-40 or 990-1000 Embeddings: e.g. 1-3 or 1.6 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Atkin-Lehner signs

$$p$$ Sign
$$43$$ $$-1$$

## Inner twists

This newform does not admit any (nontrivial) inner twists.

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1849.4.a.c 6
43.b odd 2 1 43.4.a.b 6
129.d even 2 1 387.4.a.h 6
172.d even 2 1 688.4.a.i 6
215.d odd 2 1 1075.4.a.b 6
301.c even 2 1 2107.4.a.c 6

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
43.4.a.b 6 43.b odd 2 1
387.4.a.h 6 129.d even 2 1
688.4.a.i 6 172.d even 2 1
1075.4.a.b 6 215.d odd 2 1
1849.4.a.c 6 1.a even 1 1 trivial
2107.4.a.c 6 301.c even 2 1

## Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator $$T_{2}^{6} + 6 T_{2}^{5} - 17 T_{2}^{4} - 124 T_{2}^{3} + 26 T_{2}^{2} + 608 T_{2} + 540$$ acting on $$S_{4}^{\mathrm{new}}(\Gamma_0(1849))$$.

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$1 + 6 T + 31 T^{2} + 116 T^{3} + 442 T^{4} + 1472 T^{5} + 4668 T^{6} + 11776 T^{7} + 28288 T^{8} + 59392 T^{9} + 126976 T^{10} + 196608 T^{11} + 262144 T^{12}$$
$3$ $$1 + 7 T + 65 T^{2} + 357 T^{3} + 2599 T^{4} + 15158 T^{5} + 96098 T^{6} + 409266 T^{7} + 1894671 T^{8} + 7026831 T^{9} + 34543665 T^{10} + 100442349 T^{11} + 387420489 T^{12}$$
$5$ $$1 + 43 T + 1247 T^{2} + 26367 T^{3} + 452519 T^{4} + 6421366 T^{5} + 77975134 T^{6} + 802670750 T^{7} + 7070609375 T^{8} + 51498046875 T^{9} + 304443359375 T^{10} + 1312255859375 T^{11} + 3814697265625 T^{12}$$
$7$ $$1 + 8 T + 886 T^{2} + 4080 T^{3} + 442155 T^{4} + 3221432 T^{5} + 186242508 T^{6} + 1104951176 T^{7} + 52019093595 T^{8} + 164642716560 T^{9} + 12263380460086 T^{10} + 37980492079544 T^{11} + 1628413597910449 T^{12}$$
$11$ $$1 + 28 T + 3144 T^{2} + 41080 T^{3} + 3977536 T^{4} + 3139972 T^{5} + 4111332998 T^{6} + 4179302732 T^{7} + 7046447653696 T^{8} + 96864491146280 T^{9} + 9867218816410824 T^{10} + 116962948743638228 T^{11} + 5559917313492231481 T^{12}$$
$13$ $$1 - 56 T + 8776 T^{2} - 530884 T^{3} + 37473880 T^{4} - 2150765192 T^{5} + 100690118558 T^{6} - 4725231126824 T^{7} + 180879261248920 T^{8} - 5629759045135732 T^{9} + 204463995034893256 T^{10} - 2866410008789082392 T^{11} +$$$$11\!\cdots\!29$$$$T^{12}$$
$17$ $$1 - 19 T + 23143 T^{2} - 543393 T^{3} + 241535186 T^{4} - 5650313095 T^{5} + 1493450611759 T^{6} - 27759988235735 T^{7} + 5830072218002834 T^{8} - 64439821973334321 T^{9} + 13483626436208358823 T^{10} - 54386037978686500067 T^{11} +$$$$14\!\cdots\!09$$$$T^{12}$$
$19$ $$1 - 75 T + 38259 T^{2} - 2365781 T^{3} + 629552155 T^{4} - 31151517862 T^{5} + 5681041321490 T^{6} - 213668261015458 T^{7} + 29617835767423555 T^{8} - 763408424339300399 T^{9} + 84679215488552253699 T^{10} -$$$$11\!\cdots\!25$$$$T^{11} +$$$$10\!\cdots\!41$$$$T^{12}$$
$23$ $$1 - 131 T + 52195 T^{2} - 3677795 T^{3} + 974730114 T^{4} - 33210519163 T^{5} + 11858751245947 T^{6} - 404072386656221 T^{7} + 144295038961061346 T^{8} - 6624270252565314085 T^{9} +$$$$11\!\cdots\!95$$$$T^{10} -$$$$34\!\cdots\!17$$$$T^{11} +$$$$32\!\cdots\!69$$$$T^{12}$$
$29$ $$1 + 515 T + 204583 T^{2} + 58068807 T^{3} + 13900558631 T^{4} + 2733986934494 T^{5} + 464005745217070 T^{6} + 66679207345374166 T^{7} + 8268376448646633551 T^{8} +$$$$84\!\cdots\!83$$$$T^{9} +$$$$72\!\cdots\!03$$$$T^{10} +$$$$44\!\cdots\!35$$$$T^{11} +$$$$21\!\cdots\!61$$$$T^{12}$$
$31$ $$1 - 237 T + 125373 T^{2} - 21016589 T^{3} + 7321362670 T^{4} - 1031063540341 T^{5} + 275109610824401 T^{6} - 30716413930298731 T^{7} + 6497736319560988270 T^{8} -$$$$55\!\cdots\!19$$$$T^{9} +$$$$98\!\cdots\!53$$$$T^{10} -$$$$55\!\cdots\!87$$$$T^{11} +$$$$69\!\cdots\!41$$$$T^{12}$$
$37$ $$1 + 269 T + 126311 T^{2} + 30748693 T^{3} + 8177560635 T^{4} + 1302357216602 T^{5} + 425119347961066 T^{6} + 65968300092541106 T^{7} + 20981383282418309715 T^{8} +$$$$39\!\cdots\!61$$$$T^{9} +$$$$83\!\cdots\!91$$$$T^{10} +$$$$89\!\cdots\!17$$$$T^{11} +$$$$16\!\cdots\!29$$$$T^{12}$$
$41$ $$1 - 471 T + 349763 T^{2} - 112600045 T^{3} + 50459129866 T^{4} - 12922113800443 T^{5} + 4372223136871043 T^{6} - 890605005240332003 T^{7} +$$$$23\!\cdots\!06$$$$T^{8} -$$$$36\!\cdots\!45$$$$T^{9} +$$$$78\!\cdots\!03$$$$T^{10} -$$$$73\!\cdots\!71$$$$T^{11} +$$$$10\!\cdots\!21$$$$T^{12}$$
$43$ 1
$47$ $$1 - 415 T + 421631 T^{2} - 116866317 T^{3} + 77411983523 T^{4} - 16052264514750 T^{5} + 9154052369892234 T^{6} - 1666594258714889250 T^{7} +$$$$83\!\cdots\!67$$$$T^{8} -$$$$13\!\cdots\!39$$$$T^{9} +$$$$48\!\cdots\!71$$$$T^{10} -$$$$50\!\cdots\!45$$$$T^{11} +$$$$12\!\cdots\!89$$$$T^{12}$$
$53$ $$1 - 450 T + 321704 T^{2} - 149982378 T^{3} + 77929548632 T^{4} - 28654270442506 T^{5} + 12746558079363422 T^{6} - 4265961820668965762 T^{7} +$$$$17\!\cdots\!28$$$$T^{8} -$$$$49\!\cdots\!74$$$$T^{9} +$$$$15\!\cdots\!64$$$$T^{10} -$$$$32\!\cdots\!50$$$$T^{11} +$$$$10\!\cdots\!89$$$$T^{12}$$
$59$ $$1 - 356 T + 1153950 T^{2} - 347607228 T^{3} + 570632518215 T^{4} - 139273869185096 T^{5} + 154351054402988548 T^{6} - 28603927979365831384 T^{7} +$$$$24\!\cdots\!15$$$$T^{8} -$$$$30\!\cdots\!92$$$$T^{9} +$$$$20\!\cdots\!50$$$$T^{10} -$$$$13\!\cdots\!44$$$$T^{11} +$$$$75\!\cdots\!21$$$$T^{12}$$
$61$ $$1 - 1328 T + 1795994 T^{2} - 1454429624 T^{3} + 1136828745699 T^{4} - 649067768079368 T^{5} + 354455789917301172 T^{6} -$$$$14\!\cdots\!08$$$$T^{7} +$$$$58\!\cdots\!39$$$$T^{8} -$$$$17\!\cdots\!84$$$$T^{9} +$$$$47\!\cdots\!74$$$$T^{10} -$$$$80\!\cdots\!28$$$$T^{11} +$$$$13\!\cdots\!81$$$$T^{12}$$
$67$ $$1 + 632 T + 927628 T^{2} + 253029932 T^{3} + 179674044568 T^{4} - 62778009874096 T^{5} - 5212390617577006 T^{6} - 18881302583762735248 T^{7} +$$$$16\!\cdots\!92$$$$T^{8} +$$$$68\!\cdots\!04$$$$T^{9} +$$$$75\!\cdots\!08$$$$T^{10} +$$$$15\!\cdots\!76$$$$T^{11} +$$$$74\!\cdots\!09$$$$T^{12}$$
$71$ $$1 - 144 T + 863230 T^{2} - 72744496 T^{3} + 475313592223 T^{4} - 62333254020128 T^{5} + 209643801201434276 T^{6} - 22309757279598032608 T^{7} +$$$$60\!\cdots\!83$$$$T^{8} -$$$$33\!\cdots\!76$$$$T^{9} +$$$$14\!\cdots\!30$$$$T^{10} -$$$$84\!\cdots\!44$$$$T^{11} +$$$$21\!\cdots\!61$$$$T^{12}$$
$73$ $$1 + 864 T + 1080658 T^{2} + 439706488 T^{3} + 458263245867 T^{4} + 209583356925592 T^{5} + 222637509631027524 T^{6} + 81531488761123023064 T^{7} +$$$$69\!\cdots\!63$$$$T^{8} +$$$$25\!\cdots\!44$$$$T^{9} +$$$$24\!\cdots\!18$$$$T^{10} +$$$$76\!\cdots\!48$$$$T^{11} +$$$$34\!\cdots\!69$$$$T^{12}$$
$79$ $$1 + 1613 T + 2731081 T^{2} + 3130876751 T^{3} + 3268965374139 T^{4} + 2799662350208018 T^{5} + 2111366737833161318 T^{6} +$$$$13\!\cdots\!02$$$$T^{7} +$$$$79\!\cdots\!19$$$$T^{8} +$$$$37\!\cdots\!69$$$$T^{9} +$$$$16\!\cdots\!21$$$$T^{10} +$$$$46\!\cdots\!87$$$$T^{11} +$$$$14\!\cdots\!61$$$$T^{12}$$
$83$ $$1 + 682 T + 1120004 T^{2} + 1783287782 T^{3} + 1291656570448 T^{4} + 1149121488958882 T^{5} + 1227368803599345682 T^{6} +$$$$65\!\cdots\!34$$$$T^{7} +$$$$42\!\cdots\!12$$$$T^{8} +$$$$33\!\cdots\!46$$$$T^{9} +$$$$11\!\cdots\!44$$$$T^{10} +$$$$41\!\cdots\!74$$$$T^{11} +$$$$34\!\cdots\!09$$$$T^{12}$$
$89$ $$1 + 3378 T + 7851850 T^{2} + 13055260850 T^{3} + 17370332054203 T^{4} + 19017874978895668 T^{5} + 17369747195795800052 T^{6} +$$$$13\!\cdots\!92$$$$T^{7} +$$$$86\!\cdots\!83$$$$T^{8} +$$$$45\!\cdots\!50$$$$T^{9} +$$$$19\!\cdots\!50$$$$T^{10} +$$$$58\!\cdots\!22$$$$T^{11} +$$$$12\!\cdots\!81$$$$T^{12}$$
$97$ $$1 + 55 T + 2496871 T^{2} - 940317011 T^{3} + 3317883854770 T^{4} - 1706175158728421 T^{5} + 3579842987764450575 T^{6} -$$$$15\!\cdots\!33$$$$T^{7} +$$$$27\!\cdots\!30$$$$T^{8} -$$$$71\!\cdots\!87$$$$T^{9} +$$$$17\!\cdots\!11$$$$T^{10} +$$$$34\!\cdots\!15$$$$T^{11} +$$$$57\!\cdots\!89$$$$T^{12}$$