Properties

Label 1848.2.a.k
Level $1848$
Weight $2$
Character orbit 1848.a
Self dual yes
Analytic conductor $14.756$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 1848 = 2^{3} \cdot 3 \cdot 7 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1848.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(14.7563542935\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

\(f(q)\) \(=\) \( q + q^{3} + q^{5} - q^{7} + q^{9} + O(q^{10}) \) \( q + q^{3} + q^{5} - q^{7} + q^{9} - q^{11} + 3 q^{13} + q^{15} + 7 q^{19} - q^{21} + 6 q^{23} - 4 q^{25} + q^{27} - 9 q^{29} - q^{33} - q^{35} - 3 q^{37} + 3 q^{39} + 8 q^{41} + 10 q^{43} + q^{45} + 3 q^{47} + q^{49} + 6 q^{53} - q^{55} + 7 q^{57} + 7 q^{59} + 10 q^{61} - q^{63} + 3 q^{65} - 3 q^{67} + 6 q^{69} - 8 q^{71} - 7 q^{73} - 4 q^{75} + q^{77} + 8 q^{79} + q^{81} - 9 q^{87} - 6 q^{89} - 3 q^{91} + 7 q^{95} - 10 q^{97} - q^{99} + O(q^{100}) \)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
0 1.00000 0 1.00000 0 −1.00000 0 1.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \(1\)
\(3\) \(-1\)
\(7\) \(1\)
\(11\) \(1\)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1848.2.a.k 1
3.b odd 2 1 5544.2.a.h 1
4.b odd 2 1 3696.2.a.l 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1848.2.a.k 1 1.a even 1 1 trivial
3696.2.a.l 1 4.b odd 2 1
5544.2.a.h 1 3.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(1848))\):

\( T_{5} - 1 \)
\( T_{13} - 3 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T \)
$3$ \( -1 + T \)
$5$ \( -1 + T \)
$7$ \( 1 + T \)
$11$ \( 1 + T \)
$13$ \( -3 + T \)
$17$ \( T \)
$19$ \( -7 + T \)
$23$ \( -6 + T \)
$29$ \( 9 + T \)
$31$ \( T \)
$37$ \( 3 + T \)
$41$ \( -8 + T \)
$43$ \( -10 + T \)
$47$ \( -3 + T \)
$53$ \( -6 + T \)
$59$ \( -7 + T \)
$61$ \( -10 + T \)
$67$ \( 3 + T \)
$71$ \( 8 + T \)
$73$ \( 7 + T \)
$79$ \( -8 + T \)
$83$ \( T \)
$89$ \( 6 + T \)
$97$ \( 10 + T \)
show more
show less