Properties

Label 1840.4.a.e.1.1
Level $1840$
Weight $4$
Character 1840.1
Self dual yes
Analytic conductor $108.564$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1840,4,Mod(1,1840)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1840, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1840.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1840 = 2^{4} \cdot 5 \cdot 23 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1840.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(108.563514411\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 230)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 1840.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{3} +5.00000 q^{5} +32.0000 q^{7} -26.0000 q^{9} +30.0000 q^{11} +19.0000 q^{13} +5.00000 q^{15} -60.0000 q^{17} +58.0000 q^{19} +32.0000 q^{21} -23.0000 q^{23} +25.0000 q^{25} -53.0000 q^{27} +85.0000 q^{29} +65.0000 q^{31} +30.0000 q^{33} +160.000 q^{35} -34.0000 q^{37} +19.0000 q^{39} +143.000 q^{41} +332.000 q^{43} -130.000 q^{45} +561.000 q^{47} +681.000 q^{49} -60.0000 q^{51} -422.000 q^{53} +150.000 q^{55} +58.0000 q^{57} -392.000 q^{59} -246.000 q^{61} -832.000 q^{63} +95.0000 q^{65} -894.000 q^{67} -23.0000 q^{69} +737.000 q^{71} +1041.00 q^{73} +25.0000 q^{75} +960.000 q^{77} -1114.00 q^{79} +649.000 q^{81} +936.000 q^{83} -300.000 q^{85} +85.0000 q^{87} +824.000 q^{89} +608.000 q^{91} +65.0000 q^{93} +290.000 q^{95} -868.000 q^{97} -780.000 q^{99} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.00000 0.192450 0.0962250 0.995360i \(-0.469323\pi\)
0.0962250 + 0.995360i \(0.469323\pi\)
\(4\) 0 0
\(5\) 5.00000 0.447214
\(6\) 0 0
\(7\) 32.0000 1.72784 0.863919 0.503631i \(-0.168003\pi\)
0.863919 + 0.503631i \(0.168003\pi\)
\(8\) 0 0
\(9\) −26.0000 −0.962963
\(10\) 0 0
\(11\) 30.0000 0.822304 0.411152 0.911567i \(-0.365127\pi\)
0.411152 + 0.911567i \(0.365127\pi\)
\(12\) 0 0
\(13\) 19.0000 0.405358 0.202679 0.979245i \(-0.435035\pi\)
0.202679 + 0.979245i \(0.435035\pi\)
\(14\) 0 0
\(15\) 5.00000 0.0860663
\(16\) 0 0
\(17\) −60.0000 −0.856008 −0.428004 0.903777i \(-0.640783\pi\)
−0.428004 + 0.903777i \(0.640783\pi\)
\(18\) 0 0
\(19\) 58.0000 0.700322 0.350161 0.936690i \(-0.386127\pi\)
0.350161 + 0.936690i \(0.386127\pi\)
\(20\) 0 0
\(21\) 32.0000 0.332522
\(22\) 0 0
\(23\) −23.0000 −0.208514
\(24\) 0 0
\(25\) 25.0000 0.200000
\(26\) 0 0
\(27\) −53.0000 −0.377772
\(28\) 0 0
\(29\) 85.0000 0.544279 0.272140 0.962258i \(-0.412269\pi\)
0.272140 + 0.962258i \(0.412269\pi\)
\(30\) 0 0
\(31\) 65.0000 0.376592 0.188296 0.982112i \(-0.439704\pi\)
0.188296 + 0.982112i \(0.439704\pi\)
\(32\) 0 0
\(33\) 30.0000 0.158252
\(34\) 0 0
\(35\) 160.000 0.772712
\(36\) 0 0
\(37\) −34.0000 −0.151069 −0.0755347 0.997143i \(-0.524066\pi\)
−0.0755347 + 0.997143i \(0.524066\pi\)
\(38\) 0 0
\(39\) 19.0000 0.0780112
\(40\) 0 0
\(41\) 143.000 0.544704 0.272352 0.962198i \(-0.412199\pi\)
0.272352 + 0.962198i \(0.412199\pi\)
\(42\) 0 0
\(43\) 332.000 1.17743 0.588715 0.808340i \(-0.299634\pi\)
0.588715 + 0.808340i \(0.299634\pi\)
\(44\) 0 0
\(45\) −130.000 −0.430650
\(46\) 0 0
\(47\) 561.000 1.74107 0.870535 0.492107i \(-0.163773\pi\)
0.870535 + 0.492107i \(0.163773\pi\)
\(48\) 0 0
\(49\) 681.000 1.98542
\(50\) 0 0
\(51\) −60.0000 −0.164739
\(52\) 0 0
\(53\) −422.000 −1.09370 −0.546851 0.837230i \(-0.684173\pi\)
−0.546851 + 0.837230i \(0.684173\pi\)
\(54\) 0 0
\(55\) 150.000 0.367745
\(56\) 0 0
\(57\) 58.0000 0.134777
\(58\) 0 0
\(59\) −392.000 −0.864984 −0.432492 0.901638i \(-0.642366\pi\)
−0.432492 + 0.901638i \(0.642366\pi\)
\(60\) 0 0
\(61\) −246.000 −0.516345 −0.258173 0.966099i \(-0.583120\pi\)
−0.258173 + 0.966099i \(0.583120\pi\)
\(62\) 0 0
\(63\) −832.000 −1.66384
\(64\) 0 0
\(65\) 95.0000 0.181282
\(66\) 0 0
\(67\) −894.000 −1.63014 −0.815071 0.579361i \(-0.803302\pi\)
−0.815071 + 0.579361i \(0.803302\pi\)
\(68\) 0 0
\(69\) −23.0000 −0.0401286
\(70\) 0 0
\(71\) 737.000 1.23191 0.615956 0.787780i \(-0.288770\pi\)
0.615956 + 0.787780i \(0.288770\pi\)
\(72\) 0 0
\(73\) 1041.00 1.66904 0.834519 0.550979i \(-0.185745\pi\)
0.834519 + 0.550979i \(0.185745\pi\)
\(74\) 0 0
\(75\) 25.0000 0.0384900
\(76\) 0 0
\(77\) 960.000 1.42081
\(78\) 0 0
\(79\) −1114.00 −1.58652 −0.793258 0.608885i \(-0.791617\pi\)
−0.793258 + 0.608885i \(0.791617\pi\)
\(80\) 0 0
\(81\) 649.000 0.890261
\(82\) 0 0
\(83\) 936.000 1.23782 0.618912 0.785461i \(-0.287574\pi\)
0.618912 + 0.785461i \(0.287574\pi\)
\(84\) 0 0
\(85\) −300.000 −0.382818
\(86\) 0 0
\(87\) 85.0000 0.104747
\(88\) 0 0
\(89\) 824.000 0.981391 0.490696 0.871331i \(-0.336743\pi\)
0.490696 + 0.871331i \(0.336743\pi\)
\(90\) 0 0
\(91\) 608.000 0.700393
\(92\) 0 0
\(93\) 65.0000 0.0724751
\(94\) 0 0
\(95\) 290.000 0.313193
\(96\) 0 0
\(97\) −868.000 −0.908578 −0.454289 0.890854i \(-0.650107\pi\)
−0.454289 + 0.890854i \(0.650107\pi\)
\(98\) 0 0
\(99\) −780.000 −0.791848
\(100\) 0 0
\(101\) 50.0000 0.0492593 0.0246296 0.999697i \(-0.492159\pi\)
0.0246296 + 0.999697i \(0.492159\pi\)
\(102\) 0 0
\(103\) −440.000 −0.420917 −0.210459 0.977603i \(-0.567496\pi\)
−0.210459 + 0.977603i \(0.567496\pi\)
\(104\) 0 0
\(105\) 160.000 0.148709
\(106\) 0 0
\(107\) 318.000 0.287310 0.143655 0.989628i \(-0.454114\pi\)
0.143655 + 0.989628i \(0.454114\pi\)
\(108\) 0 0
\(109\) −828.000 −0.727596 −0.363798 0.931478i \(-0.618520\pi\)
−0.363798 + 0.931478i \(0.618520\pi\)
\(110\) 0 0
\(111\) −34.0000 −0.0290733
\(112\) 0 0
\(113\) 208.000 0.173159 0.0865796 0.996245i \(-0.472406\pi\)
0.0865796 + 0.996245i \(0.472406\pi\)
\(114\) 0 0
\(115\) −115.000 −0.0932505
\(116\) 0 0
\(117\) −494.000 −0.390345
\(118\) 0 0
\(119\) −1920.00 −1.47904
\(120\) 0 0
\(121\) −431.000 −0.323817
\(122\) 0 0
\(123\) 143.000 0.104828
\(124\) 0 0
\(125\) 125.000 0.0894427
\(126\) 0 0
\(127\) 495.000 0.345859 0.172930 0.984934i \(-0.444677\pi\)
0.172930 + 0.984934i \(0.444677\pi\)
\(128\) 0 0
\(129\) 332.000 0.226597
\(130\) 0 0
\(131\) −335.000 −0.223428 −0.111714 0.993740i \(-0.535634\pi\)
−0.111714 + 0.993740i \(0.535634\pi\)
\(132\) 0 0
\(133\) 1856.00 1.21004
\(134\) 0 0
\(135\) −265.000 −0.168945
\(136\) 0 0
\(137\) −652.000 −0.406599 −0.203300 0.979117i \(-0.565167\pi\)
−0.203300 + 0.979117i \(0.565167\pi\)
\(138\) 0 0
\(139\) 1999.00 1.21981 0.609903 0.792476i \(-0.291208\pi\)
0.609903 + 0.792476i \(0.291208\pi\)
\(140\) 0 0
\(141\) 561.000 0.335069
\(142\) 0 0
\(143\) 570.000 0.333327
\(144\) 0 0
\(145\) 425.000 0.243409
\(146\) 0 0
\(147\) 681.000 0.382095
\(148\) 0 0
\(149\) 1870.00 1.02816 0.514082 0.857741i \(-0.328133\pi\)
0.514082 + 0.857741i \(0.328133\pi\)
\(150\) 0 0
\(151\) −1463.00 −0.788459 −0.394229 0.919012i \(-0.628988\pi\)
−0.394229 + 0.919012i \(0.628988\pi\)
\(152\) 0 0
\(153\) 1560.00 0.824304
\(154\) 0 0
\(155\) 325.000 0.168417
\(156\) 0 0
\(157\) −3004.00 −1.52704 −0.763520 0.645784i \(-0.776531\pi\)
−0.763520 + 0.645784i \(0.776531\pi\)
\(158\) 0 0
\(159\) −422.000 −0.210483
\(160\) 0 0
\(161\) −736.000 −0.360279
\(162\) 0 0
\(163\) 4047.00 1.94470 0.972348 0.233536i \(-0.0750296\pi\)
0.972348 + 0.233536i \(0.0750296\pi\)
\(164\) 0 0
\(165\) 150.000 0.0707726
\(166\) 0 0
\(167\) 2112.00 0.978632 0.489316 0.872107i \(-0.337247\pi\)
0.489316 + 0.872107i \(0.337247\pi\)
\(168\) 0 0
\(169\) −1836.00 −0.835685
\(170\) 0 0
\(171\) −1508.00 −0.674384
\(172\) 0 0
\(173\) 342.000 0.150299 0.0751496 0.997172i \(-0.476057\pi\)
0.0751496 + 0.997172i \(0.476057\pi\)
\(174\) 0 0
\(175\) 800.000 0.345568
\(176\) 0 0
\(177\) −392.000 −0.166466
\(178\) 0 0
\(179\) −1689.00 −0.705261 −0.352631 0.935763i \(-0.614713\pi\)
−0.352631 + 0.935763i \(0.614713\pi\)
\(180\) 0 0
\(181\) −194.000 −0.0796680 −0.0398340 0.999206i \(-0.512683\pi\)
−0.0398340 + 0.999206i \(0.512683\pi\)
\(182\) 0 0
\(183\) −246.000 −0.0993707
\(184\) 0 0
\(185\) −170.000 −0.0675603
\(186\) 0 0
\(187\) −1800.00 −0.703899
\(188\) 0 0
\(189\) −1696.00 −0.652729
\(190\) 0 0
\(191\) 298.000 0.112893 0.0564464 0.998406i \(-0.482023\pi\)
0.0564464 + 0.998406i \(0.482023\pi\)
\(192\) 0 0
\(193\) 2301.00 0.858184 0.429092 0.903261i \(-0.358834\pi\)
0.429092 + 0.903261i \(0.358834\pi\)
\(194\) 0 0
\(195\) 95.0000 0.0348876
\(196\) 0 0
\(197\) −535.000 −0.193488 −0.0967441 0.995309i \(-0.530843\pi\)
−0.0967441 + 0.995309i \(0.530843\pi\)
\(198\) 0 0
\(199\) −278.000 −0.0990296 −0.0495148 0.998773i \(-0.515768\pi\)
−0.0495148 + 0.998773i \(0.515768\pi\)
\(200\) 0 0
\(201\) −894.000 −0.313721
\(202\) 0 0
\(203\) 2720.00 0.940426
\(204\) 0 0
\(205\) 715.000 0.243599
\(206\) 0 0
\(207\) 598.000 0.200792
\(208\) 0 0
\(209\) 1740.00 0.575877
\(210\) 0 0
\(211\) 2444.00 0.797402 0.398701 0.917081i \(-0.369461\pi\)
0.398701 + 0.917081i \(0.369461\pi\)
\(212\) 0 0
\(213\) 737.000 0.237082
\(214\) 0 0
\(215\) 1660.00 0.526563
\(216\) 0 0
\(217\) 2080.00 0.650689
\(218\) 0 0
\(219\) 1041.00 0.321207
\(220\) 0 0
\(221\) −1140.00 −0.346990
\(222\) 0 0
\(223\) 5368.00 1.61196 0.805982 0.591940i \(-0.201638\pi\)
0.805982 + 0.591940i \(0.201638\pi\)
\(224\) 0 0
\(225\) −650.000 −0.192593
\(226\) 0 0
\(227\) 5780.00 1.69001 0.845005 0.534759i \(-0.179598\pi\)
0.845005 + 0.534759i \(0.179598\pi\)
\(228\) 0 0
\(229\) −1064.00 −0.307035 −0.153518 0.988146i \(-0.549060\pi\)
−0.153518 + 0.988146i \(0.549060\pi\)
\(230\) 0 0
\(231\) 960.000 0.273434
\(232\) 0 0
\(233\) −2833.00 −0.796549 −0.398275 0.917266i \(-0.630391\pi\)
−0.398275 + 0.917266i \(0.630391\pi\)
\(234\) 0 0
\(235\) 2805.00 0.778630
\(236\) 0 0
\(237\) −1114.00 −0.305325
\(238\) 0 0
\(239\) −6831.00 −1.84879 −0.924395 0.381437i \(-0.875429\pi\)
−0.924395 + 0.381437i \(0.875429\pi\)
\(240\) 0 0
\(241\) −1794.00 −0.479509 −0.239755 0.970834i \(-0.577067\pi\)
−0.239755 + 0.970834i \(0.577067\pi\)
\(242\) 0 0
\(243\) 2080.00 0.549103
\(244\) 0 0
\(245\) 3405.00 0.887908
\(246\) 0 0
\(247\) 1102.00 0.283881
\(248\) 0 0
\(249\) 936.000 0.238219
\(250\) 0 0
\(251\) 6672.00 1.67782 0.838910 0.544270i \(-0.183193\pi\)
0.838910 + 0.544270i \(0.183193\pi\)
\(252\) 0 0
\(253\) −690.000 −0.171462
\(254\) 0 0
\(255\) −300.000 −0.0736734
\(256\) 0 0
\(257\) 291.000 0.0706307 0.0353153 0.999376i \(-0.488756\pi\)
0.0353153 + 0.999376i \(0.488756\pi\)
\(258\) 0 0
\(259\) −1088.00 −0.261023
\(260\) 0 0
\(261\) −2210.00 −0.524121
\(262\) 0 0
\(263\) 5306.00 1.24404 0.622019 0.783002i \(-0.286313\pi\)
0.622019 + 0.783002i \(0.286313\pi\)
\(264\) 0 0
\(265\) −2110.00 −0.489118
\(266\) 0 0
\(267\) 824.000 0.188869
\(268\) 0 0
\(269\) 7785.00 1.76453 0.882267 0.470749i \(-0.156016\pi\)
0.882267 + 0.470749i \(0.156016\pi\)
\(270\) 0 0
\(271\) −3440.00 −0.771089 −0.385544 0.922689i \(-0.625986\pi\)
−0.385544 + 0.922689i \(0.625986\pi\)
\(272\) 0 0
\(273\) 608.000 0.134791
\(274\) 0 0
\(275\) 750.000 0.164461
\(276\) 0 0
\(277\) −7643.00 −1.65785 −0.828923 0.559363i \(-0.811046\pi\)
−0.828923 + 0.559363i \(0.811046\pi\)
\(278\) 0 0
\(279\) −1690.00 −0.362644
\(280\) 0 0
\(281\) 5408.00 1.14809 0.574047 0.818823i \(-0.305373\pi\)
0.574047 + 0.818823i \(0.305373\pi\)
\(282\) 0 0
\(283\) −4402.00 −0.924635 −0.462318 0.886714i \(-0.652982\pi\)
−0.462318 + 0.886714i \(0.652982\pi\)
\(284\) 0 0
\(285\) 290.000 0.0602741
\(286\) 0 0
\(287\) 4576.00 0.941159
\(288\) 0 0
\(289\) −1313.00 −0.267250
\(290\) 0 0
\(291\) −868.000 −0.174856
\(292\) 0 0
\(293\) 9808.00 1.95560 0.977798 0.209551i \(-0.0672002\pi\)
0.977798 + 0.209551i \(0.0672002\pi\)
\(294\) 0 0
\(295\) −1960.00 −0.386833
\(296\) 0 0
\(297\) −1590.00 −0.310644
\(298\) 0 0
\(299\) −437.000 −0.0845230
\(300\) 0 0
\(301\) 10624.0 2.03441
\(302\) 0 0
\(303\) 50.0000 0.00947995
\(304\) 0 0
\(305\) −1230.00 −0.230917
\(306\) 0 0
\(307\) 3288.00 0.611258 0.305629 0.952151i \(-0.401133\pi\)
0.305629 + 0.952151i \(0.401133\pi\)
\(308\) 0 0
\(309\) −440.000 −0.0810056
\(310\) 0 0
\(311\) −3919.00 −0.714553 −0.357277 0.933999i \(-0.616295\pi\)
−0.357277 + 0.933999i \(0.616295\pi\)
\(312\) 0 0
\(313\) 5112.00 0.923154 0.461577 0.887100i \(-0.347284\pi\)
0.461577 + 0.887100i \(0.347284\pi\)
\(314\) 0 0
\(315\) −4160.00 −0.744093
\(316\) 0 0
\(317\) 8058.00 1.42770 0.713852 0.700296i \(-0.246949\pi\)
0.713852 + 0.700296i \(0.246949\pi\)
\(318\) 0 0
\(319\) 2550.00 0.447563
\(320\) 0 0
\(321\) 318.000 0.0552929
\(322\) 0 0
\(323\) −3480.00 −0.599481
\(324\) 0 0
\(325\) 475.000 0.0810716
\(326\) 0 0
\(327\) −828.000 −0.140026
\(328\) 0 0
\(329\) 17952.0 3.00829
\(330\) 0 0
\(331\) 2555.00 0.424276 0.212138 0.977240i \(-0.431957\pi\)
0.212138 + 0.977240i \(0.431957\pi\)
\(332\) 0 0
\(333\) 884.000 0.145474
\(334\) 0 0
\(335\) −4470.00 −0.729021
\(336\) 0 0
\(337\) −6272.00 −1.01382 −0.506910 0.861999i \(-0.669213\pi\)
−0.506910 + 0.861999i \(0.669213\pi\)
\(338\) 0 0
\(339\) 208.000 0.0333245
\(340\) 0 0
\(341\) 1950.00 0.309673
\(342\) 0 0
\(343\) 10816.0 1.70265
\(344\) 0 0
\(345\) −115.000 −0.0179461
\(346\) 0 0
\(347\) −6844.00 −1.05880 −0.529402 0.848371i \(-0.677584\pi\)
−0.529402 + 0.848371i \(0.677584\pi\)
\(348\) 0 0
\(349\) 4057.00 0.622253 0.311126 0.950369i \(-0.399294\pi\)
0.311126 + 0.950369i \(0.399294\pi\)
\(350\) 0 0
\(351\) −1007.00 −0.153133
\(352\) 0 0
\(353\) −7155.00 −1.07882 −0.539408 0.842044i \(-0.681352\pi\)
−0.539408 + 0.842044i \(0.681352\pi\)
\(354\) 0 0
\(355\) 3685.00 0.550928
\(356\) 0 0
\(357\) −1920.00 −0.284642
\(358\) 0 0
\(359\) 5434.00 0.798873 0.399437 0.916761i \(-0.369206\pi\)
0.399437 + 0.916761i \(0.369206\pi\)
\(360\) 0 0
\(361\) −3495.00 −0.509549
\(362\) 0 0
\(363\) −431.000 −0.0623185
\(364\) 0 0
\(365\) 5205.00 0.746417
\(366\) 0 0
\(367\) 2944.00 0.418734 0.209367 0.977837i \(-0.432860\pi\)
0.209367 + 0.977837i \(0.432860\pi\)
\(368\) 0 0
\(369\) −3718.00 −0.524529
\(370\) 0 0
\(371\) −13504.0 −1.88974
\(372\) 0 0
\(373\) −5962.00 −0.827616 −0.413808 0.910364i \(-0.635801\pi\)
−0.413808 + 0.910364i \(0.635801\pi\)
\(374\) 0 0
\(375\) 125.000 0.0172133
\(376\) 0 0
\(377\) 1615.00 0.220628
\(378\) 0 0
\(379\) 5856.00 0.793674 0.396837 0.917889i \(-0.370108\pi\)
0.396837 + 0.917889i \(0.370108\pi\)
\(380\) 0 0
\(381\) 495.000 0.0665607
\(382\) 0 0
\(383\) −6456.00 −0.861322 −0.430661 0.902514i \(-0.641719\pi\)
−0.430661 + 0.902514i \(0.641719\pi\)
\(384\) 0 0
\(385\) 4800.00 0.635404
\(386\) 0 0
\(387\) −8632.00 −1.13382
\(388\) 0 0
\(389\) −152.000 −0.0198116 −0.00990579 0.999951i \(-0.503153\pi\)
−0.00990579 + 0.999951i \(0.503153\pi\)
\(390\) 0 0
\(391\) 1380.00 0.178490
\(392\) 0 0
\(393\) −335.000 −0.0429988
\(394\) 0 0
\(395\) −5570.00 −0.709512
\(396\) 0 0
\(397\) 11603.0 1.46685 0.733423 0.679773i \(-0.237921\pi\)
0.733423 + 0.679773i \(0.237921\pi\)
\(398\) 0 0
\(399\) 1856.00 0.232873
\(400\) 0 0
\(401\) 602.000 0.0749687 0.0374843 0.999297i \(-0.488066\pi\)
0.0374843 + 0.999297i \(0.488066\pi\)
\(402\) 0 0
\(403\) 1235.00 0.152654
\(404\) 0 0
\(405\) 3245.00 0.398137
\(406\) 0 0
\(407\) −1020.00 −0.124225
\(408\) 0 0
\(409\) 3629.00 0.438735 0.219367 0.975642i \(-0.429601\pi\)
0.219367 + 0.975642i \(0.429601\pi\)
\(410\) 0 0
\(411\) −652.000 −0.0782501
\(412\) 0 0
\(413\) −12544.0 −1.49455
\(414\) 0 0
\(415\) 4680.00 0.553571
\(416\) 0 0
\(417\) 1999.00 0.234752
\(418\) 0 0
\(419\) −92.0000 −0.0107267 −0.00536336 0.999986i \(-0.501707\pi\)
−0.00536336 + 0.999986i \(0.501707\pi\)
\(420\) 0 0
\(421\) −8280.00 −0.958533 −0.479267 0.877669i \(-0.659097\pi\)
−0.479267 + 0.877669i \(0.659097\pi\)
\(422\) 0 0
\(423\) −14586.0 −1.67659
\(424\) 0 0
\(425\) −1500.00 −0.171202
\(426\) 0 0
\(427\) −7872.00 −0.892161
\(428\) 0 0
\(429\) 570.000 0.0641489
\(430\) 0 0
\(431\) 15372.0 1.71797 0.858983 0.512004i \(-0.171097\pi\)
0.858983 + 0.512004i \(0.171097\pi\)
\(432\) 0 0
\(433\) −11342.0 −1.25880 −0.629402 0.777080i \(-0.716700\pi\)
−0.629402 + 0.777080i \(0.716700\pi\)
\(434\) 0 0
\(435\) 425.000 0.0468441
\(436\) 0 0
\(437\) −1334.00 −0.146027
\(438\) 0 0
\(439\) −4593.00 −0.499344 −0.249672 0.968330i \(-0.580323\pi\)
−0.249672 + 0.968330i \(0.580323\pi\)
\(440\) 0 0
\(441\) −17706.0 −1.91189
\(442\) 0 0
\(443\) −967.000 −0.103710 −0.0518550 0.998655i \(-0.516513\pi\)
−0.0518550 + 0.998655i \(0.516513\pi\)
\(444\) 0 0
\(445\) 4120.00 0.438892
\(446\) 0 0
\(447\) 1870.00 0.197870
\(448\) 0 0
\(449\) −11210.0 −1.17825 −0.589123 0.808043i \(-0.700527\pi\)
−0.589123 + 0.808043i \(0.700527\pi\)
\(450\) 0 0
\(451\) 4290.00 0.447912
\(452\) 0 0
\(453\) −1463.00 −0.151739
\(454\) 0 0
\(455\) 3040.00 0.313225
\(456\) 0 0
\(457\) −72.0000 −0.00736984 −0.00368492 0.999993i \(-0.501173\pi\)
−0.00368492 + 0.999993i \(0.501173\pi\)
\(458\) 0 0
\(459\) 3180.00 0.323376
\(460\) 0 0
\(461\) 5137.00 0.518989 0.259495 0.965745i \(-0.416444\pi\)
0.259495 + 0.965745i \(0.416444\pi\)
\(462\) 0 0
\(463\) 19528.0 1.96014 0.980068 0.198661i \(-0.0636594\pi\)
0.980068 + 0.198661i \(0.0636594\pi\)
\(464\) 0 0
\(465\) 325.000 0.0324119
\(466\) 0 0
\(467\) −14874.0 −1.47385 −0.736924 0.675976i \(-0.763722\pi\)
−0.736924 + 0.675976i \(0.763722\pi\)
\(468\) 0 0
\(469\) −28608.0 −2.81662
\(470\) 0 0
\(471\) −3004.00 −0.293879
\(472\) 0 0
\(473\) 9960.00 0.968206
\(474\) 0 0
\(475\) 1450.00 0.140064
\(476\) 0 0
\(477\) 10972.0 1.05319
\(478\) 0 0
\(479\) −10568.0 −1.00807 −0.504034 0.863684i \(-0.668151\pi\)
−0.504034 + 0.863684i \(0.668151\pi\)
\(480\) 0 0
\(481\) −646.000 −0.0612371
\(482\) 0 0
\(483\) −736.000 −0.0693357
\(484\) 0 0
\(485\) −4340.00 −0.406328
\(486\) 0 0
\(487\) 9311.00 0.866369 0.433184 0.901305i \(-0.357390\pi\)
0.433184 + 0.901305i \(0.357390\pi\)
\(488\) 0 0
\(489\) 4047.00 0.374257
\(490\) 0 0
\(491\) 16511.0 1.51758 0.758789 0.651336i \(-0.225791\pi\)
0.758789 + 0.651336i \(0.225791\pi\)
\(492\) 0 0
\(493\) −5100.00 −0.465908
\(494\) 0 0
\(495\) −3900.00 −0.354125
\(496\) 0 0
\(497\) 23584.0 2.12855
\(498\) 0 0
\(499\) −2331.00 −0.209118 −0.104559 0.994519i \(-0.533343\pi\)
−0.104559 + 0.994519i \(0.533343\pi\)
\(500\) 0 0
\(501\) 2112.00 0.188338
\(502\) 0 0
\(503\) −17062.0 −1.51244 −0.756220 0.654318i \(-0.772956\pi\)
−0.756220 + 0.654318i \(0.772956\pi\)
\(504\) 0 0
\(505\) 250.000 0.0220294
\(506\) 0 0
\(507\) −1836.00 −0.160828
\(508\) 0 0
\(509\) 17169.0 1.49509 0.747547 0.664209i \(-0.231232\pi\)
0.747547 + 0.664209i \(0.231232\pi\)
\(510\) 0 0
\(511\) 33312.0 2.88383
\(512\) 0 0
\(513\) −3074.00 −0.264562
\(514\) 0 0
\(515\) −2200.00 −0.188240
\(516\) 0 0
\(517\) 16830.0 1.43169
\(518\) 0 0
\(519\) 342.000 0.0289251
\(520\) 0 0
\(521\) −10060.0 −0.845944 −0.422972 0.906143i \(-0.639013\pi\)
−0.422972 + 0.906143i \(0.639013\pi\)
\(522\) 0 0
\(523\) −15244.0 −1.27452 −0.637260 0.770649i \(-0.719932\pi\)
−0.637260 + 0.770649i \(0.719932\pi\)
\(524\) 0 0
\(525\) 800.000 0.0665045
\(526\) 0 0
\(527\) −3900.00 −0.322366
\(528\) 0 0
\(529\) 529.000 0.0434783
\(530\) 0 0
\(531\) 10192.0 0.832948
\(532\) 0 0
\(533\) 2717.00 0.220800
\(534\) 0 0
\(535\) 1590.00 0.128489
\(536\) 0 0
\(537\) −1689.00 −0.135728
\(538\) 0 0
\(539\) 20430.0 1.63262
\(540\) 0 0
\(541\) 16389.0 1.30244 0.651218 0.758891i \(-0.274258\pi\)
0.651218 + 0.758891i \(0.274258\pi\)
\(542\) 0 0
\(543\) −194.000 −0.0153321
\(544\) 0 0
\(545\) −4140.00 −0.325391
\(546\) 0 0
\(547\) −17913.0 −1.40019 −0.700096 0.714049i \(-0.746859\pi\)
−0.700096 + 0.714049i \(0.746859\pi\)
\(548\) 0 0
\(549\) 6396.00 0.497222
\(550\) 0 0
\(551\) 4930.00 0.381171
\(552\) 0 0
\(553\) −35648.0 −2.74124
\(554\) 0 0
\(555\) −170.000 −0.0130020
\(556\) 0 0
\(557\) −18224.0 −1.38631 −0.693156 0.720788i \(-0.743780\pi\)
−0.693156 + 0.720788i \(0.743780\pi\)
\(558\) 0 0
\(559\) 6308.00 0.477281
\(560\) 0 0
\(561\) −1800.00 −0.135465
\(562\) 0 0
\(563\) 4860.00 0.363809 0.181905 0.983316i \(-0.441774\pi\)
0.181905 + 0.983316i \(0.441774\pi\)
\(564\) 0 0
\(565\) 1040.00 0.0774392
\(566\) 0 0
\(567\) 20768.0 1.53823
\(568\) 0 0
\(569\) −12438.0 −0.916394 −0.458197 0.888851i \(-0.651505\pi\)
−0.458197 + 0.888851i \(0.651505\pi\)
\(570\) 0 0
\(571\) −7948.00 −0.582510 −0.291255 0.956645i \(-0.594073\pi\)
−0.291255 + 0.956645i \(0.594073\pi\)
\(572\) 0 0
\(573\) 298.000 0.0217262
\(574\) 0 0
\(575\) −575.000 −0.0417029
\(576\) 0 0
\(577\) 9061.00 0.653751 0.326876 0.945067i \(-0.394004\pi\)
0.326876 + 0.945067i \(0.394004\pi\)
\(578\) 0 0
\(579\) 2301.00 0.165158
\(580\) 0 0
\(581\) 29952.0 2.13876
\(582\) 0 0
\(583\) −12660.0 −0.899354
\(584\) 0 0
\(585\) −2470.00 −0.174567
\(586\) 0 0
\(587\) −8559.00 −0.601819 −0.300909 0.953653i \(-0.597290\pi\)
−0.300909 + 0.953653i \(0.597290\pi\)
\(588\) 0 0
\(589\) 3770.00 0.263735
\(590\) 0 0
\(591\) −535.000 −0.0372368
\(592\) 0 0
\(593\) −8850.00 −0.612860 −0.306430 0.951893i \(-0.599135\pi\)
−0.306430 + 0.951893i \(0.599135\pi\)
\(594\) 0 0
\(595\) −9600.00 −0.661448
\(596\) 0 0
\(597\) −278.000 −0.0190583
\(598\) 0 0
\(599\) 7952.00 0.542421 0.271210 0.962520i \(-0.412576\pi\)
0.271210 + 0.962520i \(0.412576\pi\)
\(600\) 0 0
\(601\) 27085.0 1.83830 0.919152 0.393904i \(-0.128876\pi\)
0.919152 + 0.393904i \(0.128876\pi\)
\(602\) 0 0
\(603\) 23244.0 1.56977
\(604\) 0 0
\(605\) −2155.00 −0.144815
\(606\) 0 0
\(607\) 5204.00 0.347980 0.173990 0.984747i \(-0.444334\pi\)
0.173990 + 0.984747i \(0.444334\pi\)
\(608\) 0 0
\(609\) 2720.00 0.180985
\(610\) 0 0
\(611\) 10659.0 0.705756
\(612\) 0 0
\(613\) −4348.00 −0.286483 −0.143241 0.989688i \(-0.545753\pi\)
−0.143241 + 0.989688i \(0.545753\pi\)
\(614\) 0 0
\(615\) 715.000 0.0468806
\(616\) 0 0
\(617\) −4066.00 −0.265301 −0.132651 0.991163i \(-0.542349\pi\)
−0.132651 + 0.991163i \(0.542349\pi\)
\(618\) 0 0
\(619\) 6080.00 0.394791 0.197396 0.980324i \(-0.436752\pi\)
0.197396 + 0.980324i \(0.436752\pi\)
\(620\) 0 0
\(621\) 1219.00 0.0787710
\(622\) 0 0
\(623\) 26368.0 1.69568
\(624\) 0 0
\(625\) 625.000 0.0400000
\(626\) 0 0
\(627\) 1740.00 0.110828
\(628\) 0 0
\(629\) 2040.00 0.129317
\(630\) 0 0
\(631\) −21200.0 −1.33749 −0.668747 0.743490i \(-0.733169\pi\)
−0.668747 + 0.743490i \(0.733169\pi\)
\(632\) 0 0
\(633\) 2444.00 0.153460
\(634\) 0 0
\(635\) 2475.00 0.154673
\(636\) 0 0
\(637\) 12939.0 0.804807
\(638\) 0 0
\(639\) −19162.0 −1.18629
\(640\) 0 0
\(641\) 14016.0 0.863649 0.431824 0.901958i \(-0.357870\pi\)
0.431824 + 0.901958i \(0.357870\pi\)
\(642\) 0 0
\(643\) −23894.0 −1.46545 −0.732727 0.680522i \(-0.761753\pi\)
−0.732727 + 0.680522i \(0.761753\pi\)
\(644\) 0 0
\(645\) 1660.00 0.101337
\(646\) 0 0
\(647\) −27111.0 −1.64736 −0.823681 0.567053i \(-0.808083\pi\)
−0.823681 + 0.567053i \(0.808083\pi\)
\(648\) 0 0
\(649\) −11760.0 −0.711279
\(650\) 0 0
\(651\) 2080.00 0.125225
\(652\) 0 0
\(653\) 7819.00 0.468578 0.234289 0.972167i \(-0.424724\pi\)
0.234289 + 0.972167i \(0.424724\pi\)
\(654\) 0 0
\(655\) −1675.00 −0.0999201
\(656\) 0 0
\(657\) −27066.0 −1.60722
\(658\) 0 0
\(659\) 8712.00 0.514979 0.257490 0.966281i \(-0.417105\pi\)
0.257490 + 0.966281i \(0.417105\pi\)
\(660\) 0 0
\(661\) −12746.0 −0.750018 −0.375009 0.927021i \(-0.622360\pi\)
−0.375009 + 0.927021i \(0.622360\pi\)
\(662\) 0 0
\(663\) −1140.00 −0.0667782
\(664\) 0 0
\(665\) 9280.00 0.541147
\(666\) 0 0
\(667\) −1955.00 −0.113490
\(668\) 0 0
\(669\) 5368.00 0.310223
\(670\) 0 0
\(671\) −7380.00 −0.424593
\(672\) 0 0
\(673\) −14937.0 −0.855541 −0.427770 0.903887i \(-0.640701\pi\)
−0.427770 + 0.903887i \(0.640701\pi\)
\(674\) 0 0
\(675\) −1325.00 −0.0755545
\(676\) 0 0
\(677\) 8226.00 0.466988 0.233494 0.972358i \(-0.424984\pi\)
0.233494 + 0.972358i \(0.424984\pi\)
\(678\) 0 0
\(679\) −27776.0 −1.56987
\(680\) 0 0
\(681\) 5780.00 0.325242
\(682\) 0 0
\(683\) −5797.00 −0.324767 −0.162384 0.986728i \(-0.551918\pi\)
−0.162384 + 0.986728i \(0.551918\pi\)
\(684\) 0 0
\(685\) −3260.00 −0.181837
\(686\) 0 0
\(687\) −1064.00 −0.0590890
\(688\) 0 0
\(689\) −8018.00 −0.443340
\(690\) 0 0
\(691\) −16892.0 −0.929959 −0.464980 0.885321i \(-0.653938\pi\)
−0.464980 + 0.885321i \(0.653938\pi\)
\(692\) 0 0
\(693\) −24960.0 −1.36818
\(694\) 0 0
\(695\) 9995.00 0.545514
\(696\) 0 0
\(697\) −8580.00 −0.466271
\(698\) 0 0
\(699\) −2833.00 −0.153296
\(700\) 0 0
\(701\) −19008.0 −1.02414 −0.512070 0.858944i \(-0.671121\pi\)
−0.512070 + 0.858944i \(0.671121\pi\)
\(702\) 0 0
\(703\) −1972.00 −0.105797
\(704\) 0 0
\(705\) 2805.00 0.149847
\(706\) 0 0
\(707\) 1600.00 0.0851120
\(708\) 0 0
\(709\) −29484.0 −1.56177 −0.780885 0.624675i \(-0.785232\pi\)
−0.780885 + 0.624675i \(0.785232\pi\)
\(710\) 0 0
\(711\) 28964.0 1.52776
\(712\) 0 0
\(713\) −1495.00 −0.0785248
\(714\) 0 0
\(715\) 2850.00 0.149068
\(716\) 0 0
\(717\) −6831.00 −0.355800
\(718\) 0 0
\(719\) −13760.0 −0.713715 −0.356858 0.934159i \(-0.616152\pi\)
−0.356858 + 0.934159i \(0.616152\pi\)
\(720\) 0 0
\(721\) −14080.0 −0.727277
\(722\) 0 0
\(723\) −1794.00 −0.0922816
\(724\) 0 0
\(725\) 2125.00 0.108856
\(726\) 0 0
\(727\) 30554.0 1.55871 0.779357 0.626580i \(-0.215546\pi\)
0.779357 + 0.626580i \(0.215546\pi\)
\(728\) 0 0
\(729\) −15443.0 −0.784586
\(730\) 0 0
\(731\) −19920.0 −1.00789
\(732\) 0 0
\(733\) 37404.0 1.88479 0.942393 0.334508i \(-0.108570\pi\)
0.942393 + 0.334508i \(0.108570\pi\)
\(734\) 0 0
\(735\) 3405.00 0.170878
\(736\) 0 0
\(737\) −26820.0 −1.34047
\(738\) 0 0
\(739\) −6873.00 −0.342121 −0.171060 0.985261i \(-0.554719\pi\)
−0.171060 + 0.985261i \(0.554719\pi\)
\(740\) 0 0
\(741\) 1102.00 0.0546329
\(742\) 0 0
\(743\) −25216.0 −1.24507 −0.622534 0.782593i \(-0.713897\pi\)
−0.622534 + 0.782593i \(0.713897\pi\)
\(744\) 0 0
\(745\) 9350.00 0.459809
\(746\) 0 0
\(747\) −24336.0 −1.19198
\(748\) 0 0
\(749\) 10176.0 0.496426
\(750\) 0 0
\(751\) 27556.0 1.33893 0.669463 0.742846i \(-0.266524\pi\)
0.669463 + 0.742846i \(0.266524\pi\)
\(752\) 0 0
\(753\) 6672.00 0.322897
\(754\) 0 0
\(755\) −7315.00 −0.352609
\(756\) 0 0
\(757\) −30550.0 −1.46679 −0.733394 0.679804i \(-0.762065\pi\)
−0.733394 + 0.679804i \(0.762065\pi\)
\(758\) 0 0
\(759\) −690.000 −0.0329979
\(760\) 0 0
\(761\) 10125.0 0.482301 0.241150 0.970488i \(-0.422475\pi\)
0.241150 + 0.970488i \(0.422475\pi\)
\(762\) 0 0
\(763\) −26496.0 −1.25717
\(764\) 0 0
\(765\) 7800.00 0.368640
\(766\) 0 0
\(767\) −7448.00 −0.350628
\(768\) 0 0
\(769\) −35210.0 −1.65111 −0.825556 0.564320i \(-0.809138\pi\)
−0.825556 + 0.564320i \(0.809138\pi\)
\(770\) 0 0
\(771\) 291.000 0.0135929
\(772\) 0 0
\(773\) 15696.0 0.730331 0.365166 0.930943i \(-0.381012\pi\)
0.365166 + 0.930943i \(0.381012\pi\)
\(774\) 0 0
\(775\) 1625.00 0.0753184
\(776\) 0 0
\(777\) −1088.00 −0.0502340
\(778\) 0 0
\(779\) 8294.00 0.381468
\(780\) 0 0
\(781\) 22110.0 1.01301
\(782\) 0 0
\(783\) −4505.00 −0.205614
\(784\) 0 0
\(785\) −15020.0 −0.682913
\(786\) 0 0
\(787\) −9356.00 −0.423768 −0.211884 0.977295i \(-0.567960\pi\)
−0.211884 + 0.977295i \(0.567960\pi\)
\(788\) 0 0
\(789\) 5306.00 0.239415
\(790\) 0 0
\(791\) 6656.00 0.299191
\(792\) 0 0
\(793\) −4674.00 −0.209305
\(794\) 0 0
\(795\) −2110.00 −0.0941308
\(796\) 0 0
\(797\) −31110.0 −1.38265 −0.691325 0.722544i \(-0.742973\pi\)
−0.691325 + 0.722544i \(0.742973\pi\)
\(798\) 0 0
\(799\) −33660.0 −1.49037
\(800\) 0 0
\(801\) −21424.0 −0.945043
\(802\) 0 0
\(803\) 31230.0 1.37246
\(804\) 0 0
\(805\) −3680.00 −0.161122
\(806\) 0 0
\(807\) 7785.00 0.339585
\(808\) 0 0
\(809\) 20890.0 0.907853 0.453927 0.891039i \(-0.350023\pi\)
0.453927 + 0.891039i \(0.350023\pi\)
\(810\) 0 0
\(811\) −6291.00 −0.272388 −0.136194 0.990682i \(-0.543487\pi\)
−0.136194 + 0.990682i \(0.543487\pi\)
\(812\) 0 0
\(813\) −3440.00 −0.148396
\(814\) 0 0
\(815\) 20235.0 0.869695
\(816\) 0 0
\(817\) 19256.0 0.824580
\(818\) 0 0
\(819\) −15808.0 −0.674452
\(820\) 0 0
\(821\) 36210.0 1.53927 0.769633 0.638486i \(-0.220439\pi\)
0.769633 + 0.638486i \(0.220439\pi\)
\(822\) 0 0
\(823\) −40867.0 −1.73090 −0.865452 0.500992i \(-0.832969\pi\)
−0.865452 + 0.500992i \(0.832969\pi\)
\(824\) 0 0
\(825\) 750.000 0.0316505
\(826\) 0 0
\(827\) −2088.00 −0.0877955 −0.0438977 0.999036i \(-0.513978\pi\)
−0.0438977 + 0.999036i \(0.513978\pi\)
\(828\) 0 0
\(829\) −25942.0 −1.08686 −0.543428 0.839456i \(-0.682874\pi\)
−0.543428 + 0.839456i \(0.682874\pi\)
\(830\) 0 0
\(831\) −7643.00 −0.319053
\(832\) 0 0
\(833\) −40860.0 −1.69954
\(834\) 0 0
\(835\) 10560.0 0.437657
\(836\) 0 0
\(837\) −3445.00 −0.142266
\(838\) 0 0
\(839\) −19636.0 −0.807998 −0.403999 0.914760i \(-0.632380\pi\)
−0.403999 + 0.914760i \(0.632380\pi\)
\(840\) 0 0
\(841\) −17164.0 −0.703760
\(842\) 0 0
\(843\) 5408.00 0.220951
\(844\) 0 0
\(845\) −9180.00 −0.373730
\(846\) 0 0
\(847\) −13792.0 −0.559503
\(848\) 0 0
\(849\) −4402.00 −0.177946
\(850\) 0 0
\(851\) 782.000 0.0315001
\(852\) 0 0
\(853\) −15954.0 −0.640392 −0.320196 0.947351i \(-0.603749\pi\)
−0.320196 + 0.947351i \(0.603749\pi\)
\(854\) 0 0
\(855\) −7540.00 −0.301594
\(856\) 0 0
\(857\) −36353.0 −1.44900 −0.724501 0.689274i \(-0.757930\pi\)
−0.724501 + 0.689274i \(0.757930\pi\)
\(858\) 0 0
\(859\) 34173.0 1.35735 0.678677 0.734437i \(-0.262553\pi\)
0.678677 + 0.734437i \(0.262553\pi\)
\(860\) 0 0
\(861\) 4576.00 0.181126
\(862\) 0 0
\(863\) −9129.00 −0.360087 −0.180043 0.983659i \(-0.557624\pi\)
−0.180043 + 0.983659i \(0.557624\pi\)
\(864\) 0 0
\(865\) 1710.00 0.0672159
\(866\) 0 0
\(867\) −1313.00 −0.0514323
\(868\) 0 0
\(869\) −33420.0 −1.30460
\(870\) 0 0
\(871\) −16986.0 −0.660791
\(872\) 0 0
\(873\) 22568.0 0.874927
\(874\) 0 0
\(875\) 4000.00 0.154542
\(876\) 0 0
\(877\) −8106.00 −0.312110 −0.156055 0.987748i \(-0.549878\pi\)
−0.156055 + 0.987748i \(0.549878\pi\)
\(878\) 0 0
\(879\) 9808.00 0.376355
\(880\) 0 0
\(881\) 14124.0 0.540124 0.270062 0.962843i \(-0.412956\pi\)
0.270062 + 0.962843i \(0.412956\pi\)
\(882\) 0 0
\(883\) 1700.00 0.0647900 0.0323950 0.999475i \(-0.489687\pi\)
0.0323950 + 0.999475i \(0.489687\pi\)
\(884\) 0 0
\(885\) −1960.00 −0.0744460
\(886\) 0 0
\(887\) −26711.0 −1.01112 −0.505562 0.862790i \(-0.668715\pi\)
−0.505562 + 0.862790i \(0.668715\pi\)
\(888\) 0 0
\(889\) 15840.0 0.597589
\(890\) 0 0
\(891\) 19470.0 0.732065
\(892\) 0 0
\(893\) 32538.0 1.21931
\(894\) 0 0
\(895\) −8445.00 −0.315402
\(896\) 0 0
\(897\) −437.000 −0.0162664
\(898\) 0 0
\(899\) 5525.00 0.204971
\(900\) 0 0
\(901\) 25320.0 0.936217
\(902\) 0 0
\(903\) 10624.0 0.391522
\(904\) 0 0
\(905\) −970.000 −0.0356286
\(906\) 0 0
\(907\) 18758.0 0.686714 0.343357 0.939205i \(-0.388436\pi\)
0.343357 + 0.939205i \(0.388436\pi\)
\(908\) 0 0
\(909\) −1300.00 −0.0474348
\(910\) 0 0
\(911\) −20298.0 −0.738203 −0.369101 0.929389i \(-0.620334\pi\)
−0.369101 + 0.929389i \(0.620334\pi\)
\(912\) 0 0
\(913\) 28080.0 1.01787
\(914\) 0 0
\(915\) −1230.00 −0.0444399
\(916\) 0 0
\(917\) −10720.0 −0.386048
\(918\) 0 0
\(919\) −39276.0 −1.40979 −0.704894 0.709312i \(-0.749006\pi\)
−0.704894 + 0.709312i \(0.749006\pi\)
\(920\) 0 0
\(921\) 3288.00 0.117637
\(922\) 0 0
\(923\) 14003.0 0.499366
\(924\) 0 0
\(925\) −850.000 −0.0302139
\(926\) 0 0
\(927\) 11440.0 0.405328
\(928\) 0 0
\(929\) −51265.0 −1.81050 −0.905248 0.424884i \(-0.860315\pi\)
−0.905248 + 0.424884i \(0.860315\pi\)
\(930\) 0 0
\(931\) 39498.0 1.39043
\(932\) 0 0
\(933\) −3919.00 −0.137516
\(934\) 0 0
\(935\) −9000.00 −0.314793
\(936\) 0 0
\(937\) 12182.0 0.424726 0.212363 0.977191i \(-0.431884\pi\)
0.212363 + 0.977191i \(0.431884\pi\)
\(938\) 0 0
\(939\) 5112.00 0.177661
\(940\) 0 0
\(941\) 33192.0 1.14987 0.574935 0.818199i \(-0.305027\pi\)
0.574935 + 0.818199i \(0.305027\pi\)
\(942\) 0 0
\(943\) −3289.00 −0.113579
\(944\) 0 0
\(945\) −8480.00 −0.291909
\(946\) 0 0
\(947\) −18127.0 −0.622015 −0.311008 0.950407i \(-0.600666\pi\)
−0.311008 + 0.950407i \(0.600666\pi\)
\(948\) 0 0
\(949\) 19779.0 0.676558
\(950\) 0 0
\(951\) 8058.00 0.274762
\(952\) 0 0
\(953\) −31722.0 −1.07825 −0.539127 0.842224i \(-0.681246\pi\)
−0.539127 + 0.842224i \(0.681246\pi\)
\(954\) 0 0
\(955\) 1490.00 0.0504872
\(956\) 0 0
\(957\) 2550.00 0.0861335
\(958\) 0 0
\(959\) −20864.0 −0.702538
\(960\) 0 0
\(961\) −25566.0 −0.858179
\(962\) 0 0
\(963\) −8268.00 −0.276669
\(964\) 0 0
\(965\) 11505.0 0.383792
\(966\) 0 0
\(967\) 1459.00 0.0485194 0.0242597 0.999706i \(-0.492277\pi\)
0.0242597 + 0.999706i \(0.492277\pi\)
\(968\) 0 0
\(969\) −3480.00 −0.115370
\(970\) 0 0
\(971\) 29626.0 0.979139 0.489569 0.871964i \(-0.337154\pi\)
0.489569 + 0.871964i \(0.337154\pi\)
\(972\) 0 0
\(973\) 63968.0 2.10763
\(974\) 0 0
\(975\) 475.000 0.0156022
\(976\) 0 0
\(977\) −40202.0 −1.31645 −0.658227 0.752819i \(-0.728693\pi\)
−0.658227 + 0.752819i \(0.728693\pi\)
\(978\) 0 0
\(979\) 24720.0 0.807002
\(980\) 0 0
\(981\) 21528.0 0.700648
\(982\) 0 0
\(983\) 9278.00 0.301040 0.150520 0.988607i \(-0.451905\pi\)
0.150520 + 0.988607i \(0.451905\pi\)
\(984\) 0 0
\(985\) −2675.00 −0.0865305
\(986\) 0 0
\(987\) 17952.0 0.578945
\(988\) 0 0
\(989\) −7636.00 −0.245511
\(990\) 0 0
\(991\) −37264.0 −1.19448 −0.597240 0.802062i \(-0.703736\pi\)
−0.597240 + 0.802062i \(0.703736\pi\)
\(992\) 0 0
\(993\) 2555.00 0.0816520
\(994\) 0 0
\(995\) −1390.00 −0.0442874
\(996\) 0 0
\(997\) −41930.0 −1.33193 −0.665966 0.745982i \(-0.731980\pi\)
−0.665966 + 0.745982i \(0.731980\pi\)
\(998\) 0 0
\(999\) 1802.00 0.0570698
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1840.4.a.e.1.1 1
4.3 odd 2 230.4.a.d.1.1 1
12.11 even 2 2070.4.a.a.1.1 1
20.3 even 4 1150.4.b.d.599.1 2
20.7 even 4 1150.4.b.d.599.2 2
20.19 odd 2 1150.4.a.c.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
230.4.a.d.1.1 1 4.3 odd 2
1150.4.a.c.1.1 1 20.19 odd 2
1150.4.b.d.599.1 2 20.3 even 4
1150.4.b.d.599.2 2 20.7 even 4
1840.4.a.e.1.1 1 1.1 even 1 trivial
2070.4.a.a.1.1 1 12.11 even 2