Properties

Label 1840.4.a.a.1.1
Level $1840$
Weight $4$
Character 1840.1
Self dual yes
Analytic conductor $108.564$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1840,4,Mod(1,1840)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1840, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1840.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1840 = 2^{4} \cdot 5 \cdot 23 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1840.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(108.563514411\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 230)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 1840.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-7.00000 q^{3} +5.00000 q^{5} -20.0000 q^{7} +22.0000 q^{9} -6.00000 q^{11} +47.0000 q^{13} -35.0000 q^{15} -132.000 q^{17} -146.000 q^{19} +140.000 q^{21} -23.0000 q^{23} +25.0000 q^{25} +35.0000 q^{27} -99.0000 q^{29} +253.000 q^{31} +42.0000 q^{33} -100.000 q^{35} -118.000 q^{37} -329.000 q^{39} +495.000 q^{41} -272.000 q^{43} +110.000 q^{45} -639.000 q^{47} +57.0000 q^{49} +924.000 q^{51} -342.000 q^{53} -30.0000 q^{55} +1022.00 q^{57} -240.000 q^{59} -370.000 q^{61} -440.000 q^{63} +235.000 q^{65} -698.000 q^{67} +161.000 q^{69} +357.000 q^{71} -259.000 q^{73} -175.000 q^{75} +120.000 q^{77} -542.000 q^{79} -839.000 q^{81} +1248.00 q^{83} -660.000 q^{85} +693.000 q^{87} -828.000 q^{89} -940.000 q^{91} -1771.00 q^{93} -730.000 q^{95} +992.000 q^{97} -132.000 q^{99} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −7.00000 −1.34715 −0.673575 0.739119i \(-0.735242\pi\)
−0.673575 + 0.739119i \(0.735242\pi\)
\(4\) 0 0
\(5\) 5.00000 0.447214
\(6\) 0 0
\(7\) −20.0000 −1.07990 −0.539949 0.841698i \(-0.681557\pi\)
−0.539949 + 0.841698i \(0.681557\pi\)
\(8\) 0 0
\(9\) 22.0000 0.814815
\(10\) 0 0
\(11\) −6.00000 −0.164461 −0.0822304 0.996613i \(-0.526204\pi\)
−0.0822304 + 0.996613i \(0.526204\pi\)
\(12\) 0 0
\(13\) 47.0000 1.00273 0.501364 0.865237i \(-0.332832\pi\)
0.501364 + 0.865237i \(0.332832\pi\)
\(14\) 0 0
\(15\) −35.0000 −0.602464
\(16\) 0 0
\(17\) −132.000 −1.88322 −0.941609 0.336709i \(-0.890686\pi\)
−0.941609 + 0.336709i \(0.890686\pi\)
\(18\) 0 0
\(19\) −146.000 −1.76288 −0.881439 0.472297i \(-0.843425\pi\)
−0.881439 + 0.472297i \(0.843425\pi\)
\(20\) 0 0
\(21\) 140.000 1.45479
\(22\) 0 0
\(23\) −23.0000 −0.208514
\(24\) 0 0
\(25\) 25.0000 0.200000
\(26\) 0 0
\(27\) 35.0000 0.249472
\(28\) 0 0
\(29\) −99.0000 −0.633925 −0.316963 0.948438i \(-0.602663\pi\)
−0.316963 + 0.948438i \(0.602663\pi\)
\(30\) 0 0
\(31\) 253.000 1.46581 0.732906 0.680330i \(-0.238164\pi\)
0.732906 + 0.680330i \(0.238164\pi\)
\(32\) 0 0
\(33\) 42.0000 0.221553
\(34\) 0 0
\(35\) −100.000 −0.482945
\(36\) 0 0
\(37\) −118.000 −0.524299 −0.262150 0.965027i \(-0.584431\pi\)
−0.262150 + 0.965027i \(0.584431\pi\)
\(38\) 0 0
\(39\) −329.000 −1.35082
\(40\) 0 0
\(41\) 495.000 1.88551 0.942756 0.333483i \(-0.108224\pi\)
0.942756 + 0.333483i \(0.108224\pi\)
\(42\) 0 0
\(43\) −272.000 −0.964642 −0.482321 0.875995i \(-0.660206\pi\)
−0.482321 + 0.875995i \(0.660206\pi\)
\(44\) 0 0
\(45\) 110.000 0.364396
\(46\) 0 0
\(47\) −639.000 −1.98314 −0.991572 0.129560i \(-0.958644\pi\)
−0.991572 + 0.129560i \(0.958644\pi\)
\(48\) 0 0
\(49\) 57.0000 0.166181
\(50\) 0 0
\(51\) 924.000 2.53698
\(52\) 0 0
\(53\) −342.000 −0.886364 −0.443182 0.896432i \(-0.646151\pi\)
−0.443182 + 0.896432i \(0.646151\pi\)
\(54\) 0 0
\(55\) −30.0000 −0.0735491
\(56\) 0 0
\(57\) 1022.00 2.37486
\(58\) 0 0
\(59\) −240.000 −0.529582 −0.264791 0.964306i \(-0.585303\pi\)
−0.264791 + 0.964306i \(0.585303\pi\)
\(60\) 0 0
\(61\) −370.000 −0.776617 −0.388309 0.921529i \(-0.626941\pi\)
−0.388309 + 0.921529i \(0.626941\pi\)
\(62\) 0 0
\(63\) −440.000 −0.879917
\(64\) 0 0
\(65\) 235.000 0.448433
\(66\) 0 0
\(67\) −698.000 −1.27275 −0.636375 0.771380i \(-0.719567\pi\)
−0.636375 + 0.771380i \(0.719567\pi\)
\(68\) 0 0
\(69\) 161.000 0.280900
\(70\) 0 0
\(71\) 357.000 0.596734 0.298367 0.954451i \(-0.403558\pi\)
0.298367 + 0.954451i \(0.403558\pi\)
\(72\) 0 0
\(73\) −259.000 −0.415256 −0.207628 0.978208i \(-0.566574\pi\)
−0.207628 + 0.978208i \(0.566574\pi\)
\(74\) 0 0
\(75\) −175.000 −0.269430
\(76\) 0 0
\(77\) 120.000 0.177601
\(78\) 0 0
\(79\) −542.000 −0.771896 −0.385948 0.922521i \(-0.626126\pi\)
−0.385948 + 0.922521i \(0.626126\pi\)
\(80\) 0 0
\(81\) −839.000 −1.15089
\(82\) 0 0
\(83\) 1248.00 1.65043 0.825216 0.564818i \(-0.191054\pi\)
0.825216 + 0.564818i \(0.191054\pi\)
\(84\) 0 0
\(85\) −660.000 −0.842201
\(86\) 0 0
\(87\) 693.000 0.853993
\(88\) 0 0
\(89\) −828.000 −0.986155 −0.493078 0.869985i \(-0.664128\pi\)
−0.493078 + 0.869985i \(0.664128\pi\)
\(90\) 0 0
\(91\) −940.000 −1.08284
\(92\) 0 0
\(93\) −1771.00 −1.97467
\(94\) 0 0
\(95\) −730.000 −0.788383
\(96\) 0 0
\(97\) 992.000 1.03837 0.519187 0.854660i \(-0.326235\pi\)
0.519187 + 0.854660i \(0.326235\pi\)
\(98\) 0 0
\(99\) −132.000 −0.134005
\(100\) 0 0
\(101\) −1542.00 −1.51916 −0.759578 0.650416i \(-0.774594\pi\)
−0.759578 + 0.650416i \(0.774594\pi\)
\(102\) 0 0
\(103\) −32.0000 −0.0306122 −0.0153061 0.999883i \(-0.504872\pi\)
−0.0153061 + 0.999883i \(0.504872\pi\)
\(104\) 0 0
\(105\) 700.000 0.650600
\(106\) 0 0
\(107\) 834.000 0.753512 0.376756 0.926312i \(-0.377039\pi\)
0.376756 + 0.926312i \(0.377039\pi\)
\(108\) 0 0
\(109\) −1192.00 −1.04746 −0.523729 0.851885i \(-0.675460\pi\)
−0.523729 + 0.851885i \(0.675460\pi\)
\(110\) 0 0
\(111\) 826.000 0.706310
\(112\) 0 0
\(113\) −132.000 −0.109890 −0.0549448 0.998489i \(-0.517498\pi\)
−0.0549448 + 0.998489i \(0.517498\pi\)
\(114\) 0 0
\(115\) −115.000 −0.0932505
\(116\) 0 0
\(117\) 1034.00 0.817037
\(118\) 0 0
\(119\) 2640.00 2.03368
\(120\) 0 0
\(121\) −1295.00 −0.972953
\(122\) 0 0
\(123\) −3465.00 −2.54007
\(124\) 0 0
\(125\) 125.000 0.0894427
\(126\) 0 0
\(127\) −89.0000 −0.0621848 −0.0310924 0.999517i \(-0.509899\pi\)
−0.0310924 + 0.999517i \(0.509899\pi\)
\(128\) 0 0
\(129\) 1904.00 1.29952
\(130\) 0 0
\(131\) 1797.00 1.19851 0.599254 0.800559i \(-0.295464\pi\)
0.599254 + 0.800559i \(0.295464\pi\)
\(132\) 0 0
\(133\) 2920.00 1.90373
\(134\) 0 0
\(135\) 175.000 0.111567
\(136\) 0 0
\(137\) −1836.00 −1.14496 −0.572482 0.819917i \(-0.694019\pi\)
−0.572482 + 0.819917i \(0.694019\pi\)
\(138\) 0 0
\(139\) 1027.00 0.626683 0.313342 0.949640i \(-0.398551\pi\)
0.313342 + 0.949640i \(0.398551\pi\)
\(140\) 0 0
\(141\) 4473.00 2.67159
\(142\) 0 0
\(143\) −282.000 −0.164909
\(144\) 0 0
\(145\) −495.000 −0.283500
\(146\) 0 0
\(147\) −399.000 −0.223871
\(148\) 0 0
\(149\) 2310.00 1.27008 0.635042 0.772477i \(-0.280983\pi\)
0.635042 + 0.772477i \(0.280983\pi\)
\(150\) 0 0
\(151\) 2149.00 1.15817 0.579083 0.815268i \(-0.303411\pi\)
0.579083 + 0.815268i \(0.303411\pi\)
\(152\) 0 0
\(153\) −2904.00 −1.53447
\(154\) 0 0
\(155\) 1265.00 0.655531
\(156\) 0 0
\(157\) 1832.00 0.931271 0.465635 0.884977i \(-0.345826\pi\)
0.465635 + 0.884977i \(0.345826\pi\)
\(158\) 0 0
\(159\) 2394.00 1.19407
\(160\) 0 0
\(161\) 460.000 0.225174
\(162\) 0 0
\(163\) −1217.00 −0.584802 −0.292401 0.956296i \(-0.594454\pi\)
−0.292401 + 0.956296i \(0.594454\pi\)
\(164\) 0 0
\(165\) 210.000 0.0990817
\(166\) 0 0
\(167\) −3048.00 −1.41234 −0.706172 0.708041i \(-0.749579\pi\)
−0.706172 + 0.708041i \(0.749579\pi\)
\(168\) 0 0
\(169\) 12.0000 0.00546199
\(170\) 0 0
\(171\) −3212.00 −1.43642
\(172\) 0 0
\(173\) 774.000 0.340151 0.170076 0.985431i \(-0.445599\pi\)
0.170076 + 0.985431i \(0.445599\pi\)
\(174\) 0 0
\(175\) −500.000 −0.215980
\(176\) 0 0
\(177\) 1680.00 0.713427
\(178\) 0 0
\(179\) 1875.00 0.782928 0.391464 0.920193i \(-0.371969\pi\)
0.391464 + 0.920193i \(0.371969\pi\)
\(180\) 0 0
\(181\) −1606.00 −0.659520 −0.329760 0.944065i \(-0.606968\pi\)
−0.329760 + 0.944065i \(0.606968\pi\)
\(182\) 0 0
\(183\) 2590.00 1.04622
\(184\) 0 0
\(185\) −590.000 −0.234474
\(186\) 0 0
\(187\) 792.000 0.309715
\(188\) 0 0
\(189\) −700.000 −0.269405
\(190\) 0 0
\(191\) −2982.00 −1.12969 −0.564843 0.825199i \(-0.691063\pi\)
−0.564843 + 0.825199i \(0.691063\pi\)
\(192\) 0 0
\(193\) 1385.00 0.516552 0.258276 0.966071i \(-0.416846\pi\)
0.258276 + 0.966071i \(0.416846\pi\)
\(194\) 0 0
\(195\) −1645.00 −0.604107
\(196\) 0 0
\(197\) 957.000 0.346109 0.173054 0.984912i \(-0.444636\pi\)
0.173054 + 0.984912i \(0.444636\pi\)
\(198\) 0 0
\(199\) 358.000 0.127527 0.0637637 0.997965i \(-0.479690\pi\)
0.0637637 + 0.997965i \(0.479690\pi\)
\(200\) 0 0
\(201\) 4886.00 1.71459
\(202\) 0 0
\(203\) 1980.00 0.684575
\(204\) 0 0
\(205\) 2475.00 0.843227
\(206\) 0 0
\(207\) −506.000 −0.169901
\(208\) 0 0
\(209\) 876.000 0.289924
\(210\) 0 0
\(211\) 5380.00 1.75533 0.877665 0.479275i \(-0.159100\pi\)
0.877665 + 0.479275i \(0.159100\pi\)
\(212\) 0 0
\(213\) −2499.00 −0.803890
\(214\) 0 0
\(215\) −1360.00 −0.431401
\(216\) 0 0
\(217\) −5060.00 −1.58293
\(218\) 0 0
\(219\) 1813.00 0.559412
\(220\) 0 0
\(221\) −6204.00 −1.88835
\(222\) 0 0
\(223\) −1040.00 −0.312303 −0.156151 0.987733i \(-0.549909\pi\)
−0.156151 + 0.987733i \(0.549909\pi\)
\(224\) 0 0
\(225\) 550.000 0.162963
\(226\) 0 0
\(227\) 3744.00 1.09470 0.547352 0.836902i \(-0.315636\pi\)
0.547352 + 0.836902i \(0.315636\pi\)
\(228\) 0 0
\(229\) 2804.00 0.809142 0.404571 0.914507i \(-0.367421\pi\)
0.404571 + 0.914507i \(0.367421\pi\)
\(230\) 0 0
\(231\) −840.000 −0.239255
\(232\) 0 0
\(233\) −4869.00 −1.36901 −0.684504 0.729009i \(-0.739981\pi\)
−0.684504 + 0.729009i \(0.739981\pi\)
\(234\) 0 0
\(235\) −3195.00 −0.886889
\(236\) 0 0
\(237\) 3794.00 1.03986
\(238\) 0 0
\(239\) 2877.00 0.778651 0.389326 0.921100i \(-0.372708\pi\)
0.389326 + 0.921100i \(0.372708\pi\)
\(240\) 0 0
\(241\) 1622.00 0.433536 0.216768 0.976223i \(-0.430448\pi\)
0.216768 + 0.976223i \(0.430448\pi\)
\(242\) 0 0
\(243\) 4928.00 1.30095
\(244\) 0 0
\(245\) 285.000 0.0743183
\(246\) 0 0
\(247\) −6862.00 −1.76769
\(248\) 0 0
\(249\) −8736.00 −2.22338
\(250\) 0 0
\(251\) 4752.00 1.19499 0.597497 0.801871i \(-0.296162\pi\)
0.597497 + 0.801871i \(0.296162\pi\)
\(252\) 0 0
\(253\) 138.000 0.0342924
\(254\) 0 0
\(255\) 4620.00 1.13457
\(256\) 0 0
\(257\) −5073.00 −1.23130 −0.615652 0.788018i \(-0.711107\pi\)
−0.615652 + 0.788018i \(0.711107\pi\)
\(258\) 0 0
\(259\) 2360.00 0.566190
\(260\) 0 0
\(261\) −2178.00 −0.516532
\(262\) 0 0
\(263\) −1314.00 −0.308079 −0.154039 0.988065i \(-0.549228\pi\)
−0.154039 + 0.988065i \(0.549228\pi\)
\(264\) 0 0
\(265\) −1710.00 −0.396394
\(266\) 0 0
\(267\) 5796.00 1.32850
\(268\) 0 0
\(269\) 5265.00 1.19336 0.596678 0.802481i \(-0.296487\pi\)
0.596678 + 0.802481i \(0.296487\pi\)
\(270\) 0 0
\(271\) 2488.00 0.557695 0.278847 0.960335i \(-0.410048\pi\)
0.278847 + 0.960335i \(0.410048\pi\)
\(272\) 0 0
\(273\) 6580.00 1.45875
\(274\) 0 0
\(275\) −150.000 −0.0328921
\(276\) 0 0
\(277\) 5465.00 1.18542 0.592708 0.805418i \(-0.298059\pi\)
0.592708 + 0.805418i \(0.298059\pi\)
\(278\) 0 0
\(279\) 5566.00 1.19436
\(280\) 0 0
\(281\) 8940.00 1.89792 0.948960 0.315396i \(-0.102137\pi\)
0.948960 + 0.315396i \(0.102137\pi\)
\(282\) 0 0
\(283\) −842.000 −0.176861 −0.0884306 0.996082i \(-0.528185\pi\)
−0.0884306 + 0.996082i \(0.528185\pi\)
\(284\) 0 0
\(285\) 5110.00 1.06207
\(286\) 0 0
\(287\) −9900.00 −2.03616
\(288\) 0 0
\(289\) 12511.0 2.54651
\(290\) 0 0
\(291\) −6944.00 −1.39885
\(292\) 0 0
\(293\) −4032.00 −0.803932 −0.401966 0.915655i \(-0.631673\pi\)
−0.401966 + 0.915655i \(0.631673\pi\)
\(294\) 0 0
\(295\) −1200.00 −0.236836
\(296\) 0 0
\(297\) −210.000 −0.0410284
\(298\) 0 0
\(299\) −1081.00 −0.209083
\(300\) 0 0
\(301\) 5440.00 1.04172
\(302\) 0 0
\(303\) 10794.0 2.04653
\(304\) 0 0
\(305\) −1850.00 −0.347314
\(306\) 0 0
\(307\) 1096.00 0.203753 0.101876 0.994797i \(-0.467515\pi\)
0.101876 + 0.994797i \(0.467515\pi\)
\(308\) 0 0
\(309\) 224.000 0.0412392
\(310\) 0 0
\(311\) 4653.00 0.848384 0.424192 0.905572i \(-0.360558\pi\)
0.424192 + 0.905572i \(0.360558\pi\)
\(312\) 0 0
\(313\) 3440.00 0.621215 0.310608 0.950538i \(-0.399468\pi\)
0.310608 + 0.950538i \(0.399468\pi\)
\(314\) 0 0
\(315\) −2200.00 −0.393511
\(316\) 0 0
\(317\) 3066.00 0.543229 0.271615 0.962406i \(-0.412442\pi\)
0.271615 + 0.962406i \(0.412442\pi\)
\(318\) 0 0
\(319\) 594.000 0.104256
\(320\) 0 0
\(321\) −5838.00 −1.01509
\(322\) 0 0
\(323\) 19272.0 3.31988
\(324\) 0 0
\(325\) 1175.00 0.200545
\(326\) 0 0
\(327\) 8344.00 1.41108
\(328\) 0 0
\(329\) 12780.0 2.14159
\(330\) 0 0
\(331\) −1505.00 −0.249916 −0.124958 0.992162i \(-0.539880\pi\)
−0.124958 + 0.992162i \(0.539880\pi\)
\(332\) 0 0
\(333\) −2596.00 −0.427207
\(334\) 0 0
\(335\) −3490.00 −0.569191
\(336\) 0 0
\(337\) −3268.00 −0.528247 −0.264124 0.964489i \(-0.585083\pi\)
−0.264124 + 0.964489i \(0.585083\pi\)
\(338\) 0 0
\(339\) 924.000 0.148038
\(340\) 0 0
\(341\) −1518.00 −0.241068
\(342\) 0 0
\(343\) 5720.00 0.900440
\(344\) 0 0
\(345\) 805.000 0.125622
\(346\) 0 0
\(347\) −4164.00 −0.644194 −0.322097 0.946707i \(-0.604388\pi\)
−0.322097 + 0.946707i \(0.604388\pi\)
\(348\) 0 0
\(349\) −2911.00 −0.446482 −0.223241 0.974763i \(-0.571664\pi\)
−0.223241 + 0.974763i \(0.571664\pi\)
\(350\) 0 0
\(351\) 1645.00 0.250153
\(352\) 0 0
\(353\) 9753.00 1.47054 0.735269 0.677776i \(-0.237056\pi\)
0.735269 + 0.677776i \(0.237056\pi\)
\(354\) 0 0
\(355\) 1785.00 0.266868
\(356\) 0 0
\(357\) −18480.0 −2.73968
\(358\) 0 0
\(359\) −3858.00 −0.567180 −0.283590 0.958946i \(-0.591525\pi\)
−0.283590 + 0.958946i \(0.591525\pi\)
\(360\) 0 0
\(361\) 14457.0 2.10774
\(362\) 0 0
\(363\) 9065.00 1.31071
\(364\) 0 0
\(365\) −1295.00 −0.185708
\(366\) 0 0
\(367\) −7856.00 −1.11738 −0.558692 0.829375i \(-0.688697\pi\)
−0.558692 + 0.829375i \(0.688697\pi\)
\(368\) 0 0
\(369\) 10890.0 1.53634
\(370\) 0 0
\(371\) 6840.00 0.957184
\(372\) 0 0
\(373\) −34.0000 −0.00471971 −0.00235986 0.999997i \(-0.500751\pi\)
−0.00235986 + 0.999997i \(0.500751\pi\)
\(374\) 0 0
\(375\) −875.000 −0.120493
\(376\) 0 0
\(377\) −4653.00 −0.635654
\(378\) 0 0
\(379\) 6064.00 0.821865 0.410932 0.911666i \(-0.365203\pi\)
0.410932 + 0.911666i \(0.365203\pi\)
\(380\) 0 0
\(381\) 623.000 0.0837723
\(382\) 0 0
\(383\) −11868.0 −1.58336 −0.791679 0.610937i \(-0.790793\pi\)
−0.791679 + 0.610937i \(0.790793\pi\)
\(384\) 0 0
\(385\) 600.000 0.0794255
\(386\) 0 0
\(387\) −5984.00 −0.786005
\(388\) 0 0
\(389\) 8616.00 1.12300 0.561502 0.827475i \(-0.310224\pi\)
0.561502 + 0.827475i \(0.310224\pi\)
\(390\) 0 0
\(391\) 3036.00 0.392678
\(392\) 0 0
\(393\) −12579.0 −1.61457
\(394\) 0 0
\(395\) −2710.00 −0.345202
\(396\) 0 0
\(397\) 3119.00 0.394303 0.197151 0.980373i \(-0.436831\pi\)
0.197151 + 0.980373i \(0.436831\pi\)
\(398\) 0 0
\(399\) −20440.0 −2.56461
\(400\) 0 0
\(401\) 7986.00 0.994518 0.497259 0.867602i \(-0.334340\pi\)
0.497259 + 0.867602i \(0.334340\pi\)
\(402\) 0 0
\(403\) 11891.0 1.46981
\(404\) 0 0
\(405\) −4195.00 −0.514694
\(406\) 0 0
\(407\) 708.000 0.0862267
\(408\) 0 0
\(409\) −3475.00 −0.420117 −0.210058 0.977689i \(-0.567365\pi\)
−0.210058 + 0.977689i \(0.567365\pi\)
\(410\) 0 0
\(411\) 12852.0 1.54244
\(412\) 0 0
\(413\) 4800.00 0.571895
\(414\) 0 0
\(415\) 6240.00 0.738095
\(416\) 0 0
\(417\) −7189.00 −0.844237
\(418\) 0 0
\(419\) −10992.0 −1.28161 −0.640805 0.767704i \(-0.721399\pi\)
−0.640805 + 0.767704i \(0.721399\pi\)
\(420\) 0 0
\(421\) 2012.00 0.232919 0.116459 0.993195i \(-0.462845\pi\)
0.116459 + 0.993195i \(0.462845\pi\)
\(422\) 0 0
\(423\) −14058.0 −1.61589
\(424\) 0 0
\(425\) −3300.00 −0.376644
\(426\) 0 0
\(427\) 7400.00 0.838668
\(428\) 0 0
\(429\) 1974.00 0.222158
\(430\) 0 0
\(431\) 9792.00 1.09435 0.547174 0.837019i \(-0.315704\pi\)
0.547174 + 0.837019i \(0.315704\pi\)
\(432\) 0 0
\(433\) 5786.00 0.642165 0.321082 0.947051i \(-0.395953\pi\)
0.321082 + 0.947051i \(0.395953\pi\)
\(434\) 0 0
\(435\) 3465.00 0.381917
\(436\) 0 0
\(437\) 3358.00 0.367586
\(438\) 0 0
\(439\) −2549.00 −0.277123 −0.138562 0.990354i \(-0.544248\pi\)
−0.138562 + 0.990354i \(0.544248\pi\)
\(440\) 0 0
\(441\) 1254.00 0.135407
\(442\) 0 0
\(443\) −1311.00 −0.140604 −0.0703019 0.997526i \(-0.522396\pi\)
−0.0703019 + 0.997526i \(0.522396\pi\)
\(444\) 0 0
\(445\) −4140.00 −0.441022
\(446\) 0 0
\(447\) −16170.0 −1.71099
\(448\) 0 0
\(449\) −14610.0 −1.53561 −0.767805 0.640684i \(-0.778651\pi\)
−0.767805 + 0.640684i \(0.778651\pi\)
\(450\) 0 0
\(451\) −2970.00 −0.310093
\(452\) 0 0
\(453\) −15043.0 −1.56022
\(454\) 0 0
\(455\) −4700.00 −0.484262
\(456\) 0 0
\(457\) 80.0000 0.00818871 0.00409436 0.999992i \(-0.498697\pi\)
0.00409436 + 0.999992i \(0.498697\pi\)
\(458\) 0 0
\(459\) −4620.00 −0.469811
\(460\) 0 0
\(461\) −2343.00 −0.236712 −0.118356 0.992971i \(-0.537762\pi\)
−0.118356 + 0.992971i \(0.537762\pi\)
\(462\) 0 0
\(463\) 3400.00 0.341277 0.170639 0.985334i \(-0.445417\pi\)
0.170639 + 0.985334i \(0.445417\pi\)
\(464\) 0 0
\(465\) −8855.00 −0.883098
\(466\) 0 0
\(467\) 1374.00 0.136148 0.0680740 0.997680i \(-0.478315\pi\)
0.0680740 + 0.997680i \(0.478315\pi\)
\(468\) 0 0
\(469\) 13960.0 1.37444
\(470\) 0 0
\(471\) −12824.0 −1.25456
\(472\) 0 0
\(473\) 1632.00 0.158646
\(474\) 0 0
\(475\) −3650.00 −0.352576
\(476\) 0 0
\(477\) −7524.00 −0.722223
\(478\) 0 0
\(479\) −4536.00 −0.432683 −0.216341 0.976318i \(-0.569412\pi\)
−0.216341 + 0.976318i \(0.569412\pi\)
\(480\) 0 0
\(481\) −5546.00 −0.525729
\(482\) 0 0
\(483\) −3220.00 −0.303344
\(484\) 0 0
\(485\) 4960.00 0.464375
\(486\) 0 0
\(487\) 11455.0 1.06586 0.532932 0.846158i \(-0.321090\pi\)
0.532932 + 0.846158i \(0.321090\pi\)
\(488\) 0 0
\(489\) 8519.00 0.787817
\(490\) 0 0
\(491\) 10395.0 0.955437 0.477719 0.878513i \(-0.341464\pi\)
0.477719 + 0.878513i \(0.341464\pi\)
\(492\) 0 0
\(493\) 13068.0 1.19382
\(494\) 0 0
\(495\) −660.000 −0.0599289
\(496\) 0 0
\(497\) −7140.00 −0.644412
\(498\) 0 0
\(499\) 5497.00 0.493145 0.246573 0.969124i \(-0.420696\pi\)
0.246573 + 0.969124i \(0.420696\pi\)
\(500\) 0 0
\(501\) 21336.0 1.90264
\(502\) 0 0
\(503\) −7158.00 −0.634512 −0.317256 0.948340i \(-0.602761\pi\)
−0.317256 + 0.948340i \(0.602761\pi\)
\(504\) 0 0
\(505\) −7710.00 −0.679387
\(506\) 0 0
\(507\) −84.0000 −0.00735813
\(508\) 0 0
\(509\) 12801.0 1.11472 0.557362 0.830270i \(-0.311814\pi\)
0.557362 + 0.830270i \(0.311814\pi\)
\(510\) 0 0
\(511\) 5180.00 0.448434
\(512\) 0 0
\(513\) −5110.00 −0.439789
\(514\) 0 0
\(515\) −160.000 −0.0136902
\(516\) 0 0
\(517\) 3834.00 0.326149
\(518\) 0 0
\(519\) −5418.00 −0.458235
\(520\) 0 0
\(521\) 16788.0 1.41170 0.705850 0.708361i \(-0.250565\pi\)
0.705850 + 0.708361i \(0.250565\pi\)
\(522\) 0 0
\(523\) −19040.0 −1.59189 −0.795947 0.605366i \(-0.793027\pi\)
−0.795947 + 0.605366i \(0.793027\pi\)
\(524\) 0 0
\(525\) 3500.00 0.290957
\(526\) 0 0
\(527\) −33396.0 −2.76044
\(528\) 0 0
\(529\) 529.000 0.0434783
\(530\) 0 0
\(531\) −5280.00 −0.431511
\(532\) 0 0
\(533\) 23265.0 1.89065
\(534\) 0 0
\(535\) 4170.00 0.336981
\(536\) 0 0
\(537\) −13125.0 −1.05472
\(538\) 0 0
\(539\) −342.000 −0.0273302
\(540\) 0 0
\(541\) −13339.0 −1.06005 −0.530026 0.847981i \(-0.677818\pi\)
−0.530026 + 0.847981i \(0.677818\pi\)
\(542\) 0 0
\(543\) 11242.0 0.888472
\(544\) 0 0
\(545\) −5960.00 −0.468437
\(546\) 0 0
\(547\) 22975.0 1.79587 0.897934 0.440130i \(-0.145068\pi\)
0.897934 + 0.440130i \(0.145068\pi\)
\(548\) 0 0
\(549\) −8140.00 −0.632799
\(550\) 0 0
\(551\) 14454.0 1.11753
\(552\) 0 0
\(553\) 10840.0 0.833569
\(554\) 0 0
\(555\) 4130.00 0.315872
\(556\) 0 0
\(557\) −17964.0 −1.36653 −0.683267 0.730169i \(-0.739441\pi\)
−0.683267 + 0.730169i \(0.739441\pi\)
\(558\) 0 0
\(559\) −12784.0 −0.967273
\(560\) 0 0
\(561\) −5544.00 −0.417233
\(562\) 0 0
\(563\) −12636.0 −0.945904 −0.472952 0.881088i \(-0.656812\pi\)
−0.472952 + 0.881088i \(0.656812\pi\)
\(564\) 0 0
\(565\) −660.000 −0.0491441
\(566\) 0 0
\(567\) 16780.0 1.24285
\(568\) 0 0
\(569\) −10302.0 −0.759020 −0.379510 0.925188i \(-0.623907\pi\)
−0.379510 + 0.925188i \(0.623907\pi\)
\(570\) 0 0
\(571\) −12380.0 −0.907333 −0.453666 0.891172i \(-0.649884\pi\)
−0.453666 + 0.891172i \(0.649884\pi\)
\(572\) 0 0
\(573\) 20874.0 1.52186
\(574\) 0 0
\(575\) −575.000 −0.0417029
\(576\) 0 0
\(577\) 1913.00 0.138023 0.0690115 0.997616i \(-0.478015\pi\)
0.0690115 + 0.997616i \(0.478015\pi\)
\(578\) 0 0
\(579\) −9695.00 −0.695873
\(580\) 0 0
\(581\) −24960.0 −1.78230
\(582\) 0 0
\(583\) 2052.00 0.145772
\(584\) 0 0
\(585\) 5170.00 0.365390
\(586\) 0 0
\(587\) −16767.0 −1.17896 −0.589479 0.807784i \(-0.700667\pi\)
−0.589479 + 0.807784i \(0.700667\pi\)
\(588\) 0 0
\(589\) −36938.0 −2.58405
\(590\) 0 0
\(591\) −6699.00 −0.466261
\(592\) 0 0
\(593\) −16722.0 −1.15799 −0.578997 0.815330i \(-0.696556\pi\)
−0.578997 + 0.815330i \(0.696556\pi\)
\(594\) 0 0
\(595\) 13200.0 0.909491
\(596\) 0 0
\(597\) −2506.00 −0.171799
\(598\) 0 0
\(599\) 4200.00 0.286490 0.143245 0.989687i \(-0.454246\pi\)
0.143245 + 0.989687i \(0.454246\pi\)
\(600\) 0 0
\(601\) −19915.0 −1.35166 −0.675832 0.737056i \(-0.736215\pi\)
−0.675832 + 0.737056i \(0.736215\pi\)
\(602\) 0 0
\(603\) −15356.0 −1.03706
\(604\) 0 0
\(605\) −6475.00 −0.435118
\(606\) 0 0
\(607\) −24044.0 −1.60777 −0.803885 0.594785i \(-0.797237\pi\)
−0.803885 + 0.594785i \(0.797237\pi\)
\(608\) 0 0
\(609\) −13860.0 −0.922226
\(610\) 0 0
\(611\) −30033.0 −1.98855
\(612\) 0 0
\(613\) 3452.00 0.227447 0.113723 0.993512i \(-0.463722\pi\)
0.113723 + 0.993512i \(0.463722\pi\)
\(614\) 0 0
\(615\) −17325.0 −1.13595
\(616\) 0 0
\(617\) −16374.0 −1.06838 −0.534192 0.845363i \(-0.679384\pi\)
−0.534192 + 0.845363i \(0.679384\pi\)
\(618\) 0 0
\(619\) 12760.0 0.828542 0.414271 0.910154i \(-0.364037\pi\)
0.414271 + 0.910154i \(0.364037\pi\)
\(620\) 0 0
\(621\) −805.000 −0.0520186
\(622\) 0 0
\(623\) 16560.0 1.06495
\(624\) 0 0
\(625\) 625.000 0.0400000
\(626\) 0 0
\(627\) −6132.00 −0.390572
\(628\) 0 0
\(629\) 15576.0 0.987370
\(630\) 0 0
\(631\) −29420.0 −1.85609 −0.928044 0.372470i \(-0.878511\pi\)
−0.928044 + 0.372470i \(0.878511\pi\)
\(632\) 0 0
\(633\) −37660.0 −2.36469
\(634\) 0 0
\(635\) −445.000 −0.0278099
\(636\) 0 0
\(637\) 2679.00 0.166634
\(638\) 0 0
\(639\) 7854.00 0.486228
\(640\) 0 0
\(641\) −13692.0 −0.843684 −0.421842 0.906669i \(-0.638616\pi\)
−0.421842 + 0.906669i \(0.638616\pi\)
\(642\) 0 0
\(643\) −27398.0 −1.68036 −0.840180 0.542307i \(-0.817551\pi\)
−0.840180 + 0.542307i \(0.817551\pi\)
\(644\) 0 0
\(645\) 9520.00 0.581162
\(646\) 0 0
\(647\) 6417.00 0.389920 0.194960 0.980811i \(-0.437542\pi\)
0.194960 + 0.980811i \(0.437542\pi\)
\(648\) 0 0
\(649\) 1440.00 0.0870954
\(650\) 0 0
\(651\) 35420.0 2.13244
\(652\) 0 0
\(653\) 14583.0 0.873931 0.436965 0.899478i \(-0.356053\pi\)
0.436965 + 0.899478i \(0.356053\pi\)
\(654\) 0 0
\(655\) 8985.00 0.535989
\(656\) 0 0
\(657\) −5698.00 −0.338356
\(658\) 0 0
\(659\) 9624.00 0.568889 0.284444 0.958693i \(-0.408191\pi\)
0.284444 + 0.958693i \(0.408191\pi\)
\(660\) 0 0
\(661\) −24586.0 −1.44672 −0.723362 0.690469i \(-0.757404\pi\)
−0.723362 + 0.690469i \(0.757404\pi\)
\(662\) 0 0
\(663\) 43428.0 2.54390
\(664\) 0 0
\(665\) 14600.0 0.851374
\(666\) 0 0
\(667\) 2277.00 0.132183
\(668\) 0 0
\(669\) 7280.00 0.420719
\(670\) 0 0
\(671\) 2220.00 0.127723
\(672\) 0 0
\(673\) 14339.0 0.821289 0.410645 0.911795i \(-0.365304\pi\)
0.410645 + 0.911795i \(0.365304\pi\)
\(674\) 0 0
\(675\) 875.000 0.0498945
\(676\) 0 0
\(677\) 14658.0 0.832131 0.416066 0.909335i \(-0.363409\pi\)
0.416066 + 0.909335i \(0.363409\pi\)
\(678\) 0 0
\(679\) −19840.0 −1.12134
\(680\) 0 0
\(681\) −26208.0 −1.47473
\(682\) 0 0
\(683\) −16797.0 −0.941024 −0.470512 0.882394i \(-0.655931\pi\)
−0.470512 + 0.882394i \(0.655931\pi\)
\(684\) 0 0
\(685\) −9180.00 −0.512043
\(686\) 0 0
\(687\) −19628.0 −1.09004
\(688\) 0 0
\(689\) −16074.0 −0.888782
\(690\) 0 0
\(691\) −8132.00 −0.447693 −0.223846 0.974624i \(-0.571861\pi\)
−0.223846 + 0.974624i \(0.571861\pi\)
\(692\) 0 0
\(693\) 2640.00 0.144712
\(694\) 0 0
\(695\) 5135.00 0.280261
\(696\) 0 0
\(697\) −65340.0 −3.55083
\(698\) 0 0
\(699\) 34083.0 1.84426
\(700\) 0 0
\(701\) 19668.0 1.05970 0.529850 0.848091i \(-0.322248\pi\)
0.529850 + 0.848091i \(0.322248\pi\)
\(702\) 0 0
\(703\) 17228.0 0.924276
\(704\) 0 0
\(705\) 22365.0 1.19477
\(706\) 0 0
\(707\) 30840.0 1.64053
\(708\) 0 0
\(709\) 18200.0 0.964055 0.482028 0.876156i \(-0.339900\pi\)
0.482028 + 0.876156i \(0.339900\pi\)
\(710\) 0 0
\(711\) −11924.0 −0.628952
\(712\) 0 0
\(713\) −5819.00 −0.305643
\(714\) 0 0
\(715\) −1410.00 −0.0737497
\(716\) 0 0
\(717\) −20139.0 −1.04896
\(718\) 0 0
\(719\) 11880.0 0.616202 0.308101 0.951354i \(-0.400307\pi\)
0.308101 + 0.951354i \(0.400307\pi\)
\(720\) 0 0
\(721\) 640.000 0.0330580
\(722\) 0 0
\(723\) −11354.0 −0.584038
\(724\) 0 0
\(725\) −2475.00 −0.126785
\(726\) 0 0
\(727\) 2554.00 0.130292 0.0651462 0.997876i \(-0.479249\pi\)
0.0651462 + 0.997876i \(0.479249\pi\)
\(728\) 0 0
\(729\) −11843.0 −0.601687
\(730\) 0 0
\(731\) 35904.0 1.81663
\(732\) 0 0
\(733\) 6308.00 0.317860 0.158930 0.987290i \(-0.449196\pi\)
0.158930 + 0.987290i \(0.449196\pi\)
\(734\) 0 0
\(735\) −1995.00 −0.100118
\(736\) 0 0
\(737\) 4188.00 0.209317
\(738\) 0 0
\(739\) −9557.00 −0.475724 −0.237862 0.971299i \(-0.576447\pi\)
−0.237862 + 0.971299i \(0.576447\pi\)
\(740\) 0 0
\(741\) 48034.0 2.38134
\(742\) 0 0
\(743\) −19128.0 −0.944466 −0.472233 0.881474i \(-0.656552\pi\)
−0.472233 + 0.881474i \(0.656552\pi\)
\(744\) 0 0
\(745\) 11550.0 0.567999
\(746\) 0 0
\(747\) 27456.0 1.34480
\(748\) 0 0
\(749\) −16680.0 −0.813717
\(750\) 0 0
\(751\) 18448.0 0.896374 0.448187 0.893940i \(-0.352070\pi\)
0.448187 + 0.893940i \(0.352070\pi\)
\(752\) 0 0
\(753\) −33264.0 −1.60984
\(754\) 0 0
\(755\) 10745.0 0.517948
\(756\) 0 0
\(757\) −5602.00 −0.268967 −0.134484 0.990916i \(-0.542938\pi\)
−0.134484 + 0.990916i \(0.542938\pi\)
\(758\) 0 0
\(759\) −966.000 −0.0461971
\(760\) 0 0
\(761\) 4005.00 0.190777 0.0953884 0.995440i \(-0.469591\pi\)
0.0953884 + 0.995440i \(0.469591\pi\)
\(762\) 0 0
\(763\) 23840.0 1.13115
\(764\) 0 0
\(765\) −14520.0 −0.686238
\(766\) 0 0
\(767\) −11280.0 −0.531026
\(768\) 0 0
\(769\) 41726.0 1.95667 0.978334 0.207032i \(-0.0663803\pi\)
0.978334 + 0.207032i \(0.0663803\pi\)
\(770\) 0 0
\(771\) 35511.0 1.65875
\(772\) 0 0
\(773\) 34116.0 1.58741 0.793705 0.608303i \(-0.208150\pi\)
0.793705 + 0.608303i \(0.208150\pi\)
\(774\) 0 0
\(775\) 6325.00 0.293162
\(776\) 0 0
\(777\) −16520.0 −0.762743
\(778\) 0 0
\(779\) −72270.0 −3.32393
\(780\) 0 0
\(781\) −2142.00 −0.0981393
\(782\) 0 0
\(783\) −3465.00 −0.158147
\(784\) 0 0
\(785\) 9160.00 0.416477
\(786\) 0 0
\(787\) −1652.00 −0.0748252 −0.0374126 0.999300i \(-0.511912\pi\)
−0.0374126 + 0.999300i \(0.511912\pi\)
\(788\) 0 0
\(789\) 9198.00 0.415028
\(790\) 0 0
\(791\) 2640.00 0.118670
\(792\) 0 0
\(793\) −17390.0 −0.778735
\(794\) 0 0
\(795\) 11970.0 0.534003
\(796\) 0 0
\(797\) 12486.0 0.554927 0.277463 0.960736i \(-0.410506\pi\)
0.277463 + 0.960736i \(0.410506\pi\)
\(798\) 0 0
\(799\) 84348.0 3.73469
\(800\) 0 0
\(801\) −18216.0 −0.803534
\(802\) 0 0
\(803\) 1554.00 0.0682932
\(804\) 0 0
\(805\) 2300.00 0.100701
\(806\) 0 0
\(807\) −36855.0 −1.60763
\(808\) 0 0
\(809\) 5490.00 0.238589 0.119294 0.992859i \(-0.461937\pi\)
0.119294 + 0.992859i \(0.461937\pi\)
\(810\) 0 0
\(811\) 14785.0 0.640162 0.320081 0.947390i \(-0.396290\pi\)
0.320081 + 0.947390i \(0.396290\pi\)
\(812\) 0 0
\(813\) −17416.0 −0.751299
\(814\) 0 0
\(815\) −6085.00 −0.261532
\(816\) 0 0
\(817\) 39712.0 1.70055
\(818\) 0 0
\(819\) −20680.0 −0.882317
\(820\) 0 0
\(821\) −12486.0 −0.530773 −0.265386 0.964142i \(-0.585500\pi\)
−0.265386 + 0.964142i \(0.585500\pi\)
\(822\) 0 0
\(823\) 39805.0 1.68592 0.842962 0.537973i \(-0.180810\pi\)
0.842962 + 0.537973i \(0.180810\pi\)
\(824\) 0 0
\(825\) 1050.00 0.0443107
\(826\) 0 0
\(827\) −15024.0 −0.631724 −0.315862 0.948805i \(-0.602294\pi\)
−0.315862 + 0.948805i \(0.602294\pi\)
\(828\) 0 0
\(829\) 14618.0 0.612430 0.306215 0.951962i \(-0.400937\pi\)
0.306215 + 0.951962i \(0.400937\pi\)
\(830\) 0 0
\(831\) −38255.0 −1.59693
\(832\) 0 0
\(833\) −7524.00 −0.312955
\(834\) 0 0
\(835\) −15240.0 −0.631619
\(836\) 0 0
\(837\) 8855.00 0.365679
\(838\) 0 0
\(839\) 10152.0 0.417743 0.208871 0.977943i \(-0.433021\pi\)
0.208871 + 0.977943i \(0.433021\pi\)
\(840\) 0 0
\(841\) −14588.0 −0.598139
\(842\) 0 0
\(843\) −62580.0 −2.55678
\(844\) 0 0
\(845\) 60.0000 0.00244268
\(846\) 0 0
\(847\) 25900.0 1.05069
\(848\) 0 0
\(849\) 5894.00 0.238259
\(850\) 0 0
\(851\) 2714.00 0.109324
\(852\) 0 0
\(853\) −22306.0 −0.895361 −0.447680 0.894194i \(-0.647750\pi\)
−0.447680 + 0.894194i \(0.647750\pi\)
\(854\) 0 0
\(855\) −16060.0 −0.642386
\(856\) 0 0
\(857\) 1731.00 0.0689963 0.0344982 0.999405i \(-0.489017\pi\)
0.0344982 + 0.999405i \(0.489017\pi\)
\(858\) 0 0
\(859\) 12649.0 0.502419 0.251210 0.967933i \(-0.419172\pi\)
0.251210 + 0.967933i \(0.419172\pi\)
\(860\) 0 0
\(861\) 69300.0 2.74302
\(862\) 0 0
\(863\) 16143.0 0.636749 0.318374 0.947965i \(-0.396863\pi\)
0.318374 + 0.947965i \(0.396863\pi\)
\(864\) 0 0
\(865\) 3870.00 0.152120
\(866\) 0 0
\(867\) −87577.0 −3.43053
\(868\) 0 0
\(869\) 3252.00 0.126947
\(870\) 0 0
\(871\) −32806.0 −1.27622
\(872\) 0 0
\(873\) 21824.0 0.846083
\(874\) 0 0
\(875\) −2500.00 −0.0965891
\(876\) 0 0
\(877\) 4094.00 0.157633 0.0788167 0.996889i \(-0.474886\pi\)
0.0788167 + 0.996889i \(0.474886\pi\)
\(878\) 0 0
\(879\) 28224.0 1.08302
\(880\) 0 0
\(881\) 30396.0 1.16239 0.581196 0.813764i \(-0.302585\pi\)
0.581196 + 0.813764i \(0.302585\pi\)
\(882\) 0 0
\(883\) 21148.0 0.805987 0.402994 0.915203i \(-0.367970\pi\)
0.402994 + 0.915203i \(0.367970\pi\)
\(884\) 0 0
\(885\) 8400.00 0.319054
\(886\) 0 0
\(887\) −5031.00 −0.190445 −0.0952223 0.995456i \(-0.530356\pi\)
−0.0952223 + 0.995456i \(0.530356\pi\)
\(888\) 0 0
\(889\) 1780.00 0.0671533
\(890\) 0 0
\(891\) 5034.00 0.189276
\(892\) 0 0
\(893\) 93294.0 3.49604
\(894\) 0 0
\(895\) 9375.00 0.350136
\(896\) 0 0
\(897\) 7567.00 0.281666
\(898\) 0 0
\(899\) −25047.0 −0.929215
\(900\) 0 0
\(901\) 45144.0 1.66922
\(902\) 0 0
\(903\) −38080.0 −1.40335
\(904\) 0 0
\(905\) −8030.00 −0.294946
\(906\) 0 0
\(907\) 538.000 0.0196957 0.00984785 0.999952i \(-0.496865\pi\)
0.00984785 + 0.999952i \(0.496865\pi\)
\(908\) 0 0
\(909\) −33924.0 −1.23783
\(910\) 0 0
\(911\) −3078.00 −0.111941 −0.0559707 0.998432i \(-0.517825\pi\)
−0.0559707 + 0.998432i \(0.517825\pi\)
\(912\) 0 0
\(913\) −7488.00 −0.271431
\(914\) 0 0
\(915\) 12950.0 0.467884
\(916\) 0 0
\(917\) −35940.0 −1.29427
\(918\) 0 0
\(919\) −20288.0 −0.728226 −0.364113 0.931355i \(-0.618628\pi\)
−0.364113 + 0.931355i \(0.618628\pi\)
\(920\) 0 0
\(921\) −7672.00 −0.274485
\(922\) 0 0
\(923\) 16779.0 0.598361
\(924\) 0 0
\(925\) −2950.00 −0.104860
\(926\) 0 0
\(927\) −704.000 −0.0249433
\(928\) 0 0
\(929\) 28911.0 1.02103 0.510516 0.859868i \(-0.329454\pi\)
0.510516 + 0.859868i \(0.329454\pi\)
\(930\) 0 0
\(931\) −8322.00 −0.292957
\(932\) 0 0
\(933\) −32571.0 −1.14290
\(934\) 0 0
\(935\) 3960.00 0.138509
\(936\) 0 0
\(937\) 14810.0 0.516352 0.258176 0.966098i \(-0.416879\pi\)
0.258176 + 0.966098i \(0.416879\pi\)
\(938\) 0 0
\(939\) −24080.0 −0.836870
\(940\) 0 0
\(941\) −2544.00 −0.0881318 −0.0440659 0.999029i \(-0.514031\pi\)
−0.0440659 + 0.999029i \(0.514031\pi\)
\(942\) 0 0
\(943\) −11385.0 −0.393157
\(944\) 0 0
\(945\) −3500.00 −0.120481
\(946\) 0 0
\(947\) 11145.0 0.382433 0.191216 0.981548i \(-0.438757\pi\)
0.191216 + 0.981548i \(0.438757\pi\)
\(948\) 0 0
\(949\) −12173.0 −0.416388
\(950\) 0 0
\(951\) −21462.0 −0.731812
\(952\) 0 0
\(953\) −4386.00 −0.149083 −0.0745417 0.997218i \(-0.523749\pi\)
−0.0745417 + 0.997218i \(0.523749\pi\)
\(954\) 0 0
\(955\) −14910.0 −0.505211
\(956\) 0 0
\(957\) −4158.00 −0.140448
\(958\) 0 0
\(959\) 36720.0 1.23644
\(960\) 0 0
\(961\) 34218.0 1.14860
\(962\) 0 0
\(963\) 18348.0 0.613973
\(964\) 0 0
\(965\) 6925.00 0.231009
\(966\) 0 0
\(967\) −56381.0 −1.87496 −0.937482 0.348033i \(-0.886850\pi\)
−0.937482 + 0.348033i \(0.886850\pi\)
\(968\) 0 0
\(969\) −134904. −4.47238
\(970\) 0 0
\(971\) −43782.0 −1.44699 −0.723497 0.690327i \(-0.757466\pi\)
−0.723497 + 0.690327i \(0.757466\pi\)
\(972\) 0 0
\(973\) −20540.0 −0.676755
\(974\) 0 0
\(975\) −8225.00 −0.270165
\(976\) 0 0
\(977\) 3714.00 0.121619 0.0608093 0.998149i \(-0.480632\pi\)
0.0608093 + 0.998149i \(0.480632\pi\)
\(978\) 0 0
\(979\) 4968.00 0.162184
\(980\) 0 0
\(981\) −26224.0 −0.853484
\(982\) 0 0
\(983\) 4662.00 0.151266 0.0756331 0.997136i \(-0.475902\pi\)
0.0756331 + 0.997136i \(0.475902\pi\)
\(984\) 0 0
\(985\) 4785.00 0.154785
\(986\) 0 0
\(987\) −89460.0 −2.88505
\(988\) 0 0
\(989\) 6256.00 0.201142
\(990\) 0 0
\(991\) −51440.0 −1.64889 −0.824443 0.565945i \(-0.808511\pi\)
−0.824443 + 0.565945i \(0.808511\pi\)
\(992\) 0 0
\(993\) 10535.0 0.336675
\(994\) 0 0
\(995\) 1790.00 0.0570320
\(996\) 0 0
\(997\) 686.000 0.0217912 0.0108956 0.999941i \(-0.496532\pi\)
0.0108956 + 0.999941i \(0.496532\pi\)
\(998\) 0 0
\(999\) −4130.00 −0.130798
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1840.4.a.a.1.1 1
4.3 odd 2 230.4.a.c.1.1 1
12.11 even 2 2070.4.a.j.1.1 1
20.3 even 4 1150.4.b.b.599.2 2
20.7 even 4 1150.4.b.b.599.1 2
20.19 odd 2 1150.4.a.e.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
230.4.a.c.1.1 1 4.3 odd 2
1150.4.a.e.1.1 1 20.19 odd 2
1150.4.b.b.599.1 2 20.7 even 4
1150.4.b.b.599.2 2 20.3 even 4
1840.4.a.a.1.1 1 1.1 even 1 trivial
2070.4.a.j.1.1 1 12.11 even 2