Properties

Label 1840.3.k.e
Level $1840$
Weight $3$
Character orbit 1840.k
Analytic conductor $50.136$
Analytic rank $0$
Dimension $48$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 1840 = 2^{4} \cdot 5 \cdot 23 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 1840.k (of order \(2\), degree \(1\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(50.1363686423\)
Analytic rank: \(0\)
Dimension: \(48\)
Twist minimal: no (minimal twist has level 920)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

The dimension is sufficiently large that we do not compute an algebraic \(q\)-expansion, but we have computed the trace expansion.

\(\operatorname{Tr}(f)(q) = \) \( 48q + 128q^{9} + O(q^{10}) \)
\(\operatorname{Tr}(f)(q) = \) \( 48q + 128q^{9} - 8q^{23} - 240q^{25} + 72q^{29} - 32q^{31} + 40q^{35} + 96q^{39} - 104q^{41} - 128q^{47} - 344q^{49} - 80q^{55} - 248q^{59} + 292q^{69} - 208q^{71} + 224q^{73} - 288q^{77} + 184q^{81} + 48q^{87} - 672q^{93} + O(q^{100}) \)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
321.1 0 −5.39985 0 2.23607i 0 8.04288i 0 20.1584 0
321.2 0 −5.39985 0 2.23607i 0 8.04288i 0 20.1584 0
321.3 0 −5.24002 0 2.23607i 0 3.70696i 0 18.4579 0
321.4 0 −5.24002 0 2.23607i 0 3.70696i 0 18.4579 0
321.5 0 −4.84326 0 2.23607i 0 4.25633i 0 14.4572 0
321.6 0 −4.84326 0 2.23607i 0 4.25633i 0 14.4572 0
321.7 0 −4.51681 0 2.23607i 0 1.75483i 0 11.4015 0
321.8 0 −4.51681 0 2.23607i 0 1.75483i 0 11.4015 0
321.9 0 −3.03006 0 2.23607i 0 6.21370i 0 0.181242 0
321.10 0 −3.03006 0 2.23607i 0 6.21370i 0 0.181242 0
321.11 0 −2.78603 0 2.23607i 0 9.63233i 0 −1.23801 0
321.12 0 −2.78603 0 2.23607i 0 9.63233i 0 −1.23801 0
321.13 0 −2.67503 0 2.23607i 0 10.9996i 0 −1.84421 0
321.14 0 −2.67503 0 2.23607i 0 10.9996i 0 −1.84421 0
321.15 0 −2.49795 0 2.23607i 0 1.88865i 0 −2.76024 0
321.16 0 −2.49795 0 2.23607i 0 1.88865i 0 −2.76024 0
321.17 0 −2.35475 0 2.23607i 0 5.28829i 0 −3.45517 0
321.18 0 −2.35475 0 2.23607i 0 5.28829i 0 −3.45517 0
321.19 0 −1.59835 0 2.23607i 0 7.14235i 0 −6.44527 0
321.20 0 −1.59835 0 2.23607i 0 7.14235i 0 −6.44527 0
See all 48 embeddings
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 321.48
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
23.b odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1840.3.k.e 48
4.b odd 2 1 920.3.k.a 48
23.b odd 2 1 inner 1840.3.k.e 48
92.b even 2 1 920.3.k.a 48
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
920.3.k.a 48 4.b odd 2 1
920.3.k.a 48 92.b even 2 1
1840.3.k.e 48 1.a even 1 1 trivial
1840.3.k.e 48 23.b odd 2 1 inner

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \(T_{3}^{24} - \cdots\) acting on \(S_{3}^{\mathrm{new}}(1840, [\chi])\).