Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [1840,2,Mod(1839,1840)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1840, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([1, 0, 1, 1]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("1840.1839");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 1840 = 2^{4} \cdot 5 \cdot 23 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 1840.m (of order \(2\), degree \(1\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(14.6924739719\) |
Analytic rank: | \(0\) |
Dimension: | \(40\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{2}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1839.1 | 0 | −3.28652 | 0 | 1.54120 | + | 1.62009i | 0 | 2.73174i | 0 | 7.80121 | 0 | ||||||||||||||||
1839.2 | 0 | −3.28652 | 0 | −1.54120 | + | 1.62009i | 0 | 2.73174i | 0 | 7.80121 | 0 | ||||||||||||||||
1839.3 | 0 | −3.28652 | 0 | −1.54120 | − | 1.62009i | 0 | − | 2.73174i | 0 | 7.80121 | 0 | |||||||||||||||
1839.4 | 0 | −3.28652 | 0 | 1.54120 | − | 1.62009i | 0 | − | 2.73174i | 0 | 7.80121 | 0 | |||||||||||||||
1839.5 | 0 | −2.49894 | 0 | −2.19676 | + | 0.417445i | 0 | − | 3.04922i | 0 | 3.24468 | 0 | |||||||||||||||
1839.6 | 0 | −2.49894 | 0 | 2.19676 | + | 0.417445i | 0 | − | 3.04922i | 0 | 3.24468 | 0 | |||||||||||||||
1839.7 | 0 | −2.49894 | 0 | 2.19676 | − | 0.417445i | 0 | 3.04922i | 0 | 3.24468 | 0 | ||||||||||||||||
1839.8 | 0 | −2.49894 | 0 | −2.19676 | − | 0.417445i | 0 | 3.04922i | 0 | 3.24468 | 0 | ||||||||||||||||
1839.9 | 0 | −2.20329 | 0 | 1.71768 | − | 1.43163i | 0 | 0.642617i | 0 | 1.85447 | 0 | ||||||||||||||||
1839.10 | 0 | −2.20329 | 0 | −1.71768 | + | 1.43163i | 0 | − | 0.642617i | 0 | 1.85447 | 0 | |||||||||||||||
1839.11 | 0 | −2.20329 | 0 | −1.71768 | − | 1.43163i | 0 | 0.642617i | 0 | 1.85447 | 0 | ||||||||||||||||
1839.12 | 0 | −2.20329 | 0 | 1.71768 | + | 1.43163i | 0 | − | 0.642617i | 0 | 1.85447 | 0 | |||||||||||||||
1839.13 | 0 | −1.49850 | 0 | 0.689327 | + | 2.12716i | 0 | − | 4.18735i | 0 | −0.754490 | 0 | |||||||||||||||
1839.14 | 0 | −1.49850 | 0 | −0.689327 | − | 2.12716i | 0 | 4.18735i | 0 | −0.754490 | 0 | ||||||||||||||||
1839.15 | 0 | −1.49850 | 0 | −0.689327 | + | 2.12716i | 0 | − | 4.18735i | 0 | −0.754490 | 0 | |||||||||||||||
1839.16 | 0 | −1.49850 | 0 | 0.689327 | − | 2.12716i | 0 | 4.18735i | 0 | −0.754490 | 0 | ||||||||||||||||
1839.17 | 0 | −0.924187 | 0 | 0.611037 | − | 2.15096i | 0 | − | 1.51428i | 0 | −2.14588 | 0 | |||||||||||||||
1839.18 | 0 | −0.924187 | 0 | −0.611037 | − | 2.15096i | 0 | − | 1.51428i | 0 | −2.14588 | 0 | |||||||||||||||
1839.19 | 0 | −0.924187 | 0 | −0.611037 | + | 2.15096i | 0 | 1.51428i | 0 | −2.14588 | 0 | ||||||||||||||||
1839.20 | 0 | −0.924187 | 0 | 0.611037 | + | 2.15096i | 0 | 1.51428i | 0 | −2.14588 | 0 | ||||||||||||||||
See all 40 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
4.b | odd | 2 | 1 | inner |
5.b | even | 2 | 1 | inner |
20.d | odd | 2 | 1 | inner |
23.b | odd | 2 | 1 | inner |
92.b | even | 2 | 1 | inner |
115.c | odd | 2 | 1 | inner |
460.g | even | 2 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 1840.2.m.g | ✓ | 40 |
4.b | odd | 2 | 1 | inner | 1840.2.m.g | ✓ | 40 |
5.b | even | 2 | 1 | inner | 1840.2.m.g | ✓ | 40 |
20.d | odd | 2 | 1 | inner | 1840.2.m.g | ✓ | 40 |
23.b | odd | 2 | 1 | inner | 1840.2.m.g | ✓ | 40 |
92.b | even | 2 | 1 | inner | 1840.2.m.g | ✓ | 40 |
115.c | odd | 2 | 1 | inner | 1840.2.m.g | ✓ | 40 |
460.g | even | 2 | 1 | inner | 1840.2.m.g | ✓ | 40 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
1840.2.m.g | ✓ | 40 | 1.a | even | 1 | 1 | trivial |
1840.2.m.g | ✓ | 40 | 4.b | odd | 2 | 1 | inner |
1840.2.m.g | ✓ | 40 | 5.b | even | 2 | 1 | inner |
1840.2.m.g | ✓ | 40 | 20.d | odd | 2 | 1 | inner |
1840.2.m.g | ✓ | 40 | 23.b | odd | 2 | 1 | inner |
1840.2.m.g | ✓ | 40 | 92.b | even | 2 | 1 | inner |
1840.2.m.g | ✓ | 40 | 115.c | odd | 2 | 1 | inner |
1840.2.m.g | ✓ | 40 | 460.g | even | 2 | 1 | inner |
Hecke kernels
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(1840, [\chi])\):
\( T_{3}^{10} - 25T_{3}^{8} + 220T_{3}^{6} - 835T_{3}^{4} + 1303T_{3}^{2} - 628 \)
|
\( T_{7}^{10} + 37T_{7}^{8} + 457T_{7}^{6} + 2232T_{7}^{4} + 3636T_{7}^{2} + 1152 \)
|