Properties

Label 1840.2.m.c
Level $1840$
Weight $2$
Character orbit 1840.m
Analytic conductor $14.692$
Analytic rank $0$
Dimension $4$
CM discriminant -20
Inner twists $8$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 1840 = 2^{4} \cdot 5 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1840.m (of order \(2\), degree \(1\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(14.6924739719\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\sqrt{-2}, \sqrt{-5})\)
Defining polynomial: \(x^{4} - 4 x^{2} + 9\)
Coefficient ring: \(\Z[a_1, \ldots, a_{23}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{U}(1)[D_{2}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( 2 \beta_{1} - \beta_{2} ) q^{3} + \beta_{3} q^{5} + 3 \beta_{2} q^{7} + 7 q^{9} +O(q^{10})\) \( q + ( 2 \beta_{1} - \beta_{2} ) q^{3} + \beta_{3} q^{5} + 3 \beta_{2} q^{7} + 7 q^{9} + 5 \beta_{2} q^{15} + 6 \beta_{3} q^{21} + ( -3 \beta_{1} + \beta_{2} ) q^{23} -5 q^{25} + ( 8 \beta_{1} - 4 \beta_{2} ) q^{27} -6 q^{29} + ( -6 \beta_{1} + 3 \beta_{2} ) q^{35} + 12 q^{41} -9 \beta_{2} q^{43} + 7 \beta_{3} q^{45} + ( 6 \beta_{1} - 3 \beta_{2} ) q^{47} -11 q^{49} -6 \beta_{3} q^{61} + 21 \beta_{2} q^{63} + 3 \beta_{2} q^{67} + ( -15 - \beta_{3} ) q^{69} + ( -10 \beta_{1} + 5 \beta_{2} ) q^{75} + 19 q^{81} + 11 \beta_{2} q^{83} + ( -12 \beta_{1} + 6 \beta_{2} ) q^{87} -8 \beta_{3} q^{89} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4q + 28q^{9} + O(q^{10}) \) \( 4q + 28q^{9} - 20q^{25} - 24q^{29} + 48q^{41} - 44q^{49} - 60q^{69} + 76q^{81} + O(q^{100}) \)

Basis of coefficient ring in terms of a root \(\nu\) of \(x^{4} - 4 x^{2} + 9\):

\(\beta_{0}\)\(=\)\( 1 \)
\(\beta_{1}\)\(=\)\( \nu \)
\(\beta_{2}\)\(=\)\((\)\( \nu^{3} - \nu \)\()/3\)
\(\beta_{3}\)\(=\)\( \nu^{2} - 2 \)
\(1\)\(=\)\(\beta_0\)
\(\nu\)\(=\)\(\beta_{1}\)
\(\nu^{2}\)\(=\)\(\beta_{3} + 2\)
\(\nu^{3}\)\(=\)\(3 \beta_{2} + \beta_{1}\)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1840\mathbb{Z}\right)^\times\).

\(n\) \(737\) \(1151\) \(1201\) \(1381\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1839.1
−1.58114 + 0.707107i
−1.58114 0.707107i
1.58114 0.707107i
1.58114 + 0.707107i
0 −3.16228 0 2.23607i 0 4.24264i 0 7.00000 0
1839.2 0 −3.16228 0 2.23607i 0 4.24264i 0 7.00000 0
1839.3 0 3.16228 0 2.23607i 0 4.24264i 0 7.00000 0
1839.4 0 3.16228 0 2.23607i 0 4.24264i 0 7.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
20.d odd 2 1 CM by \(\Q(\sqrt{-5}) \)
4.b odd 2 1 inner
5.b even 2 1 inner
23.b odd 2 1 inner
92.b even 2 1 inner
115.c odd 2 1 inner
460.g even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1840.2.m.c 4
4.b odd 2 1 inner 1840.2.m.c 4
5.b even 2 1 inner 1840.2.m.c 4
20.d odd 2 1 CM 1840.2.m.c 4
23.b odd 2 1 inner 1840.2.m.c 4
92.b even 2 1 inner 1840.2.m.c 4
115.c odd 2 1 inner 1840.2.m.c 4
460.g even 2 1 inner 1840.2.m.c 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1840.2.m.c 4 1.a even 1 1 trivial
1840.2.m.c 4 4.b odd 2 1 inner
1840.2.m.c 4 5.b even 2 1 inner
1840.2.m.c 4 20.d odd 2 1 CM
1840.2.m.c 4 23.b odd 2 1 inner
1840.2.m.c 4 92.b even 2 1 inner
1840.2.m.c 4 115.c odd 2 1 inner
1840.2.m.c 4 460.g even 2 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(1840, [\chi])\):

\( T_{3}^{2} - 10 \)
\( T_{7}^{2} + 18 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \)
$3$ \( ( -10 + T^{2} )^{2} \)
$5$ \( ( 5 + T^{2} )^{2} \)
$7$ \( ( 18 + T^{2} )^{2} \)
$11$ \( T^{4} \)
$13$ \( T^{4} \)
$17$ \( T^{4} \)
$19$ \( T^{4} \)
$23$ \( 529 - 44 T^{2} + T^{4} \)
$29$ \( ( 6 + T )^{4} \)
$31$ \( T^{4} \)
$37$ \( T^{4} \)
$41$ \( ( -12 + T )^{4} \)
$43$ \( ( 162 + T^{2} )^{2} \)
$47$ \( ( -90 + T^{2} )^{2} \)
$53$ \( T^{4} \)
$59$ \( T^{4} \)
$61$ \( ( 180 + T^{2} )^{2} \)
$67$ \( ( 18 + T^{2} )^{2} \)
$71$ \( T^{4} \)
$73$ \( T^{4} \)
$79$ \( T^{4} \)
$83$ \( ( 242 + T^{2} )^{2} \)
$89$ \( ( 320 + T^{2} )^{2} \)
$97$ \( T^{4} \)
show more
show less