Defining parameters
| Level: | \( N \) | \(=\) | \( 1840 = 2^{4} \cdot 5 \cdot 23 \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 1840.m (of order \(2\) and degree \(1\)) |
| Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 460 \) |
| Character field: | \(\Q\) | ||
| Newform subspaces: | \( 7 \) | ||
| Sturm bound: | \(576\) | ||
| Trace bound: | \(9\) | ||
| Distinguishing \(T_p\): | \(3\), \(7\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(1840, [\chi])\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 300 | 72 | 228 |
| Cusp forms | 276 | 72 | 204 |
| Eisenstein series | 24 | 0 | 24 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(1840, [\chi])\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(1840, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(1840, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(460, [\chi])\)\(^{\oplus 3}\)