Defining parameters
Level: | \( N \) | \(=\) | \( 1840 = 2^{4} \cdot 5 \cdot 23 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 1840.i (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 92 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 3 \) | ||
Sturm bound: | \(576\) | ||
Trace bound: | \(9\) | ||
Distinguishing \(T_p\): | \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(1840, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 300 | 48 | 252 |
Cusp forms | 276 | 48 | 228 |
Eisenstein series | 24 | 0 | 24 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(1840, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
1840.2.i.a | $16$ | $14.692$ | \(\mathbb{Q}[x]/(x^{16} - \cdots)\) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q+\beta _{1}q^{3}+\beta _{8}q^{5}+(\beta _{3}-\beta _{10})q^{7}+(-2+\cdots)q^{9}+\cdots\) |
1840.2.i.b | $16$ | $14.692$ | \(\mathbb{Q}[x]/(x^{16} - \cdots)\) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q+\beta _{7}q^{3}+\beta _{2}q^{5}+\beta _{13}q^{7}+(-1-\beta _{4}+\cdots)q^{9}+\cdots\) |
1840.2.i.c | $16$ | $14.692$ | 16.0.\(\cdots\).1 | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q+\beta _{3}q^{3}+\beta _{5}q^{5}+(-\beta _{10}+\beta _{14})q^{7}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(1840, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(1840, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(92, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(368, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(460, [\chi])\)\(^{\oplus 3}\)