Properties

Label 1840.2.e.h.369.8
Level $1840$
Weight $2$
Character 1840.369
Analytic conductor $14.692$
Analytic rank $0$
Dimension $16$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 1840 = 2^{4} \cdot 5 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1840.e (of order \(2\), degree \(1\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(14.6924739719\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Defining polynomial: \(x^{16} - 2 x^{15} + 2 x^{14} + 6 x^{13} + 100 x^{12} - 196 x^{11} + 210 x^{10} + 702 x^{9} + 1572 x^{8} - 1594 x^{7} + 2464 x^{6} + 9568 x^{5} + 15457 x^{4} + 4336 x^{3} + 128 x^{2} - 512 x + 1024\)
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 920)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 369.8
Root \(-0.485591 + 0.485591i\) of defining polynomial
Character \(\chi\) \(=\) 1840.369
Dual form 1840.2.e.h.369.9

$q$-expansion

\(f(q)\) \(=\) \(q-0.296848i q^{3} +(-2.18271 - 0.485591i) q^{5} -3.46037i q^{7} +2.91188 q^{9} +O(q^{10})\) \(q-0.296848i q^{3} +(-2.18271 - 0.485591i) q^{5} -3.46037i q^{7} +2.91188 q^{9} +3.11377 q^{11} -4.60394i q^{13} +(-0.144147 + 0.647931i) q^{15} +5.49355i q^{17} +4.48919 q^{19} -1.02720 q^{21} +1.00000i q^{23} +(4.52840 + 2.11980i) q^{25} -1.75493i q^{27} -9.19670 q^{29} +5.89980 q^{31} -0.924314i q^{33} +(-1.68033 + 7.55297i) q^{35} -6.95324i q^{37} -1.36667 q^{39} -9.03617 q^{41} -5.55051i q^{43} +(-6.35578 - 1.41398i) q^{45} -5.48499i q^{47} -4.97418 q^{49} +1.63075 q^{51} +2.74411i q^{53} +(-6.79643 - 1.51202i) q^{55} -1.33261i q^{57} +9.33659 q^{59} -1.40206 q^{61} -10.0762i q^{63} +(-2.23563 + 10.0490i) q^{65} -3.49779i q^{67} +0.296848 q^{69} -4.28869 q^{71} -4.92048i q^{73} +(0.629259 - 1.34425i) q^{75} -10.7748i q^{77} +2.12284 q^{79} +8.21470 q^{81} -16.0159i q^{83} +(2.66762 - 11.9908i) q^{85} +2.73002i q^{87} -11.9821 q^{89} -15.9314 q^{91} -1.75134i q^{93} +(-9.79858 - 2.17991i) q^{95} -4.37324i q^{97} +9.06692 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16q - 2q^{5} - 22q^{9} + O(q^{10}) \) \( 16q - 2q^{5} - 22q^{9} - 14q^{11} - 6q^{15} + 22q^{19} + 12q^{25} - 44q^{29} - 18q^{31} - 20q^{35} + 14q^{41} + 14q^{45} - 78q^{49} + 38q^{51} - 30q^{55} + 64q^{59} + 34q^{61} + 6q^{65} + 6q^{69} - 30q^{71} - 56q^{75} - 4q^{79} + 48q^{81} + 52q^{85} - 92q^{89} + 70q^{91} - 38q^{95} + 122q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1840\mathbb{Z}\right)^\times\).

\(n\) \(737\) \(1151\) \(1201\) \(1381\)
\(\chi(n)\) \(-1\) \(1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.296848i 0.171385i −0.996322 0.0856925i \(-0.972690\pi\)
0.996322 0.0856925i \(-0.0273103\pi\)
\(4\) 0 0
\(5\) −2.18271 0.485591i −0.976135 0.217163i
\(6\) 0 0
\(7\) 3.46037i 1.30790i −0.756539 0.653949i \(-0.773111\pi\)
0.756539 0.653949i \(-0.226889\pi\)
\(8\) 0 0
\(9\) 2.91188 0.970627
\(10\) 0 0
\(11\) 3.11377 0.938836 0.469418 0.882976i \(-0.344464\pi\)
0.469418 + 0.882976i \(0.344464\pi\)
\(12\) 0 0
\(13\) 4.60394i 1.27690i −0.769662 0.638452i \(-0.779575\pi\)
0.769662 0.638452i \(-0.220425\pi\)
\(14\) 0 0
\(15\) −0.144147 + 0.647931i −0.0372185 + 0.167295i
\(16\) 0 0
\(17\) 5.49355i 1.33238i 0.745782 + 0.666190i \(0.232076\pi\)
−0.745782 + 0.666190i \(0.767924\pi\)
\(18\) 0 0
\(19\) 4.48919 1.02989 0.514946 0.857223i \(-0.327812\pi\)
0.514946 + 0.857223i \(0.327812\pi\)
\(20\) 0 0
\(21\) −1.02720 −0.224154
\(22\) 0 0
\(23\) 1.00000i 0.208514i
\(24\) 0 0
\(25\) 4.52840 + 2.11980i 0.905681 + 0.423961i
\(26\) 0 0
\(27\) 1.75493i 0.337736i
\(28\) 0 0
\(29\) −9.19670 −1.70778 −0.853892 0.520450i \(-0.825764\pi\)
−0.853892 + 0.520450i \(0.825764\pi\)
\(30\) 0 0
\(31\) 5.89980 1.05964 0.529818 0.848111i \(-0.322260\pi\)
0.529818 + 0.848111i \(0.322260\pi\)
\(32\) 0 0
\(33\) 0.924314i 0.160902i
\(34\) 0 0
\(35\) −1.68033 + 7.55297i −0.284027 + 1.27669i
\(36\) 0 0
\(37\) 6.95324i 1.14311i −0.820565 0.571553i \(-0.806341\pi\)
0.820565 0.571553i \(-0.193659\pi\)
\(38\) 0 0
\(39\) −1.36667 −0.218842
\(40\) 0 0
\(41\) −9.03617 −1.41121 −0.705607 0.708604i \(-0.749325\pi\)
−0.705607 + 0.708604i \(0.749325\pi\)
\(42\) 0 0
\(43\) 5.55051i 0.846444i −0.906026 0.423222i \(-0.860899\pi\)
0.906026 0.423222i \(-0.139101\pi\)
\(44\) 0 0
\(45\) −6.35578 1.41398i −0.947464 0.210784i
\(46\) 0 0
\(47\) 5.48499i 0.800068i −0.916500 0.400034i \(-0.868998\pi\)
0.916500 0.400034i \(-0.131002\pi\)
\(48\) 0 0
\(49\) −4.97418 −0.710598
\(50\) 0 0
\(51\) 1.63075 0.228350
\(52\) 0 0
\(53\) 2.74411i 0.376932i 0.982080 + 0.188466i \(0.0603516\pi\)
−0.982080 + 0.188466i \(0.939648\pi\)
\(54\) 0 0
\(55\) −6.79643 1.51202i −0.916431 0.203880i
\(56\) 0 0
\(57\) 1.33261i 0.176508i
\(58\) 0 0
\(59\) 9.33659 1.21552 0.607760 0.794120i \(-0.292068\pi\)
0.607760 + 0.794120i \(0.292068\pi\)
\(60\) 0 0
\(61\) −1.40206 −0.179515 −0.0897576 0.995964i \(-0.528609\pi\)
−0.0897576 + 0.995964i \(0.528609\pi\)
\(62\) 0 0
\(63\) 10.0762i 1.26948i
\(64\) 0 0
\(65\) −2.23563 + 10.0490i −0.277296 + 1.24643i
\(66\) 0 0
\(67\) 3.49779i 0.427323i −0.976908 0.213662i \(-0.931461\pi\)
0.976908 0.213662i \(-0.0685390\pi\)
\(68\) 0 0
\(69\) 0.296848 0.0357362
\(70\) 0 0
\(71\) −4.28869 −0.508974 −0.254487 0.967076i \(-0.581907\pi\)
−0.254487 + 0.967076i \(0.581907\pi\)
\(72\) 0 0
\(73\) 4.92048i 0.575899i −0.957646 0.287949i \(-0.907026\pi\)
0.957646 0.287949i \(-0.0929735\pi\)
\(74\) 0 0
\(75\) 0.629259 1.34425i 0.0726605 0.155220i
\(76\) 0 0
\(77\) 10.7748i 1.22790i
\(78\) 0 0
\(79\) 2.12284 0.238838 0.119419 0.992844i \(-0.461897\pi\)
0.119419 + 0.992844i \(0.461897\pi\)
\(80\) 0 0
\(81\) 8.21470 0.912744
\(82\) 0 0
\(83\) 16.0159i 1.75797i −0.476845 0.878987i \(-0.658220\pi\)
0.476845 0.878987i \(-0.341780\pi\)
\(84\) 0 0
\(85\) 2.66762 11.9908i 0.289344 1.30058i
\(86\) 0 0
\(87\) 2.73002i 0.292689i
\(88\) 0 0
\(89\) −11.9821 −1.27010 −0.635048 0.772473i \(-0.719020\pi\)
−0.635048 + 0.772473i \(0.719020\pi\)
\(90\) 0 0
\(91\) −15.9314 −1.67006
\(92\) 0 0
\(93\) 1.75134i 0.181606i
\(94\) 0 0
\(95\) −9.79858 2.17991i −1.00531 0.223654i
\(96\) 0 0
\(97\) 4.37324i 0.444035i −0.975043 0.222018i \(-0.928736\pi\)
0.975043 0.222018i \(-0.0712643\pi\)
\(98\) 0 0
\(99\) 9.06692 0.911259
\(100\) 0 0
\(101\) 10.4175 1.03658 0.518288 0.855206i \(-0.326570\pi\)
0.518288 + 0.855206i \(0.326570\pi\)
\(102\) 0 0
\(103\) 7.21376i 0.710793i 0.934716 + 0.355396i \(0.115654\pi\)
−0.934716 + 0.355396i \(0.884346\pi\)
\(104\) 0 0
\(105\) 2.24208 + 0.498801i 0.218805 + 0.0486780i
\(106\) 0 0
\(107\) 7.07230i 0.683705i −0.939754 0.341853i \(-0.888946\pi\)
0.939754 0.341853i \(-0.111054\pi\)
\(108\) 0 0
\(109\) 9.92058 0.950219 0.475110 0.879927i \(-0.342408\pi\)
0.475110 + 0.879927i \(0.342408\pi\)
\(110\) 0 0
\(111\) −2.06405 −0.195911
\(112\) 0 0
\(113\) 12.9797i 1.22103i −0.792007 0.610513i \(-0.790964\pi\)
0.792007 0.610513i \(-0.209036\pi\)
\(114\) 0 0
\(115\) 0.485591 2.18271i 0.0452816 0.203538i
\(116\) 0 0
\(117\) 13.4061i 1.23940i
\(118\) 0 0
\(119\) 19.0097 1.74262
\(120\) 0 0
\(121\) −1.30446 −0.118587
\(122\) 0 0
\(123\) 2.68237i 0.241861i
\(124\) 0 0
\(125\) −8.85481 6.82586i −0.791998 0.610523i
\(126\) 0 0
\(127\) 14.9664i 1.32805i 0.747709 + 0.664027i \(0.231154\pi\)
−0.747709 + 0.664027i \(0.768846\pi\)
\(128\) 0 0
\(129\) −1.64765 −0.145068
\(130\) 0 0
\(131\) −18.5945 −1.62461 −0.812305 0.583233i \(-0.801788\pi\)
−0.812305 + 0.583233i \(0.801788\pi\)
\(132\) 0 0
\(133\) 15.5343i 1.34699i
\(134\) 0 0
\(135\) −0.852177 + 3.83049i −0.0733437 + 0.329676i
\(136\) 0 0
\(137\) 19.9298i 1.70272i 0.524583 + 0.851359i \(0.324221\pi\)
−0.524583 + 0.851359i \(0.675779\pi\)
\(138\) 0 0
\(139\) −0.346731 −0.0294094 −0.0147047 0.999892i \(-0.504681\pi\)
−0.0147047 + 0.999892i \(0.504681\pi\)
\(140\) 0 0
\(141\) −1.62821 −0.137120
\(142\) 0 0
\(143\) 14.3356i 1.19880i
\(144\) 0 0
\(145\) 20.0737 + 4.46584i 1.66703 + 0.370867i
\(146\) 0 0
\(147\) 1.47657i 0.121786i
\(148\) 0 0
\(149\) 1.87953 0.153977 0.0769884 0.997032i \(-0.475470\pi\)
0.0769884 + 0.997032i \(0.475470\pi\)
\(150\) 0 0
\(151\) −9.84743 −0.801373 −0.400686 0.916215i \(-0.631228\pi\)
−0.400686 + 0.916215i \(0.631228\pi\)
\(152\) 0 0
\(153\) 15.9966i 1.29324i
\(154\) 0 0
\(155\) −12.8775 2.86489i −1.03435 0.230114i
\(156\) 0 0
\(157\) 16.5630i 1.32187i 0.750442 + 0.660936i \(0.229841\pi\)
−0.750442 + 0.660936i \(0.770159\pi\)
\(158\) 0 0
\(159\) 0.814582 0.0646006
\(160\) 0 0
\(161\) 3.46037 0.272716
\(162\) 0 0
\(163\) 9.48888i 0.743226i −0.928388 0.371613i \(-0.878805\pi\)
0.928388 0.371613i \(-0.121195\pi\)
\(164\) 0 0
\(165\) −0.448839 + 2.01750i −0.0349420 + 0.157062i
\(166\) 0 0
\(167\) 9.28434i 0.718444i 0.933252 + 0.359222i \(0.116958\pi\)
−0.933252 + 0.359222i \(0.883042\pi\)
\(168\) 0 0
\(169\) −8.19629 −0.630484
\(170\) 0 0
\(171\) 13.0720 0.999640
\(172\) 0 0
\(173\) 9.34023i 0.710124i −0.934843 0.355062i \(-0.884460\pi\)
0.934843 0.355062i \(-0.115540\pi\)
\(174\) 0 0
\(175\) 7.33531 15.6700i 0.554498 1.18454i
\(176\) 0 0
\(177\) 2.77154i 0.208322i
\(178\) 0 0
\(179\) −0.255383 −0.0190882 −0.00954411 0.999954i \(-0.503038\pi\)
−0.00954411 + 0.999954i \(0.503038\pi\)
\(180\) 0 0
\(181\) −4.02663 −0.299297 −0.149649 0.988739i \(-0.547814\pi\)
−0.149649 + 0.988739i \(0.547814\pi\)
\(182\) 0 0
\(183\) 0.416198i 0.0307662i
\(184\) 0 0
\(185\) −3.37643 + 15.1769i −0.248240 + 1.11583i
\(186\) 0 0
\(187\) 17.1056i 1.25089i
\(188\) 0 0
\(189\) −6.07270 −0.441724
\(190\) 0 0
\(191\) 24.7376 1.78995 0.894974 0.446118i \(-0.147194\pi\)
0.894974 + 0.446118i \(0.147194\pi\)
\(192\) 0 0
\(193\) 7.34062i 0.528390i 0.964469 + 0.264195i \(0.0851062\pi\)
−0.964469 + 0.264195i \(0.914894\pi\)
\(194\) 0 0
\(195\) 2.98304 + 0.663642i 0.213620 + 0.0475244i
\(196\) 0 0
\(197\) 16.2033i 1.15444i 0.816589 + 0.577220i \(0.195862\pi\)
−0.816589 + 0.577220i \(0.804138\pi\)
\(198\) 0 0
\(199\) −13.8498 −0.981786 −0.490893 0.871220i \(-0.663329\pi\)
−0.490893 + 0.871220i \(0.663329\pi\)
\(200\) 0 0
\(201\) −1.03831 −0.0732368
\(202\) 0 0
\(203\) 31.8240i 2.23361i
\(204\) 0 0
\(205\) 19.7233 + 4.38789i 1.37754 + 0.306463i
\(206\) 0 0
\(207\) 2.91188i 0.202390i
\(208\) 0 0
\(209\) 13.9783 0.966899
\(210\) 0 0
\(211\) −19.8811 −1.36867 −0.684335 0.729168i \(-0.739907\pi\)
−0.684335 + 0.729168i \(0.739907\pi\)
\(212\) 0 0
\(213\) 1.27309i 0.0872305i
\(214\) 0 0
\(215\) −2.69528 + 12.1151i −0.183816 + 0.826244i
\(216\) 0 0
\(217\) 20.4155i 1.38590i
\(218\) 0 0
\(219\) −1.46063 −0.0987004
\(220\) 0 0
\(221\) 25.2920 1.70132
\(222\) 0 0
\(223\) 14.3441i 0.960550i −0.877118 0.480275i \(-0.840537\pi\)
0.877118 0.480275i \(-0.159463\pi\)
\(224\) 0 0
\(225\) 13.1862 + 6.17262i 0.879078 + 0.411508i
\(226\) 0 0
\(227\) 0.219192i 0.0145483i 0.999974 + 0.00727413i \(0.00231545\pi\)
−0.999974 + 0.00727413i \(0.997685\pi\)
\(228\) 0 0
\(229\) −0.919300 −0.0607491 −0.0303745 0.999539i \(-0.509670\pi\)
−0.0303745 + 0.999539i \(0.509670\pi\)
\(230\) 0 0
\(231\) −3.19847 −0.210444
\(232\) 0 0
\(233\) 22.5267i 1.47578i −0.674923 0.737888i \(-0.735823\pi\)
0.674923 0.737888i \(-0.264177\pi\)
\(234\) 0 0
\(235\) −2.66346 + 11.9721i −0.173745 + 0.780975i
\(236\) 0 0
\(237\) 0.630160i 0.0409333i
\(238\) 0 0
\(239\) −11.4614 −0.741376 −0.370688 0.928758i \(-0.620878\pi\)
−0.370688 + 0.928758i \(0.620878\pi\)
\(240\) 0 0
\(241\) 15.3035 0.985784 0.492892 0.870090i \(-0.335940\pi\)
0.492892 + 0.870090i \(0.335940\pi\)
\(242\) 0 0
\(243\) 7.70330i 0.494167i
\(244\) 0 0
\(245\) 10.8572 + 2.41542i 0.693640 + 0.154315i
\(246\) 0 0
\(247\) 20.6680i 1.31507i
\(248\) 0 0
\(249\) −4.75428 −0.301290
\(250\) 0 0
\(251\) −21.1450 −1.33466 −0.667329 0.744763i \(-0.732563\pi\)
−0.667329 + 0.744763i \(0.732563\pi\)
\(252\) 0 0
\(253\) 3.11377i 0.195761i
\(254\) 0 0
\(255\) −3.55944 0.791876i −0.222901 0.0495892i
\(256\) 0 0
\(257\) 2.81665i 0.175698i 0.996134 + 0.0878489i \(0.0279993\pi\)
−0.996134 + 0.0878489i \(0.972001\pi\)
\(258\) 0 0
\(259\) −24.0608 −1.49507
\(260\) 0 0
\(261\) −26.7797 −1.65762
\(262\) 0 0
\(263\) 16.8627i 1.03980i 0.854228 + 0.519899i \(0.174030\pi\)
−0.854228 + 0.519899i \(0.825970\pi\)
\(264\) 0 0
\(265\) 1.33252 5.98958i 0.0818558 0.367937i
\(266\) 0 0
\(267\) 3.55684i 0.217675i
\(268\) 0 0
\(269\) −27.8171 −1.69604 −0.848019 0.529966i \(-0.822205\pi\)
−0.848019 + 0.529966i \(0.822205\pi\)
\(270\) 0 0
\(271\) 4.73892 0.287869 0.143934 0.989587i \(-0.454025\pi\)
0.143934 + 0.989587i \(0.454025\pi\)
\(272\) 0 0
\(273\) 4.72919i 0.286223i
\(274\) 0 0
\(275\) 14.1004 + 6.60057i 0.850285 + 0.398030i
\(276\) 0 0
\(277\) 0.983771i 0.0591091i −0.999563 0.0295545i \(-0.990591\pi\)
0.999563 0.0295545i \(-0.00940888\pi\)
\(278\) 0 0
\(279\) 17.1795 1.02851
\(280\) 0 0
\(281\) 24.1462 1.44044 0.720219 0.693746i \(-0.244041\pi\)
0.720219 + 0.693746i \(0.244041\pi\)
\(282\) 0 0
\(283\) 22.6523i 1.34654i −0.739397 0.673269i \(-0.764890\pi\)
0.739397 0.673269i \(-0.235110\pi\)
\(284\) 0 0
\(285\) −0.647101 + 2.90868i −0.0383310 + 0.172296i
\(286\) 0 0
\(287\) 31.2685i 1.84572i
\(288\) 0 0
\(289\) −13.1791 −0.775238
\(290\) 0 0
\(291\) −1.29819 −0.0761010
\(292\) 0 0
\(293\) 12.9668i 0.757529i −0.925493 0.378764i \(-0.876349\pi\)
0.925493 0.378764i \(-0.123651\pi\)
\(294\) 0 0
\(295\) −20.3790 4.53377i −1.18651 0.263966i
\(296\) 0 0
\(297\) 5.46443i 0.317079i
\(298\) 0 0
\(299\) 4.60394 0.266253
\(300\) 0 0
\(301\) −19.2068 −1.10706
\(302\) 0 0
\(303\) 3.09240i 0.177654i
\(304\) 0 0
\(305\) 3.06028 + 0.680827i 0.175231 + 0.0389841i
\(306\) 0 0
\(307\) 27.4380i 1.56597i −0.622041 0.782984i \(-0.713696\pi\)
0.622041 0.782984i \(-0.286304\pi\)
\(308\) 0 0
\(309\) 2.14139 0.121819
\(310\) 0 0
\(311\) 30.8655 1.75022 0.875112 0.483920i \(-0.160788\pi\)
0.875112 + 0.483920i \(0.160788\pi\)
\(312\) 0 0
\(313\) 3.64274i 0.205900i 0.994687 + 0.102950i \(0.0328281\pi\)
−0.994687 + 0.102950i \(0.967172\pi\)
\(314\) 0 0
\(315\) −4.89291 + 21.9934i −0.275684 + 1.23919i
\(316\) 0 0
\(317\) 24.0344i 1.34990i 0.737862 + 0.674952i \(0.235836\pi\)
−0.737862 + 0.674952i \(0.764164\pi\)
\(318\) 0 0
\(319\) −28.6364 −1.60333
\(320\) 0 0
\(321\) −2.09940 −0.117177
\(322\) 0 0
\(323\) 24.6616i 1.37221i
\(324\) 0 0
\(325\) 9.75946 20.8485i 0.541357 1.15647i
\(326\) 0 0
\(327\) 2.94490i 0.162853i
\(328\) 0 0
\(329\) −18.9801 −1.04641
\(330\) 0 0
\(331\) 21.7999 1.19823 0.599115 0.800663i \(-0.295519\pi\)
0.599115 + 0.800663i \(0.295519\pi\)
\(332\) 0 0
\(333\) 20.2470i 1.10953i
\(334\) 0 0
\(335\) −1.69850 + 7.63465i −0.0927988 + 0.417125i
\(336\) 0 0
\(337\) 2.82526i 0.153902i 0.997035 + 0.0769510i \(0.0245185\pi\)
−0.997035 + 0.0769510i \(0.975482\pi\)
\(338\) 0 0
\(339\) −3.85298 −0.209265
\(340\) 0 0
\(341\) 18.3706 0.994824
\(342\) 0 0
\(343\) 7.01008i 0.378509i
\(344\) 0 0
\(345\) −0.647931 0.144147i −0.0348834 0.00776059i
\(346\) 0 0
\(347\) 12.5727i 0.674939i 0.941337 + 0.337469i \(0.109571\pi\)
−0.941337 + 0.337469i \(0.890429\pi\)
\(348\) 0 0
\(349\) −7.15382 −0.382935 −0.191468 0.981499i \(-0.561325\pi\)
−0.191468 + 0.981499i \(0.561325\pi\)
\(350\) 0 0
\(351\) −8.07959 −0.431256
\(352\) 0 0
\(353\) 20.7013i 1.10182i 0.834565 + 0.550909i \(0.185719\pi\)
−0.834565 + 0.550909i \(0.814281\pi\)
\(354\) 0 0
\(355\) 9.36094 + 2.08255i 0.496827 + 0.110530i
\(356\) 0 0
\(357\) 5.64299i 0.298659i
\(358\) 0 0
\(359\) 28.6077 1.50985 0.754927 0.655808i \(-0.227672\pi\)
0.754927 + 0.655808i \(0.227672\pi\)
\(360\) 0 0
\(361\) 1.15284 0.0606756
\(362\) 0 0
\(363\) 0.387226i 0.0203241i
\(364\) 0 0
\(365\) −2.38934 + 10.7400i −0.125064 + 0.562155i
\(366\) 0 0
\(367\) 20.4541i 1.06769i 0.845581 + 0.533847i \(0.179254\pi\)
−0.845581 + 0.533847i \(0.820746\pi\)
\(368\) 0 0
\(369\) −26.3123 −1.36976
\(370\) 0 0
\(371\) 9.49564 0.492989
\(372\) 0 0
\(373\) 3.75830i 0.194598i 0.995255 + 0.0972988i \(0.0310203\pi\)
−0.995255 + 0.0972988i \(0.968980\pi\)
\(374\) 0 0
\(375\) −2.02624 + 2.62853i −0.104635 + 0.135737i
\(376\) 0 0
\(377\) 42.3411i 2.18068i
\(378\) 0 0
\(379\) 28.9884 1.48903 0.744516 0.667605i \(-0.232680\pi\)
0.744516 + 0.667605i \(0.232680\pi\)
\(380\) 0 0
\(381\) 4.44274 0.227608
\(382\) 0 0
\(383\) 29.8354i 1.52452i −0.647273 0.762258i \(-0.724091\pi\)
0.647273 0.762258i \(-0.275909\pi\)
\(384\) 0 0
\(385\) −5.23214 + 23.5182i −0.266655 + 1.19860i
\(386\) 0 0
\(387\) 16.1624i 0.821582i
\(388\) 0 0
\(389\) 4.02138 0.203892 0.101946 0.994790i \(-0.467493\pi\)
0.101946 + 0.994790i \(0.467493\pi\)
\(390\) 0 0
\(391\) −5.49355 −0.277821
\(392\) 0 0
\(393\) 5.51974i 0.278434i
\(394\) 0 0
\(395\) −4.63354 1.03083i −0.233139 0.0518668i
\(396\) 0 0
\(397\) 5.86060i 0.294135i 0.989126 + 0.147068i \(0.0469835\pi\)
−0.989126 + 0.147068i \(0.953017\pi\)
\(398\) 0 0
\(399\) −4.61131 −0.230854
\(400\) 0 0
\(401\) 22.3492 1.11607 0.558034 0.829818i \(-0.311556\pi\)
0.558034 + 0.829818i \(0.311556\pi\)
\(402\) 0 0
\(403\) 27.1624i 1.35305i
\(404\) 0 0
\(405\) −17.9303 3.98898i −0.890962 0.198214i
\(406\) 0 0
\(407\) 21.6508i 1.07319i
\(408\) 0 0
\(409\) 36.4740 1.80352 0.901762 0.432234i \(-0.142275\pi\)
0.901762 + 0.432234i \(0.142275\pi\)
\(410\) 0 0
\(411\) 5.91611 0.291820
\(412\) 0 0
\(413\) 32.3081i 1.58978i
\(414\) 0 0
\(415\) −7.77718 + 34.9580i −0.381767 + 1.71602i
\(416\) 0 0
\(417\) 0.102926i 0.00504032i
\(418\) 0 0
\(419\) 29.0555 1.41945 0.709727 0.704477i \(-0.248818\pi\)
0.709727 + 0.704477i \(0.248818\pi\)
\(420\) 0 0
\(421\) 28.3055 1.37952 0.689762 0.724036i \(-0.257715\pi\)
0.689762 + 0.724036i \(0.257715\pi\)
\(422\) 0 0
\(423\) 15.9716i 0.776568i
\(424\) 0 0
\(425\) −11.6452 + 24.8770i −0.564877 + 1.20671i
\(426\) 0 0
\(427\) 4.85165i 0.234788i
\(428\) 0 0
\(429\) −4.25549 −0.205457
\(430\) 0 0
\(431\) 26.4640 1.27472 0.637362 0.770564i \(-0.280026\pi\)
0.637362 + 0.770564i \(0.280026\pi\)
\(432\) 0 0
\(433\) 7.95631i 0.382356i 0.981555 + 0.191178i \(0.0612307\pi\)
−0.981555 + 0.191178i \(0.938769\pi\)
\(434\) 0 0
\(435\) 1.32567 5.95882i 0.0635611 0.285704i
\(436\) 0 0
\(437\) 4.48919i 0.214747i
\(438\) 0 0
\(439\) 20.0799 0.958361 0.479181 0.877716i \(-0.340934\pi\)
0.479181 + 0.877716i \(0.340934\pi\)
\(440\) 0 0
\(441\) −14.4842 −0.689725
\(442\) 0 0
\(443\) 12.8355i 0.609834i 0.952379 + 0.304917i \(0.0986287\pi\)
−0.952379 + 0.304917i \(0.901371\pi\)
\(444\) 0 0
\(445\) 26.1533 + 5.81838i 1.23979 + 0.275818i
\(446\) 0 0
\(447\) 0.557933i 0.0263893i
\(448\) 0 0
\(449\) −4.18739 −0.197615 −0.0988075 0.995107i \(-0.531503\pi\)
−0.0988075 + 0.995107i \(0.531503\pi\)
\(450\) 0 0
\(451\) −28.1365 −1.32490
\(452\) 0 0
\(453\) 2.92319i 0.137343i
\(454\) 0 0
\(455\) 34.7735 + 7.73613i 1.63021 + 0.362675i
\(456\) 0 0
\(457\) 42.1962i 1.97386i 0.161158 + 0.986929i \(0.448477\pi\)
−0.161158 + 0.986929i \(0.551523\pi\)
\(458\) 0 0
\(459\) 9.64078 0.449993
\(460\) 0 0
\(461\) −10.4930 −0.488709 −0.244355 0.969686i \(-0.578576\pi\)
−0.244355 + 0.969686i \(0.578576\pi\)
\(462\) 0 0
\(463\) 39.5643i 1.83871i 0.393432 + 0.919354i \(0.371288\pi\)
−0.393432 + 0.919354i \(0.628712\pi\)
\(464\) 0 0
\(465\) −0.850436 + 3.82266i −0.0394380 + 0.177272i
\(466\) 0 0
\(467\) 27.2819i 1.26246i 0.775598 + 0.631228i \(0.217449\pi\)
−0.775598 + 0.631228i \(0.782551\pi\)
\(468\) 0 0
\(469\) −12.1037 −0.558895
\(470\) 0 0
\(471\) 4.91669 0.226549
\(472\) 0 0
\(473\) 17.2830i 0.794672i
\(474\) 0 0
\(475\) 20.3289 + 9.51621i 0.932752 + 0.436634i
\(476\) 0 0
\(477\) 7.99052i 0.365861i
\(478\) 0 0
\(479\) 2.88476 0.131808 0.0659041 0.997826i \(-0.479007\pi\)
0.0659041 + 0.997826i \(0.479007\pi\)
\(480\) 0 0
\(481\) −32.0123 −1.45964
\(482\) 0 0
\(483\) 1.02720i 0.0467394i
\(484\) 0 0
\(485\) −2.12361 + 9.54550i −0.0964280 + 0.433439i
\(486\) 0 0
\(487\) 1.55229i 0.0703409i 0.999381 + 0.0351704i \(0.0111974\pi\)
−0.999381 + 0.0351704i \(0.988803\pi\)
\(488\) 0 0
\(489\) −2.81675 −0.127378
\(490\) 0 0
\(491\) −0.415377 −0.0187457 −0.00937286 0.999956i \(-0.502984\pi\)
−0.00937286 + 0.999956i \(0.502984\pi\)
\(492\) 0 0
\(493\) 50.5225i 2.27542i
\(494\) 0 0
\(495\) −19.7904 4.40281i −0.889513 0.197892i
\(496\) 0 0
\(497\) 14.8405i 0.665686i
\(498\) 0 0
\(499\) 13.8674 0.620789 0.310394 0.950608i \(-0.399539\pi\)
0.310394 + 0.950608i \(0.399539\pi\)
\(500\) 0 0
\(501\) 2.75603 0.123130
\(502\) 0 0
\(503\) 34.5409i 1.54010i −0.637982 0.770051i \(-0.720231\pi\)
0.637982 0.770051i \(-0.279769\pi\)
\(504\) 0 0
\(505\) −22.7382 5.05863i −1.01184 0.225106i
\(506\) 0 0
\(507\) 2.43305i 0.108056i
\(508\) 0 0
\(509\) −15.5389 −0.688748 −0.344374 0.938833i \(-0.611909\pi\)
−0.344374 + 0.938833i \(0.611909\pi\)
\(510\) 0 0
\(511\) −17.0267 −0.753217
\(512\) 0 0
\(513\) 7.87821i 0.347831i
\(514\) 0 0
\(515\) 3.50294 15.7455i 0.154358 0.693830i
\(516\) 0 0
\(517\) 17.0790i 0.751133i
\(518\) 0 0
\(519\) −2.77262 −0.121705
\(520\) 0 0
\(521\) −5.67959 −0.248827 −0.124414 0.992230i \(-0.539705\pi\)
−0.124414 + 0.992230i \(0.539705\pi\)
\(522\) 0 0
\(523\) 18.4095i 0.804992i 0.915422 + 0.402496i \(0.131857\pi\)
−0.915422 + 0.402496i \(0.868143\pi\)
\(524\) 0 0
\(525\) −4.65159 2.17747i −0.203012 0.0950326i
\(526\) 0 0
\(527\) 32.4108i 1.41184i
\(528\) 0 0
\(529\) −1.00000 −0.0434783
\(530\) 0 0
\(531\) 27.1871 1.17982
\(532\) 0 0
\(533\) 41.6020i 1.80198i
\(534\) 0 0
\(535\) −3.43425 + 15.4367i −0.148475 + 0.667389i
\(536\) 0 0
\(537\) 0.0758098i 0.00327143i
\(538\) 0 0
\(539\) −15.4884 −0.667134
\(540\) 0 0
\(541\) −17.5169 −0.753110 −0.376555 0.926394i \(-0.622891\pi\)
−0.376555 + 0.926394i \(0.622891\pi\)
\(542\) 0 0
\(543\) 1.19530i 0.0512951i
\(544\) 0 0
\(545\) −21.6537 4.81734i −0.927542 0.206352i
\(546\) 0 0
\(547\) 38.1355i 1.63056i 0.579070 + 0.815278i \(0.303416\pi\)
−0.579070 + 0.815278i \(0.696584\pi\)
\(548\) 0 0
\(549\) −4.08263 −0.174242
\(550\) 0 0
\(551\) −41.2857 −1.75883
\(552\) 0 0
\(553\) 7.34582i 0.312376i
\(554\) 0 0
\(555\) 4.50522 + 1.00229i 0.191236 + 0.0425447i
\(556\) 0 0
\(557\) 9.09458i 0.385350i −0.981263 0.192675i \(-0.938284\pi\)
0.981263 0.192675i \(-0.0617162\pi\)
\(558\) 0 0
\(559\) −25.5542 −1.08083
\(560\) 0 0
\(561\) 5.07776 0.214383
\(562\) 0 0
\(563\) 37.7282i 1.59005i −0.606574 0.795027i \(-0.707457\pi\)
0.606574 0.795027i \(-0.292543\pi\)
\(564\) 0 0
\(565\) −6.30281 + 28.3308i −0.265161 + 1.19189i
\(566\) 0 0
\(567\) 28.4259i 1.19378i
\(568\) 0 0
\(569\) 34.0456 1.42727 0.713633 0.700520i \(-0.247048\pi\)
0.713633 + 0.700520i \(0.247048\pi\)
\(570\) 0 0
\(571\) 11.4449 0.478953 0.239477 0.970902i \(-0.423024\pi\)
0.239477 + 0.970902i \(0.423024\pi\)
\(572\) 0 0
\(573\) 7.34329i 0.306770i
\(574\) 0 0
\(575\) −2.11980 + 4.52840i −0.0884020 + 0.188847i
\(576\) 0 0
\(577\) 40.8683i 1.70137i −0.525675 0.850686i \(-0.676187\pi\)
0.525675 0.850686i \(-0.323813\pi\)
\(578\) 0 0
\(579\) 2.17905 0.0905581
\(580\) 0 0
\(581\) −55.4210 −2.29925
\(582\) 0 0
\(583\) 8.54452i 0.353878i
\(584\) 0 0
\(585\) −6.50990 + 29.2616i −0.269151 + 1.20982i
\(586\) 0 0
\(587\) 28.3630i 1.17067i 0.810793 + 0.585334i \(0.199036\pi\)
−0.810793 + 0.585334i \(0.800964\pi\)
\(588\) 0 0
\(589\) 26.4853 1.09131
\(590\) 0 0
\(591\) 4.80992 0.197854
\(592\) 0 0
\(593\) 25.2847i 1.03832i 0.854678 + 0.519159i \(0.173755\pi\)
−0.854678 + 0.519159i \(0.826245\pi\)
\(594\) 0 0
\(595\) −41.4926 9.23095i −1.70103 0.378432i
\(596\) 0 0
\(597\) 4.11128i 0.168263i
\(598\) 0 0
\(599\) −25.9826 −1.06162 −0.530811 0.847490i \(-0.678112\pi\)
−0.530811 + 0.847490i \(0.678112\pi\)
\(600\) 0 0
\(601\) −10.8318 −0.441840 −0.220920 0.975292i \(-0.570906\pi\)
−0.220920 + 0.975292i \(0.570906\pi\)
\(602\) 0 0
\(603\) 10.1852i 0.414772i
\(604\) 0 0
\(605\) 2.84726 + 0.633435i 0.115757 + 0.0257528i
\(606\) 0 0
\(607\) 14.5105i 0.588962i −0.955657 0.294481i \(-0.904853\pi\)
0.955657 0.294481i \(-0.0951468\pi\)
\(608\) 0 0
\(609\) 9.44688 0.382807
\(610\) 0 0
\(611\) −25.2526 −1.02161
\(612\) 0 0
\(613\) 3.87278i 0.156420i −0.996937 0.0782101i \(-0.975080\pi\)
0.996937 0.0782101i \(-0.0249205\pi\)
\(614\) 0 0
\(615\) 1.30253 5.85481i 0.0525232 0.236089i
\(616\) 0 0
\(617\) 26.3999i 1.06282i −0.847114 0.531410i \(-0.821662\pi\)
0.847114 0.531410i \(-0.178338\pi\)
\(618\) 0 0
\(619\) 46.0115 1.84936 0.924679 0.380748i \(-0.124334\pi\)
0.924679 + 0.380748i \(0.124334\pi\)
\(620\) 0 0
\(621\) 1.75493 0.0704228
\(622\) 0 0
\(623\) 41.4624i 1.66116i
\(624\) 0 0
\(625\) 16.0129 + 19.1987i 0.640514 + 0.767946i
\(626\) 0 0
\(627\) 4.14942i 0.165712i
\(628\) 0 0
\(629\) 38.1979 1.52305
\(630\) 0 0
\(631\) −1.15900 −0.0461389 −0.0230695 0.999734i \(-0.507344\pi\)
−0.0230695 + 0.999734i \(0.507344\pi\)
\(632\) 0 0
\(633\) 5.90165i 0.234569i
\(634\) 0 0
\(635\) 7.26755 32.6672i 0.288404 1.29636i
\(636\) 0 0
\(637\) 22.9009i 0.907365i
\(638\) 0 0
\(639\) −12.4882 −0.494024
\(640\) 0 0
\(641\) −5.15529 −0.203622 −0.101811 0.994804i \(-0.532464\pi\)
−0.101811 + 0.994804i \(0.532464\pi\)
\(642\) 0 0
\(643\) 8.72811i 0.344203i −0.985079 0.172102i \(-0.944944\pi\)
0.985079 0.172102i \(-0.0550557\pi\)
\(644\) 0 0
\(645\) 3.59634 + 0.800086i 0.141606 + 0.0315034i
\(646\) 0 0
\(647\) 10.4205i 0.409672i 0.978796 + 0.204836i \(0.0656662\pi\)
−0.978796 + 0.204836i \(0.934334\pi\)
\(648\) 0 0
\(649\) 29.0720 1.14117
\(650\) 0 0
\(651\) −6.06030 −0.237522
\(652\) 0 0
\(653\) 36.2315i 1.41785i 0.705285 + 0.708924i \(0.250819\pi\)
−0.705285 + 0.708924i \(0.749181\pi\)
\(654\) 0 0
\(655\) 40.5863 + 9.02933i 1.58584 + 0.352805i
\(656\) 0 0
\(657\) 14.3279i 0.558983i
\(658\) 0 0
\(659\) 13.4717 0.524783 0.262392 0.964961i \(-0.415489\pi\)
0.262392 + 0.964961i \(0.415489\pi\)
\(660\) 0 0
\(661\) −18.9448 −0.736867 −0.368434 0.929654i \(-0.620106\pi\)
−0.368434 + 0.929654i \(0.620106\pi\)
\(662\) 0 0
\(663\) 7.50786i 0.291581i
\(664\) 0 0
\(665\) −7.54331 + 33.9067i −0.292517 + 1.31485i
\(666\) 0 0
\(667\) 9.19670i 0.356098i
\(668\) 0 0
\(669\) −4.25800 −0.164624
\(670\) 0 0
\(671\) −4.36568 −0.168535
\(672\) 0 0
\(673\) 27.3807i 1.05545i 0.849415 + 0.527725i \(0.176955\pi\)
−0.849415 + 0.527725i \(0.823045\pi\)
\(674\) 0 0
\(675\) 3.72010 7.94702i 0.143187 0.305881i
\(676\) 0 0
\(677\) 23.9986i 0.922342i −0.887311 0.461171i \(-0.847429\pi\)
0.887311 0.461171i \(-0.152571\pi\)
\(678\) 0 0
\(679\) −15.1330 −0.580753
\(680\) 0 0
\(681\) 0.0650665 0.00249335
\(682\) 0 0
\(683\) 28.6152i 1.09493i 0.836829 + 0.547464i \(0.184407\pi\)
−0.836829 + 0.547464i \(0.815593\pi\)
\(684\) 0 0
\(685\) 9.67774 43.5009i 0.369767 1.66208i
\(686\) 0 0
\(687\) 0.272892i 0.0104115i
\(688\) 0 0
\(689\) 12.6337 0.481307
\(690\) 0 0
\(691\) 24.0645 0.915457 0.457728 0.889092i \(-0.348663\pi\)
0.457728 + 0.889092i \(0.348663\pi\)
\(692\) 0 0
\(693\) 31.3749i 1.19183i
\(694\) 0 0
\(695\) 0.756812 + 0.168370i 0.0287075 + 0.00638662i
\(696\) 0 0
\(697\) 49.6406i 1.88027i
\(698\) 0 0
\(699\) −6.68701 −0.252926
\(700\) 0 0
\(701\) 41.5376 1.56885 0.784427 0.620221i \(-0.212957\pi\)
0.784427 + 0.620221i \(0.212957\pi\)
\(702\) 0 0
\(703\) 31.2144i 1.17727i
\(704\) 0 0
\(705\) 3.55389 + 0.790643i 0.133847 + 0.0297773i
\(706\) 0 0
\(707\) 36.0483i 1.35574i
\(708\) 0 0
\(709\) 0.239337 0.00898849 0.00449424 0.999990i \(-0.498569\pi\)
0.00449424 + 0.999990i \(0.498569\pi\)
\(710\) 0 0
\(711\) 6.18146 0.231823
\(712\) 0 0
\(713\) 5.89980i 0.220949i
\(714\) 0 0
\(715\) −6.96124 + 31.2904i −0.260336 + 1.17019i
\(716\) 0 0
\(717\) 3.40229i 0.127061i
\(718\) 0 0
\(719\) 18.2322 0.679948 0.339974 0.940435i \(-0.389582\pi\)
0.339974 + 0.940435i \(0.389582\pi\)
\(720\) 0 0
\(721\) 24.9623 0.929645
\(722\) 0 0
\(723\) 4.54280i 0.168949i
\(724\) 0 0
\(725\) −41.6464 19.4952i −1.54671 0.724034i
\(726\) 0 0
\(727\) 1.16149i 0.0430772i −0.999768 0.0215386i \(-0.993144\pi\)
0.999768 0.0215386i \(-0.00685648\pi\)
\(728\) 0 0
\(729\) 22.3574 0.828052
\(730\) 0 0
\(731\) 30.4920 1.12779
\(732\) 0 0
\(733\) 16.9474i 0.625967i −0.949759 0.312984i \(-0.898671\pi\)
0.949759 0.312984i \(-0.101329\pi\)
\(734\) 0 0
\(735\) 0.717011 3.22293i 0.0264474 0.118879i
\(736\) 0 0
\(737\) 10.8913i 0.401186i
\(738\) 0 0
\(739\) −30.7566 −1.13140 −0.565700 0.824611i \(-0.691394\pi\)
−0.565700 + 0.824611i \(0.691394\pi\)
\(740\) 0 0
\(741\) −6.13524 −0.225384
\(742\) 0 0
\(743\) 6.66705i 0.244591i 0.992494 + 0.122295i \(0.0390255\pi\)
−0.992494 + 0.122295i \(0.960975\pi\)
\(744\) 0 0
\(745\) −4.10245 0.912682i −0.150302 0.0334381i
\(746\) 0 0
\(747\) 46.6364i 1.70634i
\(748\) 0 0
\(749\) −24.4728 −0.894217
\(750\) 0 0
\(751\) 8.32271 0.303700 0.151850 0.988404i \(-0.451477\pi\)
0.151850 + 0.988404i \(0.451477\pi\)
\(752\) 0 0
\(753\) 6.27683i 0.228740i
\(754\) 0 0
\(755\) 21.4940 + 4.78183i 0.782248 + 0.174028i
\(756\) 0 0
\(757\) 34.5436i 1.25551i 0.778412 + 0.627754i \(0.216026\pi\)
−0.778412 + 0.627754i \(0.783974\pi\)
\(758\) 0 0
\(759\) 0.924314 0.0335505
\(760\) 0 0
\(761\) −42.1781 −1.52896 −0.764478 0.644650i \(-0.777003\pi\)
−0.764478 + 0.644650i \(0.777003\pi\)
\(762\) 0 0
\(763\) 34.3289i 1.24279i
\(764\) 0 0
\(765\) 7.76779 34.9158i 0.280845 1.26238i
\(766\) 0 0
\(767\) 42.9851i 1.55210i
\(768\) 0 0
\(769\) −13.0704 −0.471332 −0.235666 0.971834i \(-0.575727\pi\)
−0.235666 + 0.971834i \(0.575727\pi\)
\(770\) 0 0
\(771\) 0.836115 0.0301120
\(772\) 0 0
\(773\) 7.14112i 0.256848i 0.991719 + 0.128424i \(0.0409919\pi\)
−0.991719 + 0.128424i \(0.959008\pi\)
\(774\) 0 0
\(775\) 26.7167 + 12.5064i 0.959692 + 0.449244i
\(776\) 0 0
\(777\) 7.14239i 0.256232i
\(778\) 0 0
\(779\) −40.5651 −1.45340
\(780\) 0 0
\(781\) −13.3540 −0.477843
\(782\) 0 0
\(783\) 16.1395i 0.576780i
\(784\) 0 0
\(785\) 8.04285 36.1522i 0.287062 1.29033i
\(786\) 0 0
\(787\) 30.5980i 1.09070i 0.838208 + 0.545351i \(0.183604\pi\)
−0.838208 + 0.545351i \(0.816396\pi\)
\(788\) 0 0
\(789\) 5.00565 0.178206
\(790\) 0 0
\(791\) −44.9145 −1.59698
\(792\) 0 0
\(793\) 6.45500i 0.229224i
\(794\) 0 0
\(795\) −1.77799 0.395554i −0.0630589 0.0140289i
\(796\) 0 0
\(797\) 32.8338i 1.16303i −0.813535 0.581516i \(-0.802460\pi\)
0.813535 0.581516i \(-0.197540\pi\)
\(798\) 0 0
\(799\) 30.1321 1.06600
\(800\) 0 0
\(801\) −34.8903 −1.23279
\(802\) 0 0