Properties

Label 1840.2.e.g.369.8
Level $1840$
Weight $2$
Character 1840.369
Analytic conductor $14.692$
Analytic rank $0$
Dimension $14$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 1840 = 2^{4} \cdot 5 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1840.e (of order \(2\), degree \(1\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(14.6924739719\)
Analytic rank: \(0\)
Dimension: \(14\)
Coefficient field: \(\mathbb{Q}[x]/(x^{14} - \cdots)\)
Defining polynomial: \(x^{14} - 2 x^{11} + 39 x^{10} - 10 x^{9} + 2 x^{8} - 26 x^{7} + 297 x^{6} - 116 x^{5} + 24 x^{4} - 20 x^{3} + 64 x^{2} - 32 x + 8\)
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 920)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 369.8
Root \(1.23362 - 1.23362i\) of defining polynomial
Character \(\chi\) \(=\) 1840.369
Dual form 1840.2.e.g.369.7

$q$-expansion

\(f(q)\) \(=\) \(q+0.189375i q^{3} +(-1.60280 + 1.55918i) q^{5} +1.65661i q^{7} +2.96414 q^{9} +O(q^{10})\) \(q+0.189375i q^{3} +(-1.60280 + 1.55918i) q^{5} +1.65661i q^{7} +2.96414 q^{9} -0.0759321 q^{11} +1.24146i q^{13} +(-0.295270 - 0.303531i) q^{15} +5.17593i q^{17} +0.792262 q^{19} -0.313721 q^{21} -1.00000i q^{23} +(0.137925 - 4.99810i) q^{25} +1.12946i q^{27} +2.85401 q^{29} -8.90112 q^{31} -0.0143797i q^{33} +(-2.58295 - 2.65521i) q^{35} +6.92065i q^{37} -0.235102 q^{39} +4.64279 q^{41} -1.75255i q^{43} +(-4.75091 + 4.62162i) q^{45} -10.0033i q^{47} +4.25565 q^{49} -0.980193 q^{51} +11.1284i q^{53} +(0.121704 - 0.118392i) q^{55} +0.150035i q^{57} -12.4581 q^{59} -12.0098 q^{61} +4.91041i q^{63} +(-1.93566 - 1.98981i) q^{65} +6.96067i q^{67} +0.189375 q^{69} +7.71650 q^{71} +7.49476i q^{73} +(0.946517 + 0.0261196i) q^{75} -0.125790i q^{77} -15.6615 q^{79} +8.67852 q^{81} +6.68518i q^{83} +(-8.07019 - 8.29597i) q^{85} +0.540478i q^{87} +3.03333 q^{89} -2.05661 q^{91} -1.68565i q^{93} +(-1.26984 + 1.23528i) q^{95} -3.21747i q^{97} -0.225073 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 14q + 2q^{5} - 4q^{9} + O(q^{10}) \) \( 14q + 2q^{5} - 4q^{9} + 14q^{11} + 6q^{15} - 14q^{19} - 12q^{21} - 14q^{25} + 22q^{29} + 20q^{31} + 2q^{35} - 48q^{39} - 32q^{41} - 26q^{45} + 34q^{49} + 14q^{51} + 38q^{55} - 22q^{59} + 10q^{61} - 38q^{65} + 6q^{69} + 28q^{71} + 24q^{75} - 64q^{79} - 10q^{81} - 50q^{85} + 48q^{89} + 14q^{91} + 30q^{95} - 122q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1840\mathbb{Z}\right)^\times\).

\(n\) \(737\) \(1151\) \(1201\) \(1381\)
\(\chi(n)\) \(-1\) \(1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
<
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.189375i 0.109336i 0.998505 + 0.0546680i \(0.0174100\pi\)
−0.998505 + 0.0546680i \(0.982590\pi\)
\(4\) 0 0
\(5\) −1.60280 + 1.55918i −0.716793 + 0.697286i
\(6\) 0 0
\(7\) 1.65661i 0.626139i 0.949730 + 0.313070i \(0.101357\pi\)
−0.949730 + 0.313070i \(0.898643\pi\)
\(8\) 0 0
\(9\) 2.96414 0.988046
\(10\) 0 0
\(11\) −0.0759321 −0.0228944 −0.0114472 0.999934i \(-0.503644\pi\)
−0.0114472 + 0.999934i \(0.503644\pi\)
\(12\) 0 0
\(13\) 1.24146i 0.344319i 0.985069 + 0.172159i \(0.0550744\pi\)
−0.985069 + 0.172159i \(0.944926\pi\)
\(14\) 0 0
\(15\) −0.295270 0.303531i −0.0762384 0.0783713i
\(16\) 0 0
\(17\) 5.17593i 1.25535i 0.778477 + 0.627673i \(0.215993\pi\)
−0.778477 + 0.627673i \(0.784007\pi\)
\(18\) 0 0
\(19\) 0.792262 0.181757 0.0908787 0.995862i \(-0.471032\pi\)
0.0908787 + 0.995862i \(0.471032\pi\)
\(20\) 0 0
\(21\) −0.313721 −0.0684595
\(22\) 0 0
\(23\) 1.00000i 0.208514i
\(24\) 0 0
\(25\) 0.137925 4.99810i 0.0275850 0.999619i
\(26\) 0 0
\(27\) 1.12946i 0.217365i
\(28\) 0 0
\(29\) 2.85401 0.529976 0.264988 0.964252i \(-0.414632\pi\)
0.264988 + 0.964252i \(0.414632\pi\)
\(30\) 0 0
\(31\) −8.90112 −1.59869 −0.799345 0.600873i \(-0.794820\pi\)
−0.799345 + 0.600873i \(0.794820\pi\)
\(32\) 0 0
\(33\) 0.0143797i 0.00250318i
\(34\) 0 0
\(35\) −2.58295 2.65521i −0.436598 0.448812i
\(36\) 0 0
\(37\) 6.92065i 1.13775i 0.822425 + 0.568874i \(0.192621\pi\)
−0.822425 + 0.568874i \(0.807379\pi\)
\(38\) 0 0
\(39\) −0.235102 −0.0376464
\(40\) 0 0
\(41\) 4.64279 0.725082 0.362541 0.931968i \(-0.381909\pi\)
0.362541 + 0.931968i \(0.381909\pi\)
\(42\) 0 0
\(43\) 1.75255i 0.267262i −0.991031 0.133631i \(-0.957336\pi\)
0.991031 0.133631i \(-0.0426636\pi\)
\(44\) 0 0
\(45\) −4.75091 + 4.62162i −0.708224 + 0.688950i
\(46\) 0 0
\(47\) 10.0033i 1.45913i −0.683914 0.729563i \(-0.739724\pi\)
0.683914 0.729563i \(-0.260276\pi\)
\(48\) 0 0
\(49\) 4.25565 0.607950
\(50\) 0 0
\(51\) −0.980193 −0.137254
\(52\) 0 0
\(53\) 11.1284i 1.52860i 0.644859 + 0.764301i \(0.276916\pi\)
−0.644859 + 0.764301i \(0.723084\pi\)
\(54\) 0 0
\(55\) 0.121704 0.118392i 0.0164105 0.0159639i
\(56\) 0 0
\(57\) 0.150035i 0.0198726i
\(58\) 0 0
\(59\) −12.4581 −1.62191 −0.810955 0.585108i \(-0.801052\pi\)
−0.810955 + 0.585108i \(0.801052\pi\)
\(60\) 0 0
\(61\) −12.0098 −1.53770 −0.768849 0.639430i \(-0.779170\pi\)
−0.768849 + 0.639430i \(0.779170\pi\)
\(62\) 0 0
\(63\) 4.91041i 0.618654i
\(64\) 0 0
\(65\) −1.93566 1.98981i −0.240089 0.246806i
\(66\) 0 0
\(67\) 6.96067i 0.850381i 0.905104 + 0.425191i \(0.139793\pi\)
−0.905104 + 0.425191i \(0.860207\pi\)
\(68\) 0 0
\(69\) 0.189375 0.0227981
\(70\) 0 0
\(71\) 7.71650 0.915779 0.457890 0.889009i \(-0.348605\pi\)
0.457890 + 0.889009i \(0.348605\pi\)
\(72\) 0 0
\(73\) 7.49476i 0.877196i 0.898683 + 0.438598i \(0.144525\pi\)
−0.898683 + 0.438598i \(0.855475\pi\)
\(74\) 0 0
\(75\) 0.946517 + 0.0261196i 0.109294 + 0.00301604i
\(76\) 0 0
\(77\) 0.125790i 0.0143351i
\(78\) 0 0
\(79\) −15.6615 −1.76206 −0.881029 0.473063i \(-0.843148\pi\)
−0.881029 + 0.473063i \(0.843148\pi\)
\(80\) 0 0
\(81\) 8.67852 0.964280
\(82\) 0 0
\(83\) 6.68518i 0.733793i 0.930262 + 0.366897i \(0.119580\pi\)
−0.930262 + 0.366897i \(0.880420\pi\)
\(84\) 0 0
\(85\) −8.07019 8.29597i −0.875335 0.899824i
\(86\) 0 0
\(87\) 0.540478i 0.0579454i
\(88\) 0 0
\(89\) 3.03333 0.321532 0.160766 0.986993i \(-0.448604\pi\)
0.160766 + 0.986993i \(0.448604\pi\)
\(90\) 0 0
\(91\) −2.05661 −0.215592
\(92\) 0 0
\(93\) 1.68565i 0.174794i
\(94\) 0 0
\(95\) −1.26984 + 1.23528i −0.130282 + 0.126737i
\(96\) 0 0
\(97\) 3.21747i 0.326684i −0.986569 0.163342i \(-0.947773\pi\)
0.986569 0.163342i \(-0.0522275\pi\)
\(98\) 0 0
\(99\) −0.225073 −0.0226207
\(100\) 0 0
\(101\) −16.6059 −1.65235 −0.826173 0.563417i \(-0.809486\pi\)
−0.826173 + 0.563417i \(0.809486\pi\)
\(102\) 0 0
\(103\) 7.30241i 0.719528i 0.933043 + 0.359764i \(0.117143\pi\)
−0.933043 + 0.359764i \(0.882857\pi\)
\(104\) 0 0
\(105\) 0.502831 0.489147i 0.0490713 0.0477358i
\(106\) 0 0
\(107\) 0.356936i 0.0345063i −0.999851 0.0172532i \(-0.994508\pi\)
0.999851 0.0172532i \(-0.00549213\pi\)
\(108\) 0 0
\(109\) −14.0359 −1.34440 −0.672198 0.740371i \(-0.734650\pi\)
−0.672198 + 0.740371i \(0.734650\pi\)
\(110\) 0 0
\(111\) −1.31060 −0.124397
\(112\) 0 0
\(113\) 1.17924i 0.110933i −0.998461 0.0554667i \(-0.982335\pi\)
0.998461 0.0554667i \(-0.0176647\pi\)
\(114\) 0 0
\(115\) 1.55918 + 1.60280i 0.145394 + 0.149462i
\(116\) 0 0
\(117\) 3.67986i 0.340203i
\(118\) 0 0
\(119\) −8.57448 −0.786022
\(120\) 0 0
\(121\) −10.9942 −0.999476
\(122\) 0 0
\(123\) 0.879230i 0.0792775i
\(124\) 0 0
\(125\) 7.57186 + 8.22599i 0.677248 + 0.735755i
\(126\) 0 0
\(127\) 19.0097i 1.68684i 0.537255 + 0.843420i \(0.319461\pi\)
−0.537255 + 0.843420i \(0.680539\pi\)
\(128\) 0 0
\(129\) 0.331890 0.0292213
\(130\) 0 0
\(131\) −4.29043 −0.374857 −0.187428 0.982278i \(-0.560015\pi\)
−0.187428 + 0.982278i \(0.560015\pi\)
\(132\) 0 0
\(133\) 1.31247i 0.113805i
\(134\) 0 0
\(135\) −1.76103 1.81030i −0.151565 0.155806i
\(136\) 0 0
\(137\) 12.2499i 1.04658i −0.852155 0.523290i \(-0.824704\pi\)
0.852155 0.523290i \(-0.175296\pi\)
\(138\) 0 0
\(139\) 2.61437 0.221748 0.110874 0.993834i \(-0.464635\pi\)
0.110874 + 0.993834i \(0.464635\pi\)
\(140\) 0 0
\(141\) 1.89437 0.159535
\(142\) 0 0
\(143\) 0.0942666i 0.00788297i
\(144\) 0 0
\(145\) −4.57440 + 4.44990i −0.379883 + 0.369544i
\(146\) 0 0
\(147\) 0.805915i 0.0664707i
\(148\) 0 0
\(149\) 19.0404 1.55985 0.779927 0.625870i \(-0.215256\pi\)
0.779927 + 0.625870i \(0.215256\pi\)
\(150\) 0 0
\(151\) 18.3252 1.49128 0.745640 0.666349i \(-0.232144\pi\)
0.745640 + 0.666349i \(0.232144\pi\)
\(152\) 0 0
\(153\) 15.3422i 1.24034i
\(154\) 0 0
\(155\) 14.2667 13.8784i 1.14593 1.11474i
\(156\) 0 0
\(157\) 4.37467i 0.349137i −0.984645 0.174569i \(-0.944147\pi\)
0.984645 0.174569i \(-0.0558530\pi\)
\(158\) 0 0
\(159\) −2.10744 −0.167131
\(160\) 0 0
\(161\) 1.65661 0.130559
\(162\) 0 0
\(163\) 11.8050i 0.924639i 0.886714 + 0.462319i \(0.152983\pi\)
−0.886714 + 0.462319i \(0.847017\pi\)
\(164\) 0 0
\(165\) 0.0224205 + 0.0230477i 0.00174543 + 0.00179426i
\(166\) 0 0
\(167\) 5.19760i 0.402202i −0.979570 0.201101i \(-0.935548\pi\)
0.979570 0.201101i \(-0.0644520\pi\)
\(168\) 0 0
\(169\) 11.4588 0.881444
\(170\) 0 0
\(171\) 2.34837 0.179585
\(172\) 0 0
\(173\) 2.61834i 0.199069i 0.995034 + 0.0995345i \(0.0317354\pi\)
−0.995034 + 0.0995345i \(0.968265\pi\)
\(174\) 0 0
\(175\) 8.27989 + 0.228488i 0.625901 + 0.0172721i
\(176\) 0 0
\(177\) 2.35926i 0.177333i
\(178\) 0 0
\(179\) 0.627563 0.0469062 0.0234531 0.999725i \(-0.492534\pi\)
0.0234531 + 0.999725i \(0.492534\pi\)
\(180\) 0 0
\(181\) −6.15848 −0.457756 −0.228878 0.973455i \(-0.573506\pi\)
−0.228878 + 0.973455i \(0.573506\pi\)
\(182\) 0 0
\(183\) 2.27436i 0.168126i
\(184\) 0 0
\(185\) −10.7905 11.0924i −0.793335 0.815530i
\(186\) 0 0
\(187\) 0.393019i 0.0287404i
\(188\) 0 0
\(189\) −1.87107 −0.136101
\(190\) 0 0
\(191\) 19.1343 1.38451 0.692254 0.721654i \(-0.256618\pi\)
0.692254 + 0.721654i \(0.256618\pi\)
\(192\) 0 0
\(193\) 0.810900i 0.0583698i 0.999574 + 0.0291849i \(0.00929117\pi\)
−0.999574 + 0.0291849i \(0.990709\pi\)
\(194\) 0 0
\(195\) 0.376821 0.366566i 0.0269847 0.0262503i
\(196\) 0 0
\(197\) 6.15110i 0.438248i −0.975697 0.219124i \(-0.929680\pi\)
0.975697 0.219124i \(-0.0703199\pi\)
\(198\) 0 0
\(199\) 7.03061 0.498387 0.249193 0.968454i \(-0.419834\pi\)
0.249193 + 0.968454i \(0.419834\pi\)
\(200\) 0 0
\(201\) −1.31818 −0.0929772
\(202\) 0 0
\(203\) 4.72797i 0.331838i
\(204\) 0 0
\(205\) −7.44146 + 7.23894i −0.519734 + 0.505589i
\(206\) 0 0
\(207\) 2.96414i 0.206022i
\(208\) 0 0
\(209\) −0.0601581 −0.00416122
\(210\) 0 0
\(211\) −8.12120 −0.559086 −0.279543 0.960133i \(-0.590183\pi\)
−0.279543 + 0.960133i \(0.590183\pi\)
\(212\) 0 0
\(213\) 1.46131i 0.100128i
\(214\) 0 0
\(215\) 2.73254 + 2.80899i 0.186358 + 0.191571i
\(216\) 0 0
\(217\) 14.7457i 1.00100i
\(218\) 0 0
\(219\) −1.41932 −0.0959090
\(220\) 0 0
\(221\) −6.42570 −0.432240
\(222\) 0 0
\(223\) 2.86268i 0.191699i 0.995396 + 0.0958495i \(0.0305568\pi\)
−0.995396 + 0.0958495i \(0.969443\pi\)
\(224\) 0 0
\(225\) 0.408829 14.8150i 0.0272553 0.987670i
\(226\) 0 0
\(227\) 27.4500i 1.82192i −0.412496 0.910960i \(-0.635343\pi\)
0.412496 0.910960i \(-0.364657\pi\)
\(228\) 0 0
\(229\) −1.11319 −0.0735613 −0.0367807 0.999323i \(-0.511710\pi\)
−0.0367807 + 0.999323i \(0.511710\pi\)
\(230\) 0 0
\(231\) 0.0238215 0.00156734
\(232\) 0 0
\(233\) 21.2957i 1.39513i −0.716523 0.697564i \(-0.754267\pi\)
0.716523 0.697564i \(-0.245733\pi\)
\(234\) 0 0
\(235\) 15.5969 + 16.0332i 1.01743 + 1.04589i
\(236\) 0 0
\(237\) 2.96590i 0.192656i
\(238\) 0 0
\(239\) 7.68036 0.496801 0.248401 0.968657i \(-0.420095\pi\)
0.248401 + 0.968657i \(0.420095\pi\)
\(240\) 0 0
\(241\) 8.42476 0.542687 0.271343 0.962483i \(-0.412532\pi\)
0.271343 + 0.962483i \(0.412532\pi\)
\(242\) 0 0
\(243\) 5.03188i 0.322795i
\(244\) 0 0
\(245\) −6.82095 + 6.63531i −0.435774 + 0.423915i
\(246\) 0 0
\(247\) 0.983561i 0.0625825i
\(248\) 0 0
\(249\) −1.26601 −0.0802300
\(250\) 0 0
\(251\) 2.56210 0.161718 0.0808590 0.996726i \(-0.474234\pi\)
0.0808590 + 0.996726i \(0.474234\pi\)
\(252\) 0 0
\(253\) 0.0759321i 0.00477381i
\(254\) 0 0
\(255\) 1.57105 1.52830i 0.0983831 0.0957056i
\(256\) 0 0
\(257\) 4.39999i 0.274464i 0.990539 + 0.137232i \(0.0438206\pi\)
−0.990539 + 0.137232i \(0.956179\pi\)
\(258\) 0 0
\(259\) −11.4648 −0.712388
\(260\) 0 0
\(261\) 8.45966 0.523640
\(262\) 0 0
\(263\) 24.8510i 1.53238i 0.642613 + 0.766191i \(0.277850\pi\)
−0.642613 + 0.766191i \(0.722150\pi\)
\(264\) 0 0
\(265\) −17.3512 17.8366i −1.06587 1.09569i
\(266\) 0 0
\(267\) 0.574437i 0.0351550i
\(268\) 0 0
\(269\) 10.8742 0.663012 0.331506 0.943453i \(-0.392443\pi\)
0.331506 + 0.943453i \(0.392443\pi\)
\(270\) 0 0
\(271\) 2.60290 0.158115 0.0790575 0.996870i \(-0.474809\pi\)
0.0790575 + 0.996870i \(0.474809\pi\)
\(272\) 0 0
\(273\) 0.389472i 0.0235719i
\(274\) 0 0
\(275\) −0.0104729 + 0.379516i −0.000631542 + 0.0228857i
\(276\) 0 0
\(277\) 12.1918i 0.732537i −0.930509 0.366269i \(-0.880635\pi\)
0.930509 0.366269i \(-0.119365\pi\)
\(278\) 0 0
\(279\) −26.3842 −1.57958
\(280\) 0 0
\(281\) 5.85068 0.349022 0.174511 0.984655i \(-0.444165\pi\)
0.174511 + 0.984655i \(0.444165\pi\)
\(282\) 0 0
\(283\) 10.7223i 0.637375i 0.947860 + 0.318688i \(0.103242\pi\)
−0.947860 + 0.318688i \(0.896758\pi\)
\(284\) 0 0
\(285\) −0.233931 0.240476i −0.0138569 0.0142446i
\(286\) 0 0
\(287\) 7.69129i 0.454002i
\(288\) 0 0
\(289\) −9.79021 −0.575895
\(290\) 0 0
\(291\) 0.609309 0.0357183
\(292\) 0 0
\(293\) 2.72596i 0.159252i 0.996825 + 0.0796261i \(0.0253726\pi\)
−0.996825 + 0.0796261i \(0.974627\pi\)
\(294\) 0 0
\(295\) 19.9679 19.4245i 1.16257 1.13094i
\(296\) 0 0
\(297\) 0.0857623i 0.00497643i
\(298\) 0 0
\(299\) 1.24146 0.0717955
\(300\) 0 0
\(301\) 2.90329 0.167343
\(302\) 0 0
\(303\) 3.14474i 0.180661i
\(304\) 0 0
\(305\) 19.2493 18.7254i 1.10221 1.07222i
\(306\) 0 0
\(307\) 22.4979i 1.28402i −0.766695 0.642012i \(-0.778100\pi\)
0.766695 0.642012i \(-0.221900\pi\)
\(308\) 0 0
\(309\) −1.38290 −0.0786703
\(310\) 0 0
\(311\) −17.9597 −1.01840 −0.509200 0.860648i \(-0.670058\pi\)
−0.509200 + 0.860648i \(0.670058\pi\)
\(312\) 0 0
\(313\) 14.4728i 0.818052i 0.912523 + 0.409026i \(0.134131\pi\)
−0.912523 + 0.409026i \(0.865869\pi\)
\(314\) 0 0
\(315\) −7.65621 7.87040i −0.431379 0.443447i
\(316\) 0 0
\(317\) 7.47689i 0.419944i 0.977707 + 0.209972i \(0.0673373\pi\)
−0.977707 + 0.209972i \(0.932663\pi\)
\(318\) 0 0
\(319\) −0.216711 −0.0121335
\(320\) 0 0
\(321\) 0.0675949 0.00377278
\(322\) 0 0
\(323\) 4.10069i 0.228168i
\(324\) 0 0
\(325\) 6.20494 + 0.171229i 0.344188 + 0.00949805i
\(326\) 0 0
\(327\) 2.65806i 0.146991i
\(328\) 0 0
\(329\) 16.5715 0.913616
\(330\) 0 0
\(331\) 27.3565 1.50365 0.751826 0.659362i \(-0.229173\pi\)
0.751826 + 0.659362i \(0.229173\pi\)
\(332\) 0 0
\(333\) 20.5137i 1.12415i
\(334\) 0 0
\(335\) −10.8529 11.1565i −0.592959 0.609547i
\(336\) 0 0
\(337\) 5.65271i 0.307923i −0.988077 0.153961i \(-0.950797\pi\)
0.988077 0.153961i \(-0.0492032\pi\)
\(338\) 0 0
\(339\) 0.223319 0.0121290
\(340\) 0 0
\(341\) 0.675881 0.0366010
\(342\) 0 0
\(343\) 18.6462i 1.00680i
\(344\) 0 0
\(345\) −0.303531 + 0.295270i −0.0163415 + 0.0158968i
\(346\) 0 0
\(347\) 15.5293i 0.833658i 0.908985 + 0.416829i \(0.136859\pi\)
−0.908985 + 0.416829i \(0.863141\pi\)
\(348\) 0 0
\(349\) −11.0559 −0.591810 −0.295905 0.955217i \(-0.595621\pi\)
−0.295905 + 0.955217i \(0.595621\pi\)
\(350\) 0 0
\(351\) −1.40218 −0.0748428
\(352\) 0 0
\(353\) 6.85381i 0.364792i 0.983225 + 0.182396i \(0.0583852\pi\)
−0.983225 + 0.182396i \(0.941615\pi\)
\(354\) 0 0
\(355\) −12.3680 + 12.0314i −0.656425 + 0.638560i
\(356\) 0 0
\(357\) 1.62380i 0.0859404i
\(358\) 0 0
\(359\) 16.3104 0.860832 0.430416 0.902631i \(-0.358367\pi\)
0.430416 + 0.902631i \(0.358367\pi\)
\(360\) 0 0
\(361\) −18.3723 −0.966964
\(362\) 0 0
\(363\) 2.08204i 0.109279i
\(364\) 0 0
\(365\) −11.6857 12.0126i −0.611656 0.628768i
\(366\) 0 0
\(367\) 31.6200i 1.65055i −0.564731 0.825275i \(-0.691020\pi\)
0.564731 0.825275i \(-0.308980\pi\)
\(368\) 0 0
\(369\) 13.7619 0.716414
\(370\) 0 0
\(371\) −18.4354 −0.957118
\(372\) 0 0
\(373\) 28.2458i 1.46251i 0.682104 + 0.731256i \(0.261065\pi\)
−0.682104 + 0.731256i \(0.738935\pi\)
\(374\) 0 0
\(375\) −1.55780 + 1.43392i −0.0804445 + 0.0740475i
\(376\) 0 0
\(377\) 3.54313i 0.182481i
\(378\) 0 0
\(379\) 2.98772 0.153469 0.0767345 0.997052i \(-0.475551\pi\)
0.0767345 + 0.997052i \(0.475551\pi\)
\(380\) 0 0
\(381\) −3.59997 −0.184432
\(382\) 0 0
\(383\) 12.5176i 0.639621i −0.947482 0.319810i \(-0.896381\pi\)
0.947482 0.319810i \(-0.103619\pi\)
\(384\) 0 0
\(385\) 0.196129 + 0.201616i 0.00999564 + 0.0102753i
\(386\) 0 0
\(387\) 5.19480i 0.264067i
\(388\) 0 0
\(389\) 19.4861 0.987982 0.493991 0.869467i \(-0.335538\pi\)
0.493991 + 0.869467i \(0.335538\pi\)
\(390\) 0 0
\(391\) 5.17593 0.261758
\(392\) 0 0
\(393\) 0.812503i 0.0409853i
\(394\) 0 0
\(395\) 25.1022 24.4191i 1.26303 1.22866i
\(396\) 0 0
\(397\) 17.3203i 0.869281i −0.900604 0.434640i \(-0.856876\pi\)
0.900604 0.434640i \(-0.143124\pi\)
\(398\) 0 0
\(399\) −0.248549 −0.0124430
\(400\) 0 0
\(401\) 17.3727 0.867553 0.433777 0.901020i \(-0.357181\pi\)
0.433777 + 0.901020i \(0.357181\pi\)
\(402\) 0 0
\(403\) 11.0504i 0.550459i
\(404\) 0 0
\(405\) −13.9099 + 13.5314i −0.691189 + 0.672379i
\(406\) 0 0
\(407\) 0.525499i 0.0260480i
\(408\) 0 0
\(409\) 12.6874 0.627350 0.313675 0.949530i \(-0.398440\pi\)
0.313675 + 0.949530i \(0.398440\pi\)
\(410\) 0 0
\(411\) 2.31983 0.114429
\(412\) 0 0
\(413\) 20.6383i 1.01554i
\(414\) 0 0
\(415\) −10.4234 10.7150i −0.511664 0.525978i
\(416\) 0 0
\(417\) 0.495098i 0.0242450i
\(418\) 0 0
\(419\) −4.23468 −0.206878 −0.103439 0.994636i \(-0.532985\pi\)
−0.103439 + 0.994636i \(0.532985\pi\)
\(420\) 0 0
\(421\) 4.17837 0.203641 0.101821 0.994803i \(-0.467533\pi\)
0.101821 + 0.994803i \(0.467533\pi\)
\(422\) 0 0
\(423\) 29.6510i 1.44168i
\(424\) 0 0
\(425\) 25.8698 + 0.713891i 1.25487 + 0.0346288i
\(426\) 0 0
\(427\) 19.8956i 0.962813i
\(428\) 0 0
\(429\) 0.0178518 0.000861892
\(430\) 0 0
\(431\) 21.9197 1.05583 0.527917 0.849296i \(-0.322973\pi\)
0.527917 + 0.849296i \(0.322973\pi\)
\(432\) 0 0
\(433\) 20.2195i 0.971688i −0.874046 0.485844i \(-0.838512\pi\)
0.874046 0.485844i \(-0.161488\pi\)
\(434\) 0 0
\(435\) −0.842702 0.866278i −0.0404045 0.0415348i
\(436\) 0 0
\(437\) 0.792262i 0.0378990i
\(438\) 0 0
\(439\) −16.3149 −0.778666 −0.389333 0.921097i \(-0.627294\pi\)
−0.389333 + 0.921097i \(0.627294\pi\)
\(440\) 0 0
\(441\) 12.6143 0.600682
\(442\) 0 0
\(443\) 28.0868i 1.33444i −0.744859 0.667222i \(-0.767483\pi\)
0.744859 0.667222i \(-0.232517\pi\)
\(444\) 0 0
\(445\) −4.86181 + 4.72950i −0.230472 + 0.224200i
\(446\) 0 0
\(447\) 3.60579i 0.170548i
\(448\) 0 0
\(449\) 24.5071 1.15656 0.578282 0.815837i \(-0.303723\pi\)
0.578282 + 0.815837i \(0.303723\pi\)
\(450\) 0 0
\(451\) −0.352537 −0.0166003
\(452\) 0 0
\(453\) 3.47033i 0.163050i
\(454\) 0 0
\(455\) 3.29634 3.20663i 0.154535 0.150329i
\(456\) 0 0
\(457\) 2.87128i 0.134313i 0.997742 + 0.0671564i \(0.0213927\pi\)
−0.997742 + 0.0671564i \(0.978607\pi\)
\(458\) 0 0
\(459\) −5.84601 −0.272868
\(460\) 0 0
\(461\) 15.2264 0.709162 0.354581 0.935025i \(-0.384623\pi\)
0.354581 + 0.935025i \(0.384623\pi\)
\(462\) 0 0
\(463\) 36.6480i 1.70318i 0.524212 + 0.851588i \(0.324360\pi\)
−0.524212 + 0.851588i \(0.675640\pi\)
\(464\) 0 0
\(465\) 2.62824 + 2.70176i 0.121881 + 0.125291i
\(466\) 0 0
\(467\) 14.9765i 0.693031i 0.938044 + 0.346516i \(0.112635\pi\)
−0.938044 + 0.346516i \(0.887365\pi\)
\(468\) 0 0
\(469\) −11.5311 −0.532457
\(470\) 0 0
\(471\) 0.828456 0.0381732
\(472\) 0 0
\(473\) 0.133075i 0.00611879i
\(474\) 0 0
\(475\) 0.109273 3.95980i 0.00501378 0.181688i
\(476\) 0 0
\(477\) 32.9861i 1.51033i
\(478\) 0 0
\(479\) 4.03398 0.184317 0.0921587 0.995744i \(-0.470623\pi\)
0.0921587 + 0.995744i \(0.470623\pi\)
\(480\) 0 0
\(481\) −8.59171 −0.391748
\(482\) 0 0
\(483\) 0.313721i 0.0142748i
\(484\) 0 0
\(485\) 5.01661 + 5.15695i 0.227792 + 0.234165i
\(486\) 0 0
\(487\) 4.28846i 0.194329i 0.995268 + 0.0971643i \(0.0309772\pi\)
−0.995268 + 0.0971643i \(0.969023\pi\)
\(488\) 0 0
\(489\) −2.23558 −0.101096
\(490\) 0 0
\(491\) 36.8754 1.66416 0.832081 0.554654i \(-0.187149\pi\)
0.832081 + 0.554654i \(0.187149\pi\)
\(492\) 0 0
\(493\) 14.7721i 0.665303i
\(494\) 0 0
\(495\) 0.360747 0.350929i 0.0162144 0.0157731i
\(496\) 0 0
\(497\) 12.7832i 0.573405i
\(498\) 0 0
\(499\) −5.74707 −0.257274 −0.128637 0.991692i \(-0.541060\pi\)
−0.128637 + 0.991692i \(0.541060\pi\)
\(500\) 0 0
\(501\) 0.984298 0.0439752
\(502\) 0 0
\(503\) 18.7850i 0.837583i −0.908082 0.418792i \(-0.862454\pi\)
0.908082 0.418792i \(-0.137546\pi\)
\(504\) 0 0
\(505\) 26.6158 25.8915i 1.18439 1.15216i
\(506\) 0 0
\(507\) 2.17001i 0.0963735i
\(508\) 0 0
\(509\) 20.2669 0.898313 0.449157 0.893453i \(-0.351725\pi\)
0.449157 + 0.893453i \(0.351725\pi\)
\(510\) 0 0
\(511\) −12.4159 −0.549247
\(512\) 0 0
\(513\) 0.894829i 0.0395077i
\(514\) 0 0
\(515\) −11.3858 11.7043i −0.501717 0.515753i
\(516\) 0 0
\(517\) 0.759568i 0.0334058i
\(518\) 0 0
\(519\) −0.495850 −0.0217654
\(520\) 0 0
\(521\) 6.47593 0.283716 0.141858 0.989887i \(-0.454692\pi\)
0.141858 + 0.989887i \(0.454692\pi\)
\(522\) 0 0
\(523\) 0.414671i 0.0181323i −0.999959 0.00906615i \(-0.997114\pi\)
0.999959 0.00906615i \(-0.00288588\pi\)
\(524\) 0 0
\(525\) −0.0432700 + 1.56801i −0.00188846 + 0.0684335i
\(526\) 0 0
\(527\) 46.0716i 2.00691i
\(528\) 0 0
\(529\) −1.00000 −0.0434783
\(530\) 0 0
\(531\) −36.9276 −1.60252
\(532\) 0 0
\(533\) 5.76384i 0.249659i
\(534\) 0 0
\(535\) 0.556527 + 0.572097i 0.0240608 + 0.0247339i
\(536\) 0 0
\(537\) 0.118845i 0.00512854i
\(538\) 0 0
\(539\) −0.323140 −0.0139186
\(540\) 0 0
\(541\) 28.5708 1.22835 0.614177 0.789169i \(-0.289488\pi\)
0.614177 + 0.789169i \(0.289488\pi\)
\(542\) 0 0
\(543\) 1.16626i 0.0500492i
\(544\) 0 0
\(545\) 22.4967 21.8845i 0.963654 0.937428i
\(546\) 0 0
\(547\) 39.0974i 1.67168i 0.548971 + 0.835841i \(0.315020\pi\)
−0.548971 + 0.835841i \(0.684980\pi\)
\(548\) 0 0
\(549\) −35.5987 −1.51932
\(550\) 0 0
\(551\) 2.26112 0.0963270
\(552\) 0 0
\(553\) 25.9450i 1.10329i
\(554\) 0 0
\(555\) 2.10063 2.04346i 0.0891667 0.0867400i
\(556\) 0 0
\(557\) 33.9136i 1.43696i −0.695546 0.718482i \(-0.744837\pi\)
0.695546 0.718482i \(-0.255163\pi\)
\(558\) 0 0
\(559\) 2.17572 0.0920232
\(560\) 0 0
\(561\) 0.0744281 0.00314236
\(562\) 0 0
\(563\) 25.6390i 1.08056i 0.841486 + 0.540278i \(0.181681\pi\)
−0.841486 + 0.540278i \(0.818319\pi\)
\(564\) 0 0
\(565\) 1.83864 + 1.89008i 0.0773523 + 0.0795163i
\(566\) 0 0
\(567\) 14.3769i 0.603773i
\(568\) 0 0
\(569\) 13.6257 0.571218 0.285609 0.958346i \(-0.407804\pi\)
0.285609 + 0.958346i \(0.407804\pi\)
\(570\) 0 0
\(571\) −0.354294 −0.0148267 −0.00741337 0.999973i \(-0.502360\pi\)
−0.00741337 + 0.999973i \(0.502360\pi\)
\(572\) 0 0
\(573\) 3.62356i 0.151376i
\(574\) 0 0
\(575\) −4.99810 0.137925i −0.208435 0.00575188i
\(576\) 0 0
\(577\) 18.5870i 0.773788i −0.922124 0.386894i \(-0.873548\pi\)
0.922124 0.386894i \(-0.126452\pi\)
\(578\) 0 0
\(579\) −0.153564 −0.00638192
\(580\) 0 0
\(581\) −11.0747 −0.459457
\(582\) 0 0
\(583\) 0.845002i 0.0349964i
\(584\) 0 0
\(585\) −5.73755 5.89807i −0.237219 0.243855i
\(586\) 0 0
\(587\) 7.75193i 0.319956i −0.987121 0.159978i \(-0.948858\pi\)
0.987121 0.159978i \(-0.0511424\pi\)
\(588\) 0 0
\(589\) −7.05202 −0.290573
\(590\) 0 0
\(591\) 1.16487 0.0479162
\(592\) 0 0
\(593\) 23.3828i 0.960215i 0.877210 + 0.480107i \(0.159402\pi\)
−0.877210 + 0.480107i \(0.840598\pi\)
\(594\) 0 0
\(595\) 13.7432 13.3692i 0.563415 0.548082i
\(596\) 0 0
\(597\) 1.33142i 0.0544916i
\(598\) 0 0
\(599\) −25.6075 −1.04629 −0.523146 0.852243i \(-0.675242\pi\)
−0.523146 + 0.852243i \(0.675242\pi\)
\(600\) 0 0
\(601\) 4.03750 0.164693 0.0823466 0.996604i \(-0.473759\pi\)
0.0823466 + 0.996604i \(0.473759\pi\)
\(602\) 0 0
\(603\) 20.6324i 0.840215i
\(604\) 0 0
\(605\) 17.6215 17.1420i 0.716418 0.696920i
\(606\) 0 0
\(607\) 45.8176i 1.85968i −0.367967 0.929839i \(-0.619946\pi\)
0.367967 0.929839i \(-0.380054\pi\)
\(608\) 0 0
\(609\) −0.895361 −0.0362819
\(610\) 0 0
\(611\) 12.4186 0.502405
\(612\) 0 0
\(613\) 29.1714i 1.17822i 0.808052 + 0.589112i \(0.200522\pi\)
−0.808052 + 0.589112i \(0.799478\pi\)
\(614\) 0 0
\(615\) −1.37088 1.40923i −0.0552791 0.0568256i
\(616\) 0 0
\(617\) 17.0562i 0.686659i 0.939215 + 0.343329i \(0.111555\pi\)
−0.939215 + 0.343329i \(0.888445\pi\)
\(618\) 0 0
\(619\) 36.0620 1.44946 0.724728 0.689035i \(-0.241966\pi\)
0.724728 + 0.689035i \(0.241966\pi\)
\(620\) 0 0
\(621\) 1.12946 0.0453237
\(622\) 0 0
\(623\) 5.02503i 0.201324i
\(624\) 0 0
\(625\) −24.9620 1.37873i −0.998478 0.0551491i
\(626\) 0 0
\(627\) 0.0113925i 0.000454971i
\(628\) 0 0
\(629\) −35.8208 −1.42827
\(630\) 0 0
\(631\) −17.4958 −0.696496 −0.348248 0.937402i \(-0.613223\pi\)
−0.348248 + 0.937402i \(0.613223\pi\)
\(632\) 0 0
\(633\) 1.53795i 0.0611282i
\(634\) 0 0
\(635\) −29.6395 30.4687i −1.17621 1.20911i
\(636\) 0 0
\(637\) 5.28322i 0.209329i
\(638\) 0 0
\(639\) 22.8727 0.904832
\(640\) 0 0
\(641\) −39.9200 −1.57675 −0.788373 0.615197i \(-0.789076\pi\)
−0.788373 + 0.615197i \(0.789076\pi\)
\(642\) 0 0
\(643\) 41.8187i 1.64917i 0.565740 + 0.824584i \(0.308591\pi\)
−0.565740 + 0.824584i \(0.691409\pi\)
\(644\) 0 0
\(645\) −0.531953 + 0.517476i −0.0209456 + 0.0203756i
\(646\) 0 0
\(647\) 38.8026i 1.52549i 0.646702 + 0.762743i \(0.276148\pi\)
−0.646702 + 0.762743i \(0.723852\pi\)
\(648\) 0 0
\(649\) 0.945972 0.0371327
\(650\) 0 0
\(651\) 2.79247 0.109445
\(652\) 0 0
\(653\) 39.8995i 1.56139i 0.624914 + 0.780694i \(0.285134\pi\)
−0.624914 + 0.780694i \(0.714866\pi\)
\(654\) 0 0
\(655\) 6.87670 6.68955i 0.268695 0.261382i
\(656\) 0 0
\(657\) 22.2155i 0.866709i
\(658\) 0 0
\(659\) 22.9449 0.893808 0.446904 0.894582i \(-0.352527\pi\)
0.446904 + 0.894582i \(0.352527\pi\)
\(660\) 0 0
\(661\) 19.2759 0.749745 0.374873 0.927076i \(-0.377686\pi\)
0.374873 + 0.927076i \(0.377686\pi\)
\(662\) 0 0
\(663\) 1.21687i 0.0472593i
\(664\) 0 0
\(665\) −2.04637 2.10362i −0.0793549 0.0815749i
\(666\) 0 0
\(667\) 2.85401i 0.110508i
\(668\) 0 0
\(669\) −0.542121 −0.0209596
\(670\) 0 0
\(671\) 0.911930 0.0352047
\(672\) 0 0
\(673\) 38.0041i 1.46495i −0.680793 0.732476i \(-0.738365\pi\)
0.680793 0.732476i \(-0.261635\pi\)
\(674\) 0 0
\(675\) 5.64515 + 0.155781i 0.217282 + 0.00599602i
\(676\) 0 0
\(677\) 41.0387i 1.57725i −0.614878 0.788623i \(-0.710795\pi\)
0.614878 0.788623i \(-0.289205\pi\)
\(678\) 0 0
\(679\) 5.33008 0.204550
\(680\) 0 0
\(681\) 5.19835 0.199201
\(682\) 0 0
\(683\) 27.6705i 1.05878i −0.848378 0.529390i \(-0.822421\pi\)
0.848378 0.529390i \(-0.177579\pi\)
\(684\) 0 0
\(685\) 19.0998 + 19.6341i 0.729765 + 0.750181i
\(686\) 0 0
\(687\) 0.210810i 0.00804290i
\(688\) 0 0
\(689\) −13.8155 −0.526327
\(690\) 0 0
\(691\) −33.8078 −1.28611 −0.643056 0.765820i \(-0.722334\pi\)
−0.643056 + 0.765820i \(0.722334\pi\)
\(692\) 0 0
\(693\) 0.372858i 0.0141637i
\(694\) 0 0
\(695\) −4.19031 + 4.07627i −0.158948 + 0.154622i
\(696\) 0 0
\(697\) 24.0307i 0.910229i
\(698\) 0 0
\(699\) 4.03288 0.152538
\(700\) 0 0
\(701\) −46.4878 −1.75582 −0.877909 0.478827i \(-0.841062\pi\)
−0.877909 + 0.478827i \(0.841062\pi\)
\(702\) 0 0
\(703\) 5.48297i 0.206794i
\(704\) 0 0
\(705\) −3.03630 + 2.95366i −0.114353 + 0.111241i
\(706\) 0 0
\(707\) 27.5094i 1.03460i
\(708\) 0 0
\(709\) 13.5298 0.508122 0.254061 0.967188i \(-0.418234\pi\)
0.254061 + 0.967188i \(0.418234\pi\)
\(710\) 0 0
\(711\) −46.4229 −1.74099
\(712\) 0 0
\(713\) 8.90112i 0.333350i
\(714\) 0 0
\(715\) 0.146979 + 0.151090i 0.00549668 + 0.00565046i
\(716\) 0 0
\(717\) 1.45447i 0.0543182i
\(718\) 0 0
\(719\) −2.64955 −0.0988115 −0.0494057 0.998779i \(-0.515733\pi\)
−0.0494057 + 0.998779i \(0.515733\pi\)
\(720\) 0 0
\(721\) −12.0972 −0.450525
\(722\) 0 0
\(723\) 1.59544i 0.0593351i
\(724\) 0 0
\(725\) 0.393639 14.2646i 0.0146194 0.529774i
\(726\) 0 0
\(727\) 46.8796i 1.73867i 0.494226 + 0.869334i \(0.335452\pi\)
−0.494226 + 0.869334i \(0.664548\pi\)
\(728\) 0 0
\(729\) 25.0826 0.928987
\(730\) 0 0
\(731\) 9.07108 0.335506
\(732\) 0 0
\(733\) 36.1389i 1.33482i 0.744691 + 0.667410i \(0.232597\pi\)
−0.744691 + 0.667410i \(0.767403\pi\)
\(734\) 0 0
\(735\) −1.25657 1.29172i −0.0463491 0.0476458i
\(736\) 0 0
\(737\) 0.528538i 0.0194690i
\(738\) 0 0
\(739\) 22.6473 0.833095 0.416547 0.909114i \(-0.363240\pi\)
0.416547 + 0.909114i \(0.363240\pi\)
\(740\) 0 0
\(741\) −0.186262 −0.00684252
\(742\) 0 0
\(743\) 7.04015i 0.258278i −0.991627 0.129139i \(-0.958779\pi\)
0.991627 0.129139i \(-0.0412213\pi\)
\(744\) 0 0
\(745\) −30.5180 + 29.6875i −1.11809 + 1.08766i
\(746\) 0 0
\(747\) 19.8158i 0.725021i
\(748\) 0 0
\(749\) 0.591304 0.0216058
\(750\) 0 0
\(751\) 5.94539 0.216950 0.108475 0.994099i \(-0.465403\pi\)
0.108475 + 0.994099i \(0.465403\pi\)
\(752\) 0 0
\(753\) 0.485198i 0.0176816i
\(754\) 0 0
\(755\) −29.3715 + 28.5722i −1.06894 + 1.03985i
\(756\) 0 0
\(757\) 43.9519i 1.59746i −0.601691 0.798729i \(-0.705506\pi\)
0.601691 0.798729i \(-0.294494\pi\)
\(758\) 0 0
\(759\) −0.0143797 −0.000521949
\(760\) 0 0
\(761\) 22.0290 0.798549 0.399274 0.916831i \(-0.369262\pi\)
0.399274 + 0.916831i \(0.369262\pi\)
\(762\) 0 0
\(763\) 23.2520i 0.841779i
\(764\) 0 0
\(765\) −23.9212 24.5904i −0.864871 0.889067i
\(766\) 0 0
\(767\) 15.4663i 0.558455i
\(768\) 0 0
\(769\) 17.6958 0.638128 0.319064 0.947733i \(-0.396632\pi\)
0.319064 + 0.947733i \(0.396632\pi\)
\(770\) 0 0
\(771\) −0.833250 −0.0300088
\(772\) 0 0
\(773\) 1.63758i 0.0588997i 0.999566 + 0.0294498i \(0.00937553\pi\)
−0.999566 + 0.0294498i \(0.990624\pi\)
\(774\) 0 0
\(775\) −1.22769 + 44.4887i −0.0440999 + 1.59808i
\(776\) 0 0
\(777\) 2.17115i 0.0778896i
\(778\) 0 0
\(779\) 3.67831 0.131789
\(780\) 0 0
\(781\) −0.585930 −0.0209662
\(782\) 0 0
\(783\) 3.22349i 0.115198i
\(784\) 0 0
\(785\) 6.82090 + 7.01172i 0.243448 + 0.250259i
\(786\) 0 0
\(787\) 27.6760i 0.986543i 0.869875 + 0.493272i \(0.164199\pi\)
−0.869875 + 0.493272i \(0.835801\pi\)
\(788\) 0 0
\(789\) −4.70618 −0.167544
\(790\) 0 0
\(791\) 1.95354 0.0694598
\(792\) 0 0
\(793\) 14.9097i 0.529459i
\(794\) 0 0
\(795\) 3.37781 3.28588i 0.119799 0.116538i
\(796\) 0 0
\(797\) 9.29831i 0.329363i 0.986347 + 0.164681i \(0.0526596\pi\)
−0.986347 + 0.164681i \(0.947340\pi\)
\(798\) 0 0
\(799\) 51.7761 1.83171
\(800\) 0 0
\(801\) 8.99119 0.317688
\(802\) 0 0
\(803\) 0.569093i 0.0200829i