Properties

Label 1840.2.e.g.369.10
Level $1840$
Weight $2$
Character 1840.369
Analytic conductor $14.692$
Analytic rank $0$
Dimension $14$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 1840 = 2^{4} \cdot 5 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1840.e (of order \(2\), degree \(1\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(14.6924739719\)
Analytic rank: \(0\)
Dimension: \(14\)
Coefficient field: \(\mathbb{Q}[x]/(x^{14} - \cdots)\)
Defining polynomial: \(x^{14} - 2 x^{11} + 39 x^{10} - 10 x^{9} + 2 x^{8} - 26 x^{7} + 297 x^{6} - 116 x^{5} + 24 x^{4} - 20 x^{3} + 64 x^{2} - 32 x + 8\)
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 920)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 369.10
Root \(0.416087 + 0.416087i\) of defining polynomial
Character \(\chi\) \(=\) 1840.369
Dual form 1840.2.e.g.369.5

$q$-expansion

\(f(q)\) \(=\) \(q+1.40334i q^{3} +(0.466981 - 2.18676i) q^{5} +1.57117i q^{7} +1.03063 q^{9} +O(q^{10})\) \(q+1.40334i q^{3} +(0.466981 - 2.18676i) q^{5} +1.57117i q^{7} +1.03063 q^{9} -4.35401 q^{11} +0.964590i q^{13} +(3.06878 + 0.655335i) q^{15} +0.300242i q^{17} -8.62443 q^{19} -2.20489 q^{21} +1.00000i q^{23} +(-4.56386 - 2.04235i) q^{25} +5.65635i q^{27} -4.76644 q^{29} +5.59148 q^{31} -6.11017i q^{33} +(3.43577 + 0.733706i) q^{35} +4.38462i q^{37} -1.35365 q^{39} -6.62014 q^{41} +1.72988i q^{43} +(0.481284 - 2.25374i) q^{45} -0.687333i q^{47} +4.53143 q^{49} -0.421342 q^{51} +8.05208i q^{53} +(-2.03324 + 9.52118i) q^{55} -12.1030i q^{57} +5.74620 q^{59} -13.6547 q^{61} +1.61929i q^{63} +(2.10933 + 0.450445i) q^{65} +6.49053i q^{67} -1.40334 q^{69} -9.89977 q^{71} +6.35994i q^{73} +(2.86612 - 6.40466i) q^{75} -6.84088i q^{77} -6.95266 q^{79} -4.84592 q^{81} +0.185320i q^{83} +(0.656557 + 0.140207i) q^{85} -6.68895i q^{87} +1.64878 q^{89} -1.51553 q^{91} +7.84676i q^{93} +(-4.02744 + 18.8596i) q^{95} +9.21689i q^{97} -4.48736 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 14q + 2q^{5} - 4q^{9} + O(q^{10}) \) \( 14q + 2q^{5} - 4q^{9} + 14q^{11} + 6q^{15} - 14q^{19} - 12q^{21} - 14q^{25} + 22q^{29} + 20q^{31} + 2q^{35} - 48q^{39} - 32q^{41} - 26q^{45} + 34q^{49} + 14q^{51} + 38q^{55} - 22q^{59} + 10q^{61} - 38q^{65} + 6q^{69} + 28q^{71} + 24q^{75} - 64q^{79} - 10q^{81} - 50q^{85} + 48q^{89} + 14q^{91} + 30q^{95} - 122q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1840\mathbb{Z}\right)^\times\).

\(n\) \(737\) \(1151\) \(1201\) \(1381\)
\(\chi(n)\) \(-1\) \(1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.40334i 0.810221i 0.914268 + 0.405110i \(0.132767\pi\)
−0.914268 + 0.405110i \(0.867233\pi\)
\(4\) 0 0
\(5\) 0.466981 2.18676i 0.208840 0.977950i
\(6\) 0 0
\(7\) 1.57117i 0.593846i 0.954901 + 0.296923i \(0.0959605\pi\)
−0.954901 + 0.296923i \(0.904040\pi\)
\(8\) 0 0
\(9\) 1.03063 0.343543
\(10\) 0 0
\(11\) −4.35401 −1.31278 −0.656391 0.754421i \(-0.727918\pi\)
−0.656391 + 0.754421i \(0.727918\pi\)
\(12\) 0 0
\(13\) 0.964590i 0.267529i 0.991013 + 0.133765i \(0.0427066\pi\)
−0.991013 + 0.133765i \(0.957293\pi\)
\(14\) 0 0
\(15\) 3.06878 + 0.655335i 0.792355 + 0.169207i
\(16\) 0 0
\(17\) 0.300242i 0.0728193i 0.999337 + 0.0364096i \(0.0115921\pi\)
−0.999337 + 0.0364096i \(0.988408\pi\)
\(18\) 0 0
\(19\) −8.62443 −1.97858 −0.989290 0.145963i \(-0.953372\pi\)
−0.989290 + 0.145963i \(0.953372\pi\)
\(20\) 0 0
\(21\) −2.20489 −0.481146
\(22\) 0 0
\(23\) 1.00000i 0.208514i
\(24\) 0 0
\(25\) −4.56386 2.04235i −0.912772 0.408471i
\(26\) 0 0
\(27\) 5.65635i 1.08857i
\(28\) 0 0
\(29\) −4.76644 −0.885106 −0.442553 0.896742i \(-0.645927\pi\)
−0.442553 + 0.896742i \(0.645927\pi\)
\(30\) 0 0
\(31\) 5.59148 1.00426 0.502129 0.864792i \(-0.332550\pi\)
0.502129 + 0.864792i \(0.332550\pi\)
\(32\) 0 0
\(33\) 6.11017i 1.06364i
\(34\) 0 0
\(35\) 3.43577 + 0.733706i 0.580752 + 0.124019i
\(36\) 0 0
\(37\) 4.38462i 0.720827i 0.932793 + 0.360413i \(0.117364\pi\)
−0.932793 + 0.360413i \(0.882636\pi\)
\(38\) 0 0
\(39\) −1.35365 −0.216758
\(40\) 0 0
\(41\) −6.62014 −1.03389 −0.516946 0.856018i \(-0.672931\pi\)
−0.516946 + 0.856018i \(0.672931\pi\)
\(42\) 0 0
\(43\) 1.72988i 0.263804i 0.991263 + 0.131902i \(0.0421085\pi\)
−0.991263 + 0.131902i \(0.957892\pi\)
\(44\) 0 0
\(45\) 0.481284 2.25374i 0.0717455 0.335967i
\(46\) 0 0
\(47\) 0.687333i 0.100258i −0.998743 0.0501289i \(-0.984037\pi\)
0.998743 0.0501289i \(-0.0159632\pi\)
\(48\) 0 0
\(49\) 4.53143 0.647347
\(50\) 0 0
\(51\) −0.421342 −0.0589997
\(52\) 0 0
\(53\) 8.05208i 1.10604i 0.833168 + 0.553019i \(0.186524\pi\)
−0.833168 + 0.553019i \(0.813476\pi\)
\(54\) 0 0
\(55\) −2.03324 + 9.52118i −0.274162 + 1.28384i
\(56\) 0 0
\(57\) 12.1030i 1.60309i
\(58\) 0 0
\(59\) 5.74620 0.748091 0.374046 0.927410i \(-0.377970\pi\)
0.374046 + 0.927410i \(0.377970\pi\)
\(60\) 0 0
\(61\) −13.6547 −1.74831 −0.874153 0.485651i \(-0.838583\pi\)
−0.874153 + 0.485651i \(0.838583\pi\)
\(62\) 0 0
\(63\) 1.61929i 0.204011i
\(64\) 0 0
\(65\) 2.10933 + 0.450445i 0.261630 + 0.0558708i
\(66\) 0 0
\(67\) 6.49053i 0.792945i 0.918047 + 0.396472i \(0.129766\pi\)
−0.918047 + 0.396472i \(0.870234\pi\)
\(68\) 0 0
\(69\) −1.40334 −0.168943
\(70\) 0 0
\(71\) −9.89977 −1.17489 −0.587443 0.809265i \(-0.699866\pi\)
−0.587443 + 0.809265i \(0.699866\pi\)
\(72\) 0 0
\(73\) 6.35994i 0.744375i 0.928158 + 0.372187i \(0.121392\pi\)
−0.928158 + 0.372187i \(0.878608\pi\)
\(74\) 0 0
\(75\) 2.86612 6.40466i 0.330951 0.739546i
\(76\) 0 0
\(77\) 6.84088i 0.779591i
\(78\) 0 0
\(79\) −6.95266 −0.782236 −0.391118 0.920341i \(-0.627912\pi\)
−0.391118 + 0.920341i \(0.627912\pi\)
\(80\) 0 0
\(81\) −4.84592 −0.538436
\(82\) 0 0
\(83\) 0.185320i 0.0203415i 0.999948 + 0.0101707i \(0.00323750\pi\)
−0.999948 + 0.0101707i \(0.996762\pi\)
\(84\) 0 0
\(85\) 0.656557 + 0.140207i 0.0712136 + 0.0152076i
\(86\) 0 0
\(87\) 6.68895i 0.717131i
\(88\) 0 0
\(89\) 1.64878 0.174770 0.0873852 0.996175i \(-0.472149\pi\)
0.0873852 + 0.996175i \(0.472149\pi\)
\(90\) 0 0
\(91\) −1.51553 −0.158871
\(92\) 0 0
\(93\) 7.84676i 0.813671i
\(94\) 0 0
\(95\) −4.02744 + 18.8596i −0.413207 + 1.93495i
\(96\) 0 0
\(97\) 9.21689i 0.935834i 0.883773 + 0.467917i \(0.154995\pi\)
−0.883773 + 0.467917i \(0.845005\pi\)
\(98\) 0 0
\(99\) −4.48736 −0.450997
\(100\) 0 0
\(101\) −0.719780 −0.0716208 −0.0358104 0.999359i \(-0.511401\pi\)
−0.0358104 + 0.999359i \(0.511401\pi\)
\(102\) 0 0
\(103\) 9.16137i 0.902696i −0.892348 0.451348i \(-0.850943\pi\)
0.892348 0.451348i \(-0.149057\pi\)
\(104\) 0 0
\(105\) −1.02964 + 4.82157i −0.100483 + 0.470537i
\(106\) 0 0
\(107\) 12.7486i 1.23245i −0.787570 0.616226i \(-0.788661\pi\)
0.787570 0.616226i \(-0.211339\pi\)
\(108\) 0 0
\(109\) 3.38019 0.323763 0.161882 0.986810i \(-0.448244\pi\)
0.161882 + 0.986810i \(0.448244\pi\)
\(110\) 0 0
\(111\) −6.15312 −0.584029
\(112\) 0 0
\(113\) 15.8547i 1.49148i −0.666237 0.745741i \(-0.732096\pi\)
0.666237 0.745741i \(-0.267904\pi\)
\(114\) 0 0
\(115\) 2.18676 + 0.466981i 0.203917 + 0.0435462i
\(116\) 0 0
\(117\) 0.994133i 0.0919076i
\(118\) 0 0
\(119\) −0.471730 −0.0432434
\(120\) 0 0
\(121\) 7.95739 0.723399
\(122\) 0 0
\(123\) 9.29032i 0.837680i
\(124\) 0 0
\(125\) −6.59737 + 9.02633i −0.590087 + 0.807340i
\(126\) 0 0
\(127\) 15.2222i 1.35075i 0.737473 + 0.675377i \(0.236019\pi\)
−0.737473 + 0.675377i \(0.763981\pi\)
\(128\) 0 0
\(129\) −2.42762 −0.213740
\(130\) 0 0
\(131\) 12.8695 1.12441 0.562207 0.826997i \(-0.309953\pi\)
0.562207 + 0.826997i \(0.309953\pi\)
\(132\) 0 0
\(133\) 13.5504i 1.17497i
\(134\) 0 0
\(135\) 12.3691 + 2.64141i 1.06456 + 0.227336i
\(136\) 0 0
\(137\) 16.7433i 1.43048i −0.698881 0.715238i \(-0.746318\pi\)
0.698881 0.715238i \(-0.253682\pi\)
\(138\) 0 0
\(139\) −11.8293 −1.00335 −0.501676 0.865056i \(-0.667283\pi\)
−0.501676 + 0.865056i \(0.667283\pi\)
\(140\) 0 0
\(141\) 0.964565 0.0812310
\(142\) 0 0
\(143\) 4.19983i 0.351208i
\(144\) 0 0
\(145\) −2.22584 + 10.4231i −0.184846 + 0.865589i
\(146\) 0 0
\(147\) 6.35915i 0.524494i
\(148\) 0 0
\(149\) −1.46021 −0.119625 −0.0598125 0.998210i \(-0.519050\pi\)
−0.0598125 + 0.998210i \(0.519050\pi\)
\(150\) 0 0
\(151\) −17.7897 −1.44771 −0.723854 0.689953i \(-0.757631\pi\)
−0.723854 + 0.689953i \(0.757631\pi\)
\(152\) 0 0
\(153\) 0.309437i 0.0250165i
\(154\) 0 0
\(155\) 2.61111 12.2272i 0.209730 0.982115i
\(156\) 0 0
\(157\) 20.0359i 1.59904i 0.600642 + 0.799518i \(0.294912\pi\)
−0.600642 + 0.799518i \(0.705088\pi\)
\(158\) 0 0
\(159\) −11.2998 −0.896135
\(160\) 0 0
\(161\) −1.57117 −0.123825
\(162\) 0 0
\(163\) 22.9076i 1.79426i −0.441766 0.897130i \(-0.645648\pi\)
0.441766 0.897130i \(-0.354352\pi\)
\(164\) 0 0
\(165\) −13.3615 2.85333i −1.04019 0.222132i
\(166\) 0 0
\(167\) 0.826887i 0.0639864i −0.999488 0.0319932i \(-0.989815\pi\)
0.999488 0.0319932i \(-0.0101855\pi\)
\(168\) 0 0
\(169\) 12.0696 0.928428
\(170\) 0 0
\(171\) −8.88858 −0.679727
\(172\) 0 0
\(173\) 8.03904i 0.611197i −0.952160 0.305599i \(-0.901143\pi\)
0.952160 0.305599i \(-0.0988565\pi\)
\(174\) 0 0
\(175\) 3.20888 7.17059i 0.242569 0.542046i
\(176\) 0 0
\(177\) 8.06389i 0.606119i
\(178\) 0 0
\(179\) −21.6941 −1.62149 −0.810747 0.585397i \(-0.800939\pi\)
−0.810747 + 0.585397i \(0.800939\pi\)
\(180\) 0 0
\(181\) −14.9499 −1.11122 −0.555609 0.831444i \(-0.687515\pi\)
−0.555609 + 0.831444i \(0.687515\pi\)
\(182\) 0 0
\(183\) 19.1622i 1.41651i
\(184\) 0 0
\(185\) 9.58812 + 2.04753i 0.704932 + 0.150538i
\(186\) 0 0
\(187\) 1.30725i 0.0955959i
\(188\) 0 0
\(189\) −8.88709 −0.646441
\(190\) 0 0
\(191\) 7.86406 0.569024 0.284512 0.958673i \(-0.408169\pi\)
0.284512 + 0.958673i \(0.408169\pi\)
\(192\) 0 0
\(193\) 15.1864i 1.09314i 0.837413 + 0.546571i \(0.184067\pi\)
−0.837413 + 0.546571i \(0.815933\pi\)
\(194\) 0 0
\(195\) −0.632129 + 2.96011i −0.0452677 + 0.211978i
\(196\) 0 0
\(197\) 12.2911i 0.875707i 0.899046 + 0.437853i \(0.144261\pi\)
−0.899046 + 0.437853i \(0.855739\pi\)
\(198\) 0 0
\(199\) −4.37123 −0.309869 −0.154934 0.987925i \(-0.549517\pi\)
−0.154934 + 0.987925i \(0.549517\pi\)
\(200\) 0 0
\(201\) −9.10845 −0.642460
\(202\) 0 0
\(203\) 7.48888i 0.525617i
\(204\) 0 0
\(205\) −3.09148 + 14.4767i −0.215918 + 1.01109i
\(206\) 0 0
\(207\) 1.03063i 0.0716336i
\(208\) 0 0
\(209\) 37.5508 2.59745
\(210\) 0 0
\(211\) 8.93960 0.615427 0.307714 0.951479i \(-0.400436\pi\)
0.307714 + 0.951479i \(0.400436\pi\)
\(212\) 0 0
\(213\) 13.8928i 0.951917i
\(214\) 0 0
\(215\) 3.78284 + 0.807822i 0.257987 + 0.0550930i
\(216\) 0 0
\(217\) 8.78516i 0.596375i
\(218\) 0 0
\(219\) −8.92518 −0.603108
\(220\) 0 0
\(221\) −0.289610 −0.0194813
\(222\) 0 0
\(223\) 11.9586i 0.800806i −0.916339 0.400403i \(-0.868870\pi\)
0.916339 0.400403i \(-0.131130\pi\)
\(224\) 0 0
\(225\) −4.70364 2.10491i −0.313576 0.140327i
\(226\) 0 0
\(227\) 1.85445i 0.123084i −0.998104 0.0615419i \(-0.980398\pi\)
0.998104 0.0615419i \(-0.0196018\pi\)
\(228\) 0 0
\(229\) 16.5190 1.09161 0.545804 0.837913i \(-0.316224\pi\)
0.545804 + 0.837913i \(0.316224\pi\)
\(230\) 0 0
\(231\) 9.60011 0.631641
\(232\) 0 0
\(233\) 24.5906i 1.61099i −0.592606 0.805493i \(-0.701901\pi\)
0.592606 0.805493i \(-0.298099\pi\)
\(234\) 0 0
\(235\) −1.50303 0.320972i −0.0980472 0.0209379i
\(236\) 0 0
\(237\) 9.75697i 0.633783i
\(238\) 0 0
\(239\) 27.1169 1.75405 0.877025 0.480446i \(-0.159525\pi\)
0.877025 + 0.480446i \(0.159525\pi\)
\(240\) 0 0
\(241\) −12.8855 −0.830030 −0.415015 0.909815i \(-0.636224\pi\)
−0.415015 + 0.909815i \(0.636224\pi\)
\(242\) 0 0
\(243\) 10.1686i 0.652314i
\(244\) 0 0
\(245\) 2.11609 9.90915i 0.135192 0.633073i
\(246\) 0 0
\(247\) 8.31904i 0.529328i
\(248\) 0 0
\(249\) −0.260067 −0.0164811
\(250\) 0 0
\(251\) 12.4610 0.786533 0.393267 0.919424i \(-0.371345\pi\)
0.393267 + 0.919424i \(0.371345\pi\)
\(252\) 0 0
\(253\) 4.35401i 0.273734i
\(254\) 0 0
\(255\) −0.196759 + 0.921374i −0.0123215 + 0.0576987i
\(256\) 0 0
\(257\) 13.5073i 0.842564i 0.906930 + 0.421282i \(0.138420\pi\)
−0.906930 + 0.421282i \(0.861580\pi\)
\(258\) 0 0
\(259\) −6.88898 −0.428060
\(260\) 0 0
\(261\) −4.91243 −0.304072
\(262\) 0 0
\(263\) 27.2579i 1.68080i 0.541969 + 0.840399i \(0.317679\pi\)
−0.541969 + 0.840399i \(0.682321\pi\)
\(264\) 0 0
\(265\) 17.6080 + 3.76017i 1.08165 + 0.230985i
\(266\) 0 0
\(267\) 2.31380i 0.141603i
\(268\) 0 0
\(269\) 17.8409 1.08778 0.543889 0.839157i \(-0.316951\pi\)
0.543889 + 0.839157i \(0.316951\pi\)
\(270\) 0 0
\(271\) −2.31906 −0.140873 −0.0704364 0.997516i \(-0.522439\pi\)
−0.0704364 + 0.997516i \(0.522439\pi\)
\(272\) 0 0
\(273\) 2.12681i 0.128721i
\(274\) 0 0
\(275\) 19.8711 + 8.89242i 1.19827 + 0.536233i
\(276\) 0 0
\(277\) 32.0762i 1.92727i 0.267215 + 0.963637i \(0.413897\pi\)
−0.267215 + 0.963637i \(0.586103\pi\)
\(278\) 0 0
\(279\) 5.76273 0.345006
\(280\) 0 0
\(281\) 12.9448 0.772221 0.386110 0.922453i \(-0.373818\pi\)
0.386110 + 0.922453i \(0.373818\pi\)
\(282\) 0 0
\(283\) 22.6070i 1.34385i −0.740621 0.671923i \(-0.765468\pi\)
0.740621 0.671923i \(-0.234532\pi\)
\(284\) 0 0
\(285\) −26.4665 5.65189i −1.56774 0.334789i
\(286\) 0 0
\(287\) 10.4014i 0.613972i
\(288\) 0 0
\(289\) 16.9099 0.994697
\(290\) 0 0
\(291\) −12.9345 −0.758232
\(292\) 0 0
\(293\) 5.61612i 0.328097i −0.986452 0.164049i \(-0.947545\pi\)
0.986452 0.164049i \(-0.0524554\pi\)
\(294\) 0 0
\(295\) 2.68336 12.5656i 0.156232 0.731596i
\(296\) 0 0
\(297\) 24.6278i 1.42905i
\(298\) 0 0
\(299\) −0.964590 −0.0557837
\(300\) 0 0
\(301\) −2.71794 −0.156659
\(302\) 0 0
\(303\) 1.01010i 0.0580286i
\(304\) 0 0
\(305\) −6.37649 + 29.8596i −0.365117 + 1.70976i
\(306\) 0 0
\(307\) 2.42467i 0.138383i −0.997603 0.0691915i \(-0.977958\pi\)
0.997603 0.0691915i \(-0.0220419\pi\)
\(308\) 0 0
\(309\) 12.8565 0.731383
\(310\) 0 0
\(311\) −3.57886 −0.202938 −0.101469 0.994839i \(-0.532354\pi\)
−0.101469 + 0.994839i \(0.532354\pi\)
\(312\) 0 0
\(313\) 5.51000i 0.311443i 0.987801 + 0.155722i \(0.0497703\pi\)
−0.987801 + 0.155722i \(0.950230\pi\)
\(314\) 0 0
\(315\) 3.54100 + 0.756178i 0.199513 + 0.0426058i
\(316\) 0 0
\(317\) 5.88368i 0.330461i 0.986255 + 0.165230i \(0.0528367\pi\)
−0.986255 + 0.165230i \(0.947163\pi\)
\(318\) 0 0
\(319\) 20.7531 1.16195
\(320\) 0 0
\(321\) 17.8906 0.998558
\(322\) 0 0
\(323\) 2.58941i 0.144079i
\(324\) 0 0
\(325\) 1.97003 4.40225i 0.109278 0.244193i
\(326\) 0 0
\(327\) 4.74356i 0.262320i
\(328\) 0 0
\(329\) 1.07992 0.0595377
\(330\) 0 0
\(331\) 18.6138 1.02311 0.511553 0.859252i \(-0.329070\pi\)
0.511553 + 0.859252i \(0.329070\pi\)
\(332\) 0 0
\(333\) 4.51891i 0.247635i
\(334\) 0 0
\(335\) 14.1933 + 3.03096i 0.775460 + 0.165599i
\(336\) 0 0
\(337\) 29.9571i 1.63187i 0.578146 + 0.815933i \(0.303776\pi\)
−0.578146 + 0.815933i \(0.696224\pi\)
\(338\) 0 0
\(339\) 22.2495 1.20843
\(340\) 0 0
\(341\) −24.3453 −1.31837
\(342\) 0 0
\(343\) 18.1178i 0.978270i
\(344\) 0 0
\(345\) −0.655335 + 3.06878i −0.0352820 + 0.165217i
\(346\) 0 0
\(347\) 26.7363i 1.43528i 0.696415 + 0.717640i \(0.254778\pi\)
−0.696415 + 0.717640i \(0.745222\pi\)
\(348\) 0 0
\(349\) −28.7392 −1.53837 −0.769186 0.639025i \(-0.779338\pi\)
−0.769186 + 0.639025i \(0.779338\pi\)
\(350\) 0 0
\(351\) −5.45606 −0.291223
\(352\) 0 0
\(353\) 0.662874i 0.0352812i 0.999844 + 0.0176406i \(0.00561547\pi\)
−0.999844 + 0.0176406i \(0.994385\pi\)
\(354\) 0 0
\(355\) −4.62300 + 21.6484i −0.245364 + 1.14898i
\(356\) 0 0
\(357\) 0.661999i 0.0350367i
\(358\) 0 0
\(359\) −16.0576 −0.847485 −0.423743 0.905783i \(-0.639284\pi\)
−0.423743 + 0.905783i \(0.639284\pi\)
\(360\) 0 0
\(361\) 55.3808 2.91478
\(362\) 0 0
\(363\) 11.1669i 0.586113i
\(364\) 0 0
\(365\) 13.9077 + 2.96997i 0.727961 + 0.155455i
\(366\) 0 0
\(367\) 27.5855i 1.43995i 0.693999 + 0.719976i \(0.255847\pi\)
−0.693999 + 0.719976i \(0.744153\pi\)
\(368\) 0 0
\(369\) −6.82290 −0.355186
\(370\) 0 0
\(371\) −12.6512 −0.656817
\(372\) 0 0
\(373\) 33.1014i 1.71393i −0.515376 0.856964i \(-0.672348\pi\)
0.515376 0.856964i \(-0.327652\pi\)
\(374\) 0 0
\(375\) −12.6670 9.25838i −0.654123 0.478101i
\(376\) 0 0
\(377\) 4.59766i 0.236791i
\(378\) 0 0
\(379\) 2.17121 0.111527 0.0557637 0.998444i \(-0.482241\pi\)
0.0557637 + 0.998444i \(0.482241\pi\)
\(380\) 0 0
\(381\) −21.3620 −1.09441
\(382\) 0 0
\(383\) 5.52673i 0.282403i 0.989981 + 0.141201i \(0.0450965\pi\)
−0.989981 + 0.141201i \(0.954903\pi\)
\(384\) 0 0
\(385\) −14.9594 3.19456i −0.762401 0.162810i
\(386\) 0 0
\(387\) 1.78286i 0.0906281i
\(388\) 0 0
\(389\) −17.1036 −0.867185 −0.433593 0.901109i \(-0.642754\pi\)
−0.433593 + 0.901109i \(0.642754\pi\)
\(390\) 0 0
\(391\) −0.300242 −0.0151839
\(392\) 0 0
\(393\) 18.0603i 0.911023i
\(394\) 0 0
\(395\) −3.24676 + 15.2038i −0.163362 + 0.764987i
\(396\) 0 0
\(397\) 12.7419i 0.639497i −0.947503 0.319748i \(-0.896402\pi\)
0.947503 0.319748i \(-0.103598\pi\)
\(398\) 0 0
\(399\) 19.0159 0.951987
\(400\) 0 0
\(401\) 14.1997 0.709098 0.354549 0.935038i \(-0.384634\pi\)
0.354549 + 0.935038i \(0.384634\pi\)
\(402\) 0 0
\(403\) 5.39348i 0.268668i
\(404\) 0 0
\(405\) −2.26295 + 10.5969i −0.112447 + 0.526563i
\(406\) 0 0
\(407\) 19.0907i 0.946289i
\(408\) 0 0
\(409\) 0.0235143 0.00116271 0.000581354 1.00000i \(-0.499815\pi\)
0.000581354 1.00000i \(0.499815\pi\)
\(410\) 0 0
\(411\) 23.4966 1.15900
\(412\) 0 0
\(413\) 9.02825i 0.444251i
\(414\) 0 0
\(415\) 0.405250 + 0.0865407i 0.0198929 + 0.00424812i
\(416\) 0 0
\(417\) 16.6006i 0.812936i
\(418\) 0 0
\(419\) −20.2763 −0.990562 −0.495281 0.868733i \(-0.664935\pi\)
−0.495281 + 0.868733i \(0.664935\pi\)
\(420\) 0 0
\(421\) 12.5320 0.610771 0.305386 0.952229i \(-0.401215\pi\)
0.305386 + 0.952229i \(0.401215\pi\)
\(422\) 0 0
\(423\) 0.708385i 0.0344429i
\(424\) 0 0
\(425\) 0.613199 1.37026i 0.0297445 0.0664673i
\(426\) 0 0
\(427\) 21.4539i 1.03822i
\(428\) 0 0
\(429\) 5.89380 0.284556
\(430\) 0 0
\(431\) 22.8635 1.10130 0.550648 0.834737i \(-0.314381\pi\)
0.550648 + 0.834737i \(0.314381\pi\)
\(432\) 0 0
\(433\) 23.7997i 1.14374i −0.820343 0.571871i \(-0.806218\pi\)
0.820343 0.571871i \(-0.193782\pi\)
\(434\) 0 0
\(435\) −14.6271 3.12361i −0.701318 0.149766i
\(436\) 0 0
\(437\) 8.62443i 0.412562i
\(438\) 0 0
\(439\) 4.66686 0.222737 0.111368 0.993779i \(-0.464477\pi\)
0.111368 + 0.993779i \(0.464477\pi\)
\(440\) 0 0
\(441\) 4.67022 0.222391
\(442\) 0 0
\(443\) 13.6616i 0.649082i 0.945872 + 0.324541i \(0.105210\pi\)
−0.945872 + 0.324541i \(0.894790\pi\)
\(444\) 0 0
\(445\) 0.769949 3.60549i 0.0364991 0.170917i
\(446\) 0 0
\(447\) 2.04917i 0.0969226i
\(448\) 0 0
\(449\) 25.8921 1.22192 0.610961 0.791661i \(-0.290783\pi\)
0.610961 + 0.791661i \(0.290783\pi\)
\(450\) 0 0
\(451\) 28.8241 1.35727
\(452\) 0 0
\(453\) 24.9651i 1.17296i
\(454\) 0 0
\(455\) −0.707725 + 3.31411i −0.0331787 + 0.155368i
\(456\) 0 0
\(457\) 12.6856i 0.593405i −0.954970 0.296703i \(-0.904113\pi\)
0.954970 0.296703i \(-0.0958870\pi\)
\(458\) 0 0
\(459\) −1.69827 −0.0792686
\(460\) 0 0
\(461\) 26.5769 1.23781 0.618904 0.785466i \(-0.287577\pi\)
0.618904 + 0.785466i \(0.287577\pi\)
\(462\) 0 0
\(463\) 14.6461i 0.680664i −0.940305 0.340332i \(-0.889461\pi\)
0.940305 0.340332i \(-0.110539\pi\)
\(464\) 0 0
\(465\) 17.1590 + 3.66429i 0.795730 + 0.169927i
\(466\) 0 0
\(467\) 12.7601i 0.590467i 0.955425 + 0.295233i \(0.0953974\pi\)
−0.955425 + 0.295233i \(0.904603\pi\)
\(468\) 0 0
\(469\) −10.1977 −0.470887
\(470\) 0 0
\(471\) −28.1172 −1.29557
\(472\) 0 0
\(473\) 7.53192i 0.346318i
\(474\) 0 0
\(475\) 39.3607 + 17.6141i 1.80599 + 0.808192i
\(476\) 0 0
\(477\) 8.29870i 0.379971i
\(478\) 0 0
\(479\) 10.2315 0.467488 0.233744 0.972298i \(-0.424902\pi\)
0.233744 + 0.972298i \(0.424902\pi\)
\(480\) 0 0
\(481\) −4.22936 −0.192842
\(482\) 0 0
\(483\) 2.20489i 0.100326i
\(484\) 0 0
\(485\) 20.1552 + 4.30411i 0.915198 + 0.195440i
\(486\) 0 0
\(487\) 21.8299i 0.989207i −0.869119 0.494603i \(-0.835313\pi\)
0.869119 0.494603i \(-0.164687\pi\)
\(488\) 0 0
\(489\) 32.1472 1.45375
\(490\) 0 0
\(491\) 38.1315 1.72085 0.860426 0.509575i \(-0.170198\pi\)
0.860426 + 0.509575i \(0.170198\pi\)
\(492\) 0 0
\(493\) 1.43108i 0.0644527i
\(494\) 0 0
\(495\) −2.09551 + 9.81279i −0.0941863 + 0.441052i
\(496\) 0 0
\(497\) 15.5542i 0.697702i
\(498\) 0 0
\(499\) 6.36523 0.284947 0.142474 0.989799i \(-0.454494\pi\)
0.142474 + 0.989799i \(0.454494\pi\)
\(500\) 0 0
\(501\) 1.16041 0.0518431
\(502\) 0 0
\(503\) 21.3160i 0.950433i 0.879869 + 0.475217i \(0.157630\pi\)
−0.879869 + 0.475217i \(0.842370\pi\)
\(504\) 0 0
\(505\) −0.336123 + 1.57399i −0.0149573 + 0.0700415i
\(506\) 0 0
\(507\) 16.9377i 0.752232i
\(508\) 0 0
\(509\) 25.5122 1.13081 0.565405 0.824814i \(-0.308720\pi\)
0.565405 + 0.824814i \(0.308720\pi\)
\(510\) 0 0
\(511\) −9.99254 −0.442044
\(512\) 0 0
\(513\) 48.7828i 2.15381i
\(514\) 0 0
\(515\) −20.0337 4.27818i −0.882792 0.188519i
\(516\) 0 0
\(517\) 2.99266i 0.131617i
\(518\) 0 0
\(519\) 11.2815 0.495205
\(520\) 0 0
\(521\) −40.7247 −1.78418 −0.892091 0.451856i \(-0.850762\pi\)
−0.892091 + 0.451856i \(0.850762\pi\)
\(522\) 0 0
\(523\) 23.3437i 1.02075i −0.859953 0.510374i \(-0.829507\pi\)
0.859953 0.510374i \(-0.170493\pi\)
\(524\) 0 0
\(525\) 10.0628 + 4.50316i 0.439177 + 0.196534i
\(526\) 0 0
\(527\) 1.67879i 0.0731294i
\(528\) 0 0
\(529\) −1.00000 −0.0434783
\(530\) 0 0
\(531\) 5.92219 0.257001
\(532\) 0 0
\(533\) 6.38571i 0.276596i
\(534\) 0 0
\(535\) −27.8781 5.95334i −1.20528 0.257385i
\(536\) 0 0
\(537\) 30.4443i 1.31377i
\(538\) 0 0
\(539\) −19.7299 −0.849826
\(540\) 0 0
\(541\) 1.23303 0.0530123 0.0265061 0.999649i \(-0.491562\pi\)
0.0265061 + 0.999649i \(0.491562\pi\)
\(542\) 0 0
\(543\) 20.9798i 0.900331i
\(544\) 0 0
\(545\) 1.57848 7.39166i 0.0676148 0.316624i
\(546\) 0 0
\(547\) 1.56470i 0.0669018i −0.999440 0.0334509i \(-0.989350\pi\)
0.999440 0.0334509i \(-0.0106497\pi\)
\(548\) 0 0
\(549\) −14.0729 −0.600618
\(550\) 0 0
\(551\) 41.1078 1.75125
\(552\) 0 0
\(553\) 10.9238i 0.464528i
\(554\) 0 0
\(555\) −2.87339 + 13.4554i −0.121969 + 0.571151i
\(556\) 0 0
\(557\) 22.4857i 0.952749i −0.879242 0.476375i \(-0.841951\pi\)
0.879242 0.476375i \(-0.158049\pi\)
\(558\) 0 0
\(559\) −1.66863 −0.0705753
\(560\) 0 0
\(561\) 1.83453 0.0774537
\(562\) 0 0
\(563\) 7.68774i 0.324000i −0.986791 0.162000i \(-0.948206\pi\)
0.986791 0.162000i \(-0.0517944\pi\)
\(564\) 0 0
\(565\) −34.6704 7.40382i −1.45859 0.311481i
\(566\) 0 0
\(567\) 7.61376i 0.319748i
\(568\) 0 0
\(569\) −28.1828 −1.18149 −0.590743 0.806860i \(-0.701165\pi\)
−0.590743 + 0.806860i \(0.701165\pi\)
\(570\) 0 0
\(571\) −31.1444 −1.30335 −0.651676 0.758497i \(-0.725934\pi\)
−0.651676 + 0.758497i \(0.725934\pi\)
\(572\) 0 0
\(573\) 11.0360i 0.461035i
\(574\) 0 0
\(575\) 2.04235 4.56386i 0.0851720 0.190326i
\(576\) 0 0
\(577\) 1.20837i 0.0503051i 0.999684 + 0.0251525i \(0.00800714\pi\)
−0.999684 + 0.0251525i \(0.991993\pi\)
\(578\) 0 0
\(579\) −21.3118 −0.885687
\(580\) 0 0
\(581\) −0.291168 −0.0120797
\(582\) 0 0
\(583\) 35.0588i 1.45199i
\(584\) 0 0
\(585\) 2.17393 + 0.464241i 0.0898810 + 0.0191940i
\(586\) 0 0
\(587\) 13.4162i 0.553746i −0.960906 0.276873i \(-0.910702\pi\)
0.960906 0.276873i \(-0.0892982\pi\)
\(588\) 0 0
\(589\) −48.2233 −1.98701
\(590\) 0 0
\(591\) −17.2487 −0.709516
\(592\) 0 0
\(593\) 5.37465i 0.220711i −0.993892 0.110355i \(-0.964801\pi\)
0.993892 0.110355i \(-0.0351989\pi\)
\(594\) 0 0
\(595\) −0.220289 + 1.03156i −0.00903097 + 0.0422899i
\(596\) 0 0
\(597\) 6.13434i 0.251062i
\(598\) 0 0
\(599\) −18.7001 −0.764064 −0.382032 0.924149i \(-0.624776\pi\)
−0.382032 + 0.924149i \(0.624776\pi\)
\(600\) 0 0
\(601\) 18.4418 0.752255 0.376128 0.926568i \(-0.377255\pi\)
0.376128 + 0.926568i \(0.377255\pi\)
\(602\) 0 0
\(603\) 6.68932i 0.272410i
\(604\) 0 0
\(605\) 3.71595 17.4009i 0.151075 0.707448i
\(606\) 0 0
\(607\) 15.6501i 0.635218i −0.948222 0.317609i \(-0.897120\pi\)
0.948222 0.317609i \(-0.102880\pi\)
\(608\) 0 0
\(609\) 10.5095 0.425865
\(610\) 0 0
\(611\) 0.662995 0.0268219
\(612\) 0 0
\(613\) 2.18552i 0.0882725i 0.999026 + 0.0441363i \(0.0140536\pi\)
−0.999026 + 0.0441363i \(0.985946\pi\)
\(614\) 0 0
\(615\) −20.3157 4.33840i −0.819209 0.174941i
\(616\) 0 0
\(617\) 4.07539i 0.164069i −0.996629 0.0820346i \(-0.973858\pi\)
0.996629 0.0820346i \(-0.0261418\pi\)
\(618\) 0 0
\(619\) −0.0289543 −0.00116377 −0.000581885 1.00000i \(-0.500185\pi\)
−0.000581885 1.00000i \(0.500185\pi\)
\(620\) 0 0
\(621\) −5.65635 −0.226982
\(622\) 0 0
\(623\) 2.59051i 0.103787i
\(624\) 0 0
\(625\) 16.6576 + 18.6420i 0.666304 + 0.745681i
\(626\) 0 0
\(627\) 52.6967i 2.10450i
\(628\) 0 0
\(629\) −1.31644 −0.0524901
\(630\) 0 0
\(631\) −33.3679 −1.32836 −0.664178 0.747575i \(-0.731218\pi\)
−0.664178 + 0.747575i \(0.731218\pi\)
\(632\) 0 0
\(633\) 12.5453i 0.498632i
\(634\) 0 0
\(635\) 33.2874 + 7.10849i 1.32097 + 0.282092i
\(636\) 0 0
\(637\) 4.37097i 0.173184i
\(638\) 0 0
\(639\) −10.2030 −0.403624
\(640\) 0 0
\(641\) 1.56295 0.0617327 0.0308663 0.999524i \(-0.490173\pi\)
0.0308663 + 0.999524i \(0.490173\pi\)
\(642\) 0 0
\(643\) 33.3037i 1.31337i 0.754166 + 0.656684i \(0.228042\pi\)
−0.754166 + 0.656684i \(0.771958\pi\)
\(644\) 0 0
\(645\) −1.13365 + 5.30862i −0.0446375 + 0.209027i
\(646\) 0 0
\(647\) 1.54230i 0.0606343i 0.999540 + 0.0303171i \(0.00965172\pi\)
−0.999540 + 0.0303171i \(0.990348\pi\)
\(648\) 0 0
\(649\) −25.0190 −0.982081
\(650\) 0 0
\(651\) −12.3286 −0.483195
\(652\) 0 0
\(653\) 13.1195i 0.513407i −0.966490 0.256703i \(-0.917364\pi\)
0.966490 0.256703i \(-0.0826364\pi\)
\(654\) 0 0
\(655\) 6.00981 28.1425i 0.234823 1.09962i
\(656\) 0 0
\(657\) 6.55473i 0.255724i
\(658\) 0 0
\(659\) 7.38016 0.287490 0.143745 0.989615i \(-0.454085\pi\)
0.143745 + 0.989615i \(0.454085\pi\)
\(660\) 0 0
\(661\) −25.0266 −0.973421 −0.486710 0.873563i \(-0.661803\pi\)
−0.486710 + 0.873563i \(0.661803\pi\)
\(662\) 0 0
\(663\) 0.406422i 0.0157841i
\(664\) 0 0
\(665\) −29.6316 6.32780i −1.14906 0.245381i
\(666\) 0 0
\(667\) 4.76644i 0.184557i
\(668\) 0 0
\(669\) 16.7820 0.648830
\(670\) 0 0
\(671\) 59.4527 2.29515
\(672\) 0 0
\(673\) 35.2500i 1.35879i 0.733773 + 0.679395i \(0.237757\pi\)
−0.733773 + 0.679395i \(0.762243\pi\)
\(674\) 0 0
\(675\) 11.5523 25.8148i 0.444647 0.993612i
\(676\) 0 0
\(677\) 6.04850i 0.232463i 0.993222 + 0.116231i \(0.0370814\pi\)
−0.993222 + 0.116231i \(0.962919\pi\)
\(678\) 0 0
\(679\) −14.4813 −0.555741
\(680\) 0 0
\(681\) 2.60242 0.0997251
\(682\) 0 0
\(683\) 32.9347i 1.26021i −0.776510 0.630105i \(-0.783012\pi\)
0.776510 0.630105i \(-0.216988\pi\)
\(684\) 0 0
\(685\) −36.6136 7.81880i −1.39893 0.298741i
\(686\) 0 0
\(687\) 23.1819i 0.884443i
\(688\) 0 0
\(689\) −7.76696 −0.295897
\(690\) 0 0
\(691\) −11.7152 −0.445668 −0.222834 0.974856i \(-0.571531\pi\)
−0.222834 + 0.974856i \(0.571531\pi\)
\(692\) 0 0
\(693\) 7.05040i 0.267823i
\(694\) 0 0
\(695\) −5.52408 + 25.8680i −0.209540 + 0.981228i
\(696\) 0 0
\(697\) 1.98764i 0.0752872i
\(698\) 0 0
\(699\) 34.5091 1.30525
\(700\) 0 0
\(701\) 43.8861 1.65756 0.828779 0.559577i \(-0.189036\pi\)
0.828779 + 0.559577i \(0.189036\pi\)
\(702\) 0 0
\(703\) 37.8148i 1.42621i
\(704\) 0 0
\(705\) 0.450433 2.10927i 0.0169643 0.0794398i
\(706\) 0 0
\(707\) 1.13090i 0.0425317i
\(708\) 0 0
\(709\) −30.2394 −1.13567 −0.567833 0.823144i \(-0.692218\pi\)
−0.567833 + 0.823144i \(0.692218\pi\)
\(710\) 0 0
\(711\) −7.16561 −0.268731
\(712\) 0 0
\(713\) 5.59148i 0.209402i
\(714\) 0 0
\(715\) −9.18403 1.96124i −0.343463 0.0733463i
\(716\) 0 0
\(717\) 38.0544i 1.42117i
\(718\) 0 0
\(719\) 27.5338 1.02684 0.513419 0.858138i \(-0.328379\pi\)
0.513419 + 0.858138i \(0.328379\pi\)
\(720\) 0 0
\(721\) 14.3941 0.536063
\(722\) 0 0
\(723\) 18.0828i 0.672507i
\(724\) 0 0
\(725\) 21.7534 + 9.73475i 0.807899 + 0.361540i
\(726\) 0 0
\(727\) 33.7995i 1.25356i 0.779198 + 0.626778i \(0.215627\pi\)
−0.779198 + 0.626778i \(0.784373\pi\)
\(728\) 0 0
\(729\) −28.8078 −1.06695
\(730\) 0 0
\(731\) −0.519382 −0.0192100
\(732\) 0 0
\(733\) 48.3133i 1.78449i 0.451550 + 0.892246i \(0.350871\pi\)
−0.451550 + 0.892246i \(0.649129\pi\)
\(734\) 0 0
\(735\) 13.9059 + 2.96960i 0.512928 + 0.109535i
\(736\) 0 0
\(737\) 28.2598i 1.04096i
\(738\) 0 0
\(739\) −22.7004 −0.835048 −0.417524 0.908666i \(-0.637102\pi\)
−0.417524 + 0.908666i \(0.637102\pi\)
\(740\) 0 0
\(741\) 11.6745 0.428872
\(742\) 0 0
\(743\) 20.9953i 0.770242i −0.922866 0.385121i \(-0.874160\pi\)
0.922866 0.385121i \(-0.125840\pi\)
\(744\) 0 0
\(745\) −0.681890 + 3.19313i −0.0249825 + 0.116987i
\(746\) 0 0
\(747\) 0.190995i 0.00698816i
\(748\) 0 0
\(749\) 20.0302 0.731887
\(750\) 0 0
\(751\) 21.3909 0.780565 0.390283 0.920695i \(-0.372377\pi\)
0.390283 + 0.920695i \(0.372377\pi\)
\(752\) 0 0
\(753\) 17.4871i 0.637266i
\(754\) 0 0
\(755\) −8.30747 + 38.9019i −0.302340 + 1.41579i
\(756\) 0 0
\(757\) 54.7364i 1.98943i 0.102676 + 0.994715i \(0.467260\pi\)
−0.102676 + 0.994715i \(0.532740\pi\)
\(758\) 0 0
\(759\) 6.11017 0.221785
\(760\) 0 0
\(761\) 7.87321 0.285404 0.142702 0.989766i \(-0.454421\pi\)
0.142702 + 0.989766i \(0.454421\pi\)
\(762\) 0 0
\(763\) 5.31084i 0.192265i
\(764\) 0 0
\(765\) 0.676666 + 0.144501i 0.0244649 + 0.00522446i
\(766\) 0 0
\(767\) 5.54272i 0.200136i
\(768\) 0 0
\(769\) −32.7134 −1.17968 −0.589838 0.807522i \(-0.700808\pi\)
−0.589838 + 0.807522i \(0.700808\pi\)
\(770\) 0 0
\(771\) −18.9554 −0.682663
\(772\) 0 0
\(773\) 2.88974i 0.103937i 0.998649 + 0.0519684i \(0.0165495\pi\)
−0.998649 + 0.0519684i \(0.983450\pi\)
\(774\) 0 0
\(775\) −25.5187 11.4198i −0.916659 0.410210i
\(776\) 0 0
\(777\) 9.66760i 0.346823i
\(778\) 0 0
\(779\) 57.0949 2.04564
\(780\) 0 0
\(781\) 43.1037 1.54237
\(782\) 0 0
\(783\) 26.9607i 0.963496i
\(784\) 0 0
\(785\) 43.8137 + 9.35637i 1.56378 + 0.333943i
\(786\) 0 0
\(787\) 46.4472i 1.65566i −0.560976 0.827832i \(-0.689574\pi\)
0.560976 0.827832i \(-0.310426\pi\)
\(788\) 0 0
\(789\) −38.2523 −1.36182
\(790\) 0 0
\(791\) 24.9104 0.885710
\(792\) 0 0
\(793\) 13.1712i 0.467723i
\(794\) 0 0
\(795\) −5.27681 + 24.7101i −0.187149 + 0.876375i
\(796\) 0 0
\(797\) 45.6713i 1.61776i 0.587974 + 0.808880i \(0.299926\pi\)
−0.587974 + 0.808880i \(0.700074\pi\)
\(798\) 0 0
\(799\) 0.206366 0.00730070
\(800\) 0 0
\(801\) 1.69928 0.0600411
\(802\) 0 0
\(803\) 27.6912i