Properties

Label 1840.2.e.e.369.3
Level $1840$
Weight $2$
Character 1840.369
Analytic conductor $14.692$
Analytic rank $0$
Dimension $8$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 1840 = 2^{4} \cdot 5 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1840.e (of order \(2\), degree \(1\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(14.6924739719\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.0.11574317056.3
Defining polynomial: \(x^{8} + 45 x^{4} + 4\)
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 230)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 369.3
Root \(-0.386289 - 0.386289i\) of defining polynomial
Character \(\chi\) \(=\) 1840.369
Dual form 1840.2.e.e.369.6

$q$-expansion

\(f(q)\) \(=\) \(q-1.44270i q^{3} +(-0.386289 - 2.20245i) q^{5} +3.25886i q^{7} +0.918614 q^{9} +O(q^{10})\) \(q-1.44270i q^{3} +(-0.386289 - 2.20245i) q^{5} +3.25886i q^{7} +0.918614 q^{9} -1.32988 q^{11} -1.25886i q^{13} +(-3.17748 + 0.557299i) q^{15} -4.62018i q^{17} -3.37169 q^{19} +4.70156 q^{21} -1.00000i q^{23} +(-4.70156 + 1.70156i) q^{25} -5.65339i q^{27} -4.29207 q^{29} -2.37346 q^{31} +1.91861i q^{33} +(7.17748 - 1.25886i) q^{35} +5.74514i q^{37} -1.81616 q^{39} -5.13790 q^{41} -10.4678i q^{43} +(-0.354850 - 2.02320i) q^{45} -6.06288i q^{47} -3.62018 q^{49} -6.66553 q^{51} -11.1275i q^{53} +(0.513716 + 2.92898i) q^{55} +4.86433i q^{57} -2.72263 q^{59} +12.3653 q^{61} +2.99364i q^{63} +(-2.77258 + 0.486284i) q^{65} -6.60981i q^{67} -1.44270 q^{69} -0.265226 q^{71} +5.26464i q^{73} +(2.45485 + 6.78295i) q^{75} -4.33388i q^{77} -15.3275 q^{79} -5.40031 q^{81} +2.02566i q^{83} +(-10.1757 + 1.78472i) q^{85} +6.19218i q^{87} -16.1500 q^{89} +4.10245 q^{91} +3.42419i q^{93} +(1.30244 + 7.42597i) q^{95} +8.62018i q^{97} -1.22164 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8q - 14q^{9} + O(q^{10}) \) \( 8q - 14q^{9} - 10q^{11} + 16q^{15} - 2q^{19} + 12q^{21} - 12q^{25} - 4q^{29} - 10q^{31} + 16q^{35} + 46q^{41} - 26q^{45} + 18q^{49} - 14q^{51} + 18q^{55} + 32q^{59} + 18q^{61} - 16q^{65} - 6q^{69} - 38q^{71} + 32q^{75} - 12q^{79} + 32q^{81} - 24q^{85} - 60q^{89} + 26q^{91} - 18q^{95} - 54q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1840\mathbb{Z}\right)^\times\).

\(n\) \(737\) \(1151\) \(1201\) \(1381\)
\(\chi(n)\) \(-1\) \(1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.44270i 0.832944i −0.909149 0.416472i \(-0.863266\pi\)
0.909149 0.416472i \(-0.136734\pi\)
\(4\) 0 0
\(5\) −0.386289 2.20245i −0.172754 0.984965i
\(6\) 0 0
\(7\) 3.25886i 1.23173i 0.787850 + 0.615867i \(0.211194\pi\)
−0.787850 + 0.615867i \(0.788806\pi\)
\(8\) 0 0
\(9\) 0.918614 0.306205
\(10\) 0 0
\(11\) −1.32988 −0.400973 −0.200486 0.979696i \(-0.564252\pi\)
−0.200486 + 0.979696i \(0.564252\pi\)
\(12\) 0 0
\(13\) 1.25886i 0.349145i −0.984644 0.174573i \(-0.944146\pi\)
0.984644 0.174573i \(-0.0558544\pi\)
\(14\) 0 0
\(15\) −3.17748 + 0.557299i −0.820421 + 0.143894i
\(16\) 0 0
\(17\) 4.62018i 1.12056i −0.828304 0.560279i \(-0.810694\pi\)
0.828304 0.560279i \(-0.189306\pi\)
\(18\) 0 0
\(19\) −3.37169 −0.773518 −0.386759 0.922181i \(-0.626405\pi\)
−0.386759 + 0.922181i \(0.626405\pi\)
\(20\) 0 0
\(21\) 4.70156 1.02596
\(22\) 0 0
\(23\) 1.00000i 0.208514i
\(24\) 0 0
\(25\) −4.70156 + 1.70156i −0.940312 + 0.340312i
\(26\) 0 0
\(27\) 5.65339i 1.08800i
\(28\) 0 0
\(29\) −4.29207 −0.797018 −0.398509 0.917164i \(-0.630472\pi\)
−0.398509 + 0.917164i \(0.630472\pi\)
\(30\) 0 0
\(31\) −2.37346 −0.426286 −0.213143 0.977021i \(-0.568370\pi\)
−0.213143 + 0.977021i \(0.568370\pi\)
\(32\) 0 0
\(33\) 1.91861i 0.333988i
\(34\) 0 0
\(35\) 7.17748 1.25886i 1.21321 0.212786i
\(36\) 0 0
\(37\) 5.74514i 0.944496i 0.881466 + 0.472248i \(0.156557\pi\)
−0.881466 + 0.472248i \(0.843443\pi\)
\(38\) 0 0
\(39\) −1.81616 −0.290818
\(40\) 0 0
\(41\) −5.13790 −0.802405 −0.401202 0.915989i \(-0.631408\pi\)
−0.401202 + 0.915989i \(0.631408\pi\)
\(42\) 0 0
\(43\) 10.4678i 1.59632i −0.602445 0.798160i \(-0.705807\pi\)
0.602445 0.798160i \(-0.294193\pi\)
\(44\) 0 0
\(45\) −0.354850 2.02320i −0.0528979 0.301601i
\(46\) 0 0
\(47\) 6.06288i 0.884362i −0.896926 0.442181i \(-0.854205\pi\)
0.896926 0.442181i \(-0.145795\pi\)
\(48\) 0 0
\(49\) −3.62018 −0.517168
\(50\) 0 0
\(51\) −6.66553 −0.933361
\(52\) 0 0
\(53\) 11.1275i 1.52848i −0.644930 0.764242i \(-0.723113\pi\)
0.644930 0.764242i \(-0.276887\pi\)
\(54\) 0 0
\(55\) 0.513716 + 2.92898i 0.0692695 + 0.394944i
\(56\) 0 0
\(57\) 4.86433i 0.644297i
\(58\) 0 0
\(59\) −2.72263 −0.354456 −0.177228 0.984170i \(-0.556713\pi\)
−0.177228 + 0.984170i \(0.556713\pi\)
\(60\) 0 0
\(61\) 12.3653 1.58322 0.791609 0.611029i \(-0.209244\pi\)
0.791609 + 0.611029i \(0.209244\pi\)
\(62\) 0 0
\(63\) 2.99364i 0.377163i
\(64\) 0 0
\(65\) −2.77258 + 0.486284i −0.343896 + 0.0603161i
\(66\) 0 0
\(67\) 6.60981i 0.807516i −0.914866 0.403758i \(-0.867704\pi\)
0.914866 0.403758i \(-0.132296\pi\)
\(68\) 0 0
\(69\) −1.44270 −0.173681
\(70\) 0 0
\(71\) −0.265226 −0.0314765 −0.0157383 0.999876i \(-0.505010\pi\)
−0.0157383 + 0.999876i \(0.505010\pi\)
\(72\) 0 0
\(73\) 5.26464i 0.616180i 0.951357 + 0.308090i \(0.0996897\pi\)
−0.951357 + 0.308090i \(0.900310\pi\)
\(74\) 0 0
\(75\) 2.45485 + 6.78295i 0.283461 + 0.783227i
\(76\) 0 0
\(77\) 4.33388i 0.493892i
\(78\) 0 0
\(79\) −15.3275 −1.72448 −0.862240 0.506500i \(-0.830939\pi\)
−0.862240 + 0.506500i \(0.830939\pi\)
\(80\) 0 0
\(81\) −5.40031 −0.600034
\(82\) 0 0
\(83\) 2.02566i 0.222345i 0.993801 + 0.111172i \(0.0354606\pi\)
−0.993801 + 0.111172i \(0.964539\pi\)
\(84\) 0 0
\(85\) −10.1757 + 1.78472i −1.10371 + 0.193580i
\(86\) 0 0
\(87\) 6.19218i 0.663871i
\(88\) 0 0
\(89\) −16.1500 −1.71190 −0.855951 0.517058i \(-0.827027\pi\)
−0.855951 + 0.517058i \(0.827027\pi\)
\(90\) 0 0
\(91\) 4.10245 0.430054
\(92\) 0 0
\(93\) 3.42419i 0.355072i
\(94\) 0 0
\(95\) 1.30244 + 7.42597i 0.133628 + 0.761888i
\(96\) 0 0
\(97\) 8.62018i 0.875246i 0.899158 + 0.437623i \(0.144180\pi\)
−0.899158 + 0.437623i \(0.855820\pi\)
\(98\) 0 0
\(99\) −1.22164 −0.122780
\(100\) 0 0
\(101\) 14.4934 1.44215 0.721075 0.692857i \(-0.243648\pi\)
0.721075 + 0.692857i \(0.243648\pi\)
\(102\) 0 0
\(103\) 18.5410i 1.82690i 0.406950 + 0.913451i \(0.366592\pi\)
−0.406950 + 0.913451i \(0.633408\pi\)
\(104\) 0 0
\(105\) −1.81616 10.3550i −0.177239 1.01054i
\(106\) 0 0
\(107\) 4.48050i 0.433147i −0.976266 0.216573i \(-0.930512\pi\)
0.976266 0.216573i \(-0.0694880\pi\)
\(108\) 0 0
\(109\) −17.1298 −1.64073 −0.820367 0.571838i \(-0.806231\pi\)
−0.820367 + 0.571838i \(0.806231\pi\)
\(110\) 0 0
\(111\) 8.28853 0.786712
\(112\) 0 0
\(113\) 9.77435i 0.919494i −0.888050 0.459747i \(-0.847940\pi\)
0.888050 0.459747i \(-0.152060\pi\)
\(114\) 0 0
\(115\) −2.20245 + 0.386289i −0.205379 + 0.0360216i
\(116\) 0 0
\(117\) 1.15641i 0.106910i
\(118\) 0 0
\(119\) 15.0565 1.38023
\(120\) 0 0
\(121\) −9.23143 −0.839221
\(122\) 0 0
\(123\) 7.41245i 0.668358i
\(124\) 0 0
\(125\) 5.56376 + 9.69766i 0.497638 + 0.867385i
\(126\) 0 0
\(127\) 1.02743i 0.0911699i 0.998960 + 0.0455849i \(0.0145152\pi\)
−0.998960 + 0.0455849i \(0.985485\pi\)
\(128\) 0 0
\(129\) −15.1019 −1.32965
\(130\) 0 0
\(131\) −12.2885 −1.07365 −0.536827 0.843692i \(-0.680377\pi\)
−0.536827 + 0.843692i \(0.680377\pi\)
\(132\) 0 0
\(133\) 10.9879i 0.952768i
\(134\) 0 0
\(135\) −12.4513 + 2.18384i −1.07164 + 0.187955i
\(136\) 0 0
\(137\) 8.82830i 0.754253i 0.926162 + 0.377126i \(0.123088\pi\)
−0.926162 + 0.377126i \(0.876912\pi\)
\(138\) 0 0
\(139\) −11.5532 −0.979927 −0.489963 0.871743i \(-0.662990\pi\)
−0.489963 + 0.871743i \(0.662990\pi\)
\(140\) 0 0
\(141\) −8.74692 −0.736623
\(142\) 0 0
\(143\) 1.67413i 0.139998i
\(144\) 0 0
\(145\) 1.65798 + 9.45307i 0.137688 + 0.785035i
\(146\) 0 0
\(147\) 5.22283i 0.430772i
\(148\) 0 0
\(149\) 11.1333 0.912076 0.456038 0.889960i \(-0.349268\pi\)
0.456038 + 0.889960i \(0.349268\pi\)
\(150\) 0 0
\(151\) 3.23779 0.263488 0.131744 0.991284i \(-0.457942\pi\)
0.131744 + 0.991284i \(0.457942\pi\)
\(152\) 0 0
\(153\) 4.24416i 0.343120i
\(154\) 0 0
\(155\) 0.916840 + 5.22742i 0.0736424 + 0.419877i
\(156\) 0 0
\(157\) 17.6452i 1.40824i 0.710079 + 0.704122i \(0.248659\pi\)
−0.710079 + 0.704122i \(0.751341\pi\)
\(158\) 0 0
\(159\) −16.0537 −1.27314
\(160\) 0 0
\(161\) 3.25886 0.256834
\(162\) 0 0
\(163\) 12.2107i 0.956415i −0.878247 0.478207i \(-0.841287\pi\)
0.878247 0.478207i \(-0.158713\pi\)
\(164\) 0 0
\(165\) 4.22565 0.741139i 0.328966 0.0576976i
\(166\) 0 0
\(167\) 2.06288i 0.159630i 0.996810 + 0.0798151i \(0.0254330\pi\)
−0.996810 + 0.0798151i \(0.974567\pi\)
\(168\) 0 0
\(169\) 11.4153 0.878098
\(170\) 0 0
\(171\) −3.09728 −0.236855
\(172\) 0 0
\(173\) 2.10245i 0.159847i −0.996801 0.0799233i \(-0.974532\pi\)
0.996801 0.0799233i \(-0.0254675\pi\)
\(174\) 0 0
\(175\) −5.54515 15.3217i −0.419174 1.15821i
\(176\) 0 0
\(177\) 3.92794i 0.295242i
\(178\) 0 0
\(179\) 20.4421 1.52792 0.763958 0.645266i \(-0.223254\pi\)
0.763958 + 0.645266i \(0.223254\pi\)
\(180\) 0 0
\(181\) −7.12175 −0.529355 −0.264678 0.964337i \(-0.585266\pi\)
−0.264678 + 0.964337i \(0.585266\pi\)
\(182\) 0 0
\(183\) 17.8395i 1.31873i
\(184\) 0 0
\(185\) 12.6534 2.21928i 0.930296 0.163165i
\(186\) 0 0
\(187\) 6.14426i 0.449313i
\(188\) 0 0
\(189\) 18.4236 1.34012
\(190\) 0 0
\(191\) 16.7191 1.20975 0.604875 0.796320i \(-0.293223\pi\)
0.604875 + 0.796320i \(0.293223\pi\)
\(192\) 0 0
\(193\) 6.51772i 0.469156i −0.972097 0.234578i \(-0.924629\pi\)
0.972097 0.234578i \(-0.0753708\pi\)
\(194\) 0 0
\(195\) 0.701562 + 4.00000i 0.0502399 + 0.286446i
\(196\) 0 0
\(197\) 17.8184i 1.26951i −0.772714 0.634754i \(-0.781101\pi\)
0.772714 0.634754i \(-0.218899\pi\)
\(198\) 0 0
\(199\) −3.77435 −0.267557 −0.133778 0.991011i \(-0.542711\pi\)
−0.133778 + 0.991011i \(0.542711\pi\)
\(200\) 0 0
\(201\) −9.53597 −0.672616
\(202\) 0 0
\(203\) 13.9873i 0.981714i
\(204\) 0 0
\(205\) 1.98471 + 11.3160i 0.138618 + 0.790341i
\(206\) 0 0
\(207\) 0.918614i 0.0638481i
\(208\) 0 0
\(209\) 4.48393 0.310160
\(210\) 0 0
\(211\) 23.9630 1.64968 0.824840 0.565366i \(-0.191265\pi\)
0.824840 + 0.565366i \(0.191265\pi\)
\(212\) 0 0
\(213\) 0.382642i 0.0262182i
\(214\) 0 0
\(215\) −23.0547 + 4.04358i −1.57232 + 0.275770i
\(216\) 0 0
\(217\) 7.73477i 0.525071i
\(218\) 0 0
\(219\) 7.59530 0.513243
\(220\) 0 0
\(221\) −5.81616 −0.391237
\(222\) 0 0
\(223\) 20.2094i 1.35332i −0.736296 0.676660i \(-0.763427\pi\)
0.736296 0.676660i \(-0.236573\pi\)
\(224\) 0 0
\(225\) −4.31892 + 1.56308i −0.287928 + 0.104205i
\(226\) 0 0
\(227\) 1.60666i 0.106638i −0.998578 0.0533189i \(-0.983020\pi\)
0.998578 0.0533189i \(-0.0169800\pi\)
\(228\) 0 0
\(229\) 18.9019 1.24907 0.624536 0.780996i \(-0.285288\pi\)
0.624536 + 0.780996i \(0.285288\pi\)
\(230\) 0 0
\(231\) −6.25250 −0.411384
\(232\) 0 0
\(233\) 19.0112i 1.24546i −0.782436 0.622731i \(-0.786023\pi\)
0.782436 0.622731i \(-0.213977\pi\)
\(234\) 0 0
\(235\) −13.3532 + 2.34202i −0.871065 + 0.152777i
\(236\) 0 0
\(237\) 22.1130i 1.43640i
\(238\) 0 0
\(239\) 28.3387 1.83308 0.916538 0.399947i \(-0.130972\pi\)
0.916538 + 0.399947i \(0.130972\pi\)
\(240\) 0 0
\(241\) 6.35140 0.409130 0.204565 0.978853i \(-0.434422\pi\)
0.204565 + 0.978853i \(0.434422\pi\)
\(242\) 0 0
\(243\) 9.16914i 0.588200i
\(244\) 0 0
\(245\) 1.39843 + 7.97325i 0.0893426 + 0.509392i
\(246\) 0 0
\(247\) 4.24448i 0.270070i
\(248\) 0 0
\(249\) 2.92242 0.185201
\(250\) 0 0
\(251\) −19.7231 −1.24491 −0.622455 0.782655i \(-0.713865\pi\)
−0.622455 + 0.782655i \(0.713865\pi\)
\(252\) 0 0
\(253\) 1.32988i 0.0836086i
\(254\) 0 0
\(255\) 2.57482 + 14.6805i 0.161241 + 0.919328i
\(256\) 0 0
\(257\) 1.18102i 0.0736701i −0.999321 0.0368351i \(-0.988272\pi\)
0.999321 0.0368351i \(-0.0117276\pi\)
\(258\) 0 0
\(259\) −18.7226 −1.16337
\(260\) 0 0
\(261\) −3.94276 −0.244051
\(262\) 0 0
\(263\) 24.3189i 1.49957i −0.661682 0.749784i \(-0.730157\pi\)
0.661682 0.749784i \(-0.269843\pi\)
\(264\) 0 0
\(265\) −24.5078 + 4.29844i −1.50550 + 0.264051i
\(266\) 0 0
\(267\) 23.2997i 1.42592i
\(268\) 0 0
\(269\) −7.91283 −0.482454 −0.241227 0.970469i \(-0.577550\pi\)
−0.241227 + 0.970469i \(0.577550\pi\)
\(270\) 0 0
\(271\) 18.2979 1.11152 0.555758 0.831344i \(-0.312428\pi\)
0.555758 + 0.831344i \(0.312428\pi\)
\(272\) 0 0
\(273\) 5.91861i 0.358211i
\(274\) 0 0
\(275\) 6.25250 2.26287i 0.377040 0.136456i
\(276\) 0 0
\(277\) 28.6550i 1.72171i −0.508847 0.860857i \(-0.669928\pi\)
0.508847 0.860857i \(-0.330072\pi\)
\(278\) 0 0
\(279\) −2.18029 −0.130531
\(280\) 0 0
\(281\) 2.74692 0.163867 0.0819337 0.996638i \(-0.473890\pi\)
0.0819337 + 0.996638i \(0.473890\pi\)
\(282\) 0 0
\(283\) 5.45307i 0.324151i 0.986778 + 0.162076i \(0.0518189\pi\)
−0.986778 + 0.162076i \(0.948181\pi\)
\(284\) 0 0
\(285\) 10.7134 1.87904i 0.634610 0.111305i
\(286\) 0 0
\(287\) 16.7437i 0.988349i
\(288\) 0 0
\(289\) −4.34603 −0.255649
\(290\) 0 0
\(291\) 12.4363 0.729031
\(292\) 0 0
\(293\) 18.3806i 1.07381i 0.843644 + 0.536903i \(0.180406\pi\)
−0.843644 + 0.536903i \(0.819594\pi\)
\(294\) 0 0
\(295\) 1.05172 + 5.99645i 0.0612336 + 0.349127i
\(296\) 0 0
\(297\) 7.51831i 0.436256i
\(298\) 0 0
\(299\) −1.25886 −0.0728018
\(300\) 0 0
\(301\) 34.1130 1.96624
\(302\) 0 0
\(303\) 20.9097i 1.20123i
\(304\) 0 0
\(305\) −4.77658 27.2340i −0.273506 1.55941i
\(306\) 0 0
\(307\) 15.9234i 0.908797i −0.890799 0.454398i \(-0.849854\pi\)
0.890799 0.454398i \(-0.150146\pi\)
\(308\) 0 0
\(309\) 26.7492 1.52171
\(310\) 0 0
\(311\) 11.3518 0.643702 0.321851 0.946790i \(-0.395695\pi\)
0.321851 + 0.946790i \(0.395695\pi\)
\(312\) 0 0
\(313\) 28.7913i 1.62738i −0.581299 0.813690i \(-0.697455\pi\)
0.581299 0.813690i \(-0.302545\pi\)
\(314\) 0 0
\(315\) 6.59333 1.15641i 0.371492 0.0651562i
\(316\) 0 0
\(317\) 31.2299i 1.75404i 0.480451 + 0.877022i \(0.340473\pi\)
−0.480451 + 0.877022i \(0.659527\pi\)
\(318\) 0 0
\(319\) 5.70793 0.319583
\(320\) 0 0
\(321\) −6.46403 −0.360787
\(322\) 0 0
\(323\) 15.5778i 0.866771i
\(324\) 0 0
\(325\) 2.14203 + 5.91861i 0.118818 + 0.328306i
\(326\) 0 0
\(327\) 24.7131i 1.36664i
\(328\) 0 0
\(329\) 19.7581 1.08930
\(330\) 0 0
\(331\) −17.6917 −0.972421 −0.486211 0.873842i \(-0.661621\pi\)
−0.486211 + 0.873842i \(0.661621\pi\)
\(332\) 0 0
\(333\) 5.27757i 0.289209i
\(334\) 0 0
\(335\) −14.5578 + 2.55329i −0.795375 + 0.139501i
\(336\) 0 0
\(337\) 1.33801i 0.0728863i 0.999336 + 0.0364431i \(0.0116028\pi\)
−0.999336 + 0.0364431i \(0.988397\pi\)
\(338\) 0 0
\(339\) −14.1015 −0.765886
\(340\) 0 0
\(341\) 3.15641 0.170929
\(342\) 0 0
\(343\) 11.0144i 0.594720i
\(344\) 0 0
\(345\) 0.557299 + 3.17748i 0.0300040 + 0.171070i
\(346\) 0 0
\(347\) 5.36355i 0.287930i −0.989583 0.143965i \(-0.954015\pi\)
0.989583 0.143965i \(-0.0459853\pi\)
\(348\) 0 0
\(349\) 18.4306 0.986565 0.493283 0.869869i \(-0.335797\pi\)
0.493283 + 0.869869i \(0.335797\pi\)
\(350\) 0 0
\(351\) −7.11683 −0.379868
\(352\) 0 0
\(353\) 6.76477i 0.360052i 0.983662 + 0.180026i \(0.0576182\pi\)
−0.983662 + 0.180026i \(0.942382\pi\)
\(354\) 0 0
\(355\) 0.102454 + 0.584146i 0.00543768 + 0.0310033i
\(356\) 0 0
\(357\) 21.7220i 1.14965i
\(358\) 0 0
\(359\) 27.5324 1.45311 0.726553 0.687111i \(-0.241121\pi\)
0.726553 + 0.687111i \(0.241121\pi\)
\(360\) 0 0
\(361\) −7.63174 −0.401670
\(362\) 0 0
\(363\) 13.3182i 0.699024i
\(364\) 0 0
\(365\) 11.5951 2.03367i 0.606915 0.106447i
\(366\) 0 0
\(367\) 24.0744i 1.25668i 0.777941 + 0.628338i \(0.216264\pi\)
−0.777941 + 0.628338i \(0.783736\pi\)
\(368\) 0 0
\(369\) −4.71975 −0.245700
\(370\) 0 0
\(371\) 36.2631 1.88268
\(372\) 0 0
\(373\) 1.31459i 0.0680668i −0.999421 0.0340334i \(-0.989165\pi\)
0.999421 0.0340334i \(-0.0108353\pi\)
\(374\) 0 0
\(375\) 13.9908 8.02685i 0.722483 0.414505i
\(376\) 0 0
\(377\) 5.40312i 0.278275i
\(378\) 0 0
\(379\) 8.38961 0.430945 0.215473 0.976510i \(-0.430871\pi\)
0.215473 + 0.976510i \(0.430871\pi\)
\(380\) 0 0
\(381\) 1.48228 0.0759394
\(382\) 0 0
\(383\) 24.1258i 1.23277i 0.787446 + 0.616384i \(0.211403\pi\)
−0.787446 + 0.616384i \(0.788597\pi\)
\(384\) 0 0
\(385\) −9.54515 + 1.67413i −0.486466 + 0.0853216i
\(386\) 0 0
\(387\) 9.61584i 0.488801i
\(388\) 0 0
\(389\) −12.5702 −0.637336 −0.318668 0.947866i \(-0.603235\pi\)
−0.318668 + 0.947866i \(0.603235\pi\)
\(390\) 0 0
\(391\) −4.62018 −0.233652
\(392\) 0 0
\(393\) 17.7287i 0.894293i
\(394\) 0 0
\(395\) 5.92085 + 33.7581i 0.297910 + 1.69855i
\(396\) 0 0
\(397\) 28.5318i 1.43197i −0.698115 0.715986i \(-0.745977\pi\)
0.698115 0.715986i \(-0.254023\pi\)
\(398\) 0 0
\(399\) −15.8522 −0.793602
\(400\) 0 0
\(401\) −19.7130 −0.984422 −0.492211 0.870476i \(-0.663811\pi\)
−0.492211 + 0.870476i \(0.663811\pi\)
\(402\) 0 0
\(403\) 2.98786i 0.148836i
\(404\) 0 0
\(405\) 2.08608 + 11.8939i 0.103658 + 0.591013i
\(406\) 0 0
\(407\) 7.64033i 0.378717i
\(408\) 0 0
\(409\) −20.3400 −1.00575 −0.502874 0.864360i \(-0.667724\pi\)
−0.502874 + 0.864360i \(0.667724\pi\)
\(410\) 0 0
\(411\) 12.7366 0.628250
\(412\) 0 0
\(413\) 8.87267i 0.436596i
\(414\) 0 0
\(415\) 4.46141 0.782489i 0.219002 0.0384109i
\(416\) 0 0
\(417\) 16.6678i 0.816224i
\(418\) 0 0
\(419\) 9.91146 0.484207 0.242103 0.970250i \(-0.422163\pi\)
0.242103 + 0.970250i \(0.422163\pi\)
\(420\) 0 0
\(421\) −28.7927 −1.40327 −0.701634 0.712537i \(-0.747546\pi\)
−0.701634 + 0.712537i \(0.747546\pi\)
\(422\) 0 0
\(423\) 5.56944i 0.270796i
\(424\) 0 0
\(425\) 7.86152 + 21.7220i 0.381340 + 1.05367i
\(426\) 0 0
\(427\) 40.2969i 1.95010i
\(428\) 0 0
\(429\) 2.41527 0.116610
\(430\) 0 0
\(431\) −36.6821 −1.76691 −0.883456 0.468513i \(-0.844790\pi\)
−0.883456 + 0.468513i \(0.844790\pi\)
\(432\) 0 0
\(433\) 29.6894i 1.42678i −0.700766 0.713391i \(-0.747158\pi\)
0.700766 0.713391i \(-0.252842\pi\)
\(434\) 0 0
\(435\) 13.6380 2.39197i 0.653890 0.114686i
\(436\) 0 0
\(437\) 3.37169i 0.161290i
\(438\) 0 0
\(439\) 34.5378 1.64840 0.824200 0.566299i \(-0.191625\pi\)
0.824200 + 0.566299i \(0.191625\pi\)
\(440\) 0 0
\(441\) −3.32554 −0.158359
\(442\) 0 0
\(443\) 36.6735i 1.74241i −0.490917 0.871206i \(-0.663338\pi\)
0.490917 0.871206i \(-0.336662\pi\)
\(444\) 0 0
\(445\) 6.23858 + 35.5696i 0.295737 + 1.68616i
\(446\) 0 0
\(447\) 16.0620i 0.759708i
\(448\) 0 0
\(449\) 13.2138 0.623599 0.311800 0.950148i \(-0.399068\pi\)
0.311800 + 0.950148i \(0.399068\pi\)
\(450\) 0 0
\(451\) 6.83277 0.321743
\(452\) 0 0
\(453\) 4.67117i 0.219471i
\(454\) 0 0
\(455\) −1.58473 9.03544i −0.0742934 0.423588i
\(456\) 0 0
\(457\) 12.2292i 0.572058i 0.958221 + 0.286029i \(0.0923353\pi\)
−0.958221 + 0.286029i \(0.907665\pi\)
\(458\) 0 0
\(459\) −26.1196 −1.21916
\(460\) 0 0
\(461\) 24.0872 1.12185 0.560926 0.827866i \(-0.310445\pi\)
0.560926 + 0.827866i \(0.310445\pi\)
\(462\) 0 0
\(463\) 15.9173i 0.739740i −0.929084 0.369870i \(-0.879402\pi\)
0.929084 0.369870i \(-0.120598\pi\)
\(464\) 0 0
\(465\) 7.54161 1.32273i 0.349734 0.0613400i
\(466\) 0 0
\(467\) 9.70011i 0.448868i 0.974489 + 0.224434i \(0.0720533\pi\)
−0.974489 + 0.224434i \(0.927947\pi\)
\(468\) 0 0
\(469\) 21.5404 0.994645
\(470\) 0 0
\(471\) 25.4568 1.17299
\(472\) 0 0
\(473\) 13.9208i 0.640081i
\(474\) 0 0
\(475\) 15.8522 5.73713i 0.727348 0.263238i
\(476\) 0 0
\(477\) 10.2219i 0.468029i
\(478\) 0 0
\(479\) 14.1385 0.646004 0.323002 0.946398i \(-0.395308\pi\)
0.323002 + 0.946398i \(0.395308\pi\)
\(480\) 0 0
\(481\) 7.23234 0.329766
\(482\) 0 0
\(483\) 4.70156i 0.213928i
\(484\) 0 0
\(485\) 18.9855 3.32988i 0.862087 0.151202i
\(486\) 0 0
\(487\) 3.75006i 0.169932i 0.996384 + 0.0849658i \(0.0270781\pi\)
−0.996384 + 0.0849658i \(0.972922\pi\)
\(488\) 0 0
\(489\) −17.6164 −0.796640
\(490\) 0 0
\(491\) 3.19020 0.143972 0.0719860 0.997406i \(-0.477066\pi\)
0.0719860 + 0.997406i \(0.477066\pi\)
\(492\) 0 0
\(493\) 19.8301i 0.893104i
\(494\) 0 0
\(495\) 0.471907 + 2.69061i 0.0212106 + 0.120934i
\(496\) 0 0
\(497\) 0.864334i 0.0387707i
\(498\) 0 0
\(499\) 12.9355 0.579075 0.289537 0.957167i \(-0.406499\pi\)
0.289537 + 0.957167i \(0.406499\pi\)
\(500\) 0 0
\(501\) 2.97611 0.132963
\(502\) 0 0
\(503\) 15.8845i 0.708254i −0.935197 0.354127i \(-0.884778\pi\)
0.935197 0.354127i \(-0.115222\pi\)
\(504\) 0 0
\(505\) −5.59865 31.9210i −0.249137 1.42047i
\(506\) 0 0
\(507\) 16.4688i 0.731406i
\(508\) 0 0
\(509\) −22.6470 −1.00381 −0.501906 0.864922i \(-0.667368\pi\)
−0.501906 + 0.864922i \(0.667368\pi\)
\(510\) 0 0
\(511\) −17.1567 −0.758969
\(512\) 0 0
\(513\) 19.0614i 0.841583i
\(514\) 0 0
\(515\) 40.8357 7.16219i 1.79943 0.315604i
\(516\) 0 0
\(517\) 8.06288i 0.354605i
\(518\) 0 0
\(519\) −3.03321 −0.133143
\(520\) 0 0
\(521\) 22.7728 0.997693 0.498847 0.866690i \(-0.333757\pi\)
0.498847 + 0.866690i \(0.333757\pi\)
\(522\) 0 0
\(523\) 16.1920i 0.708026i −0.935241 0.354013i \(-0.884817\pi\)
0.935241 0.354013i \(-0.115183\pi\)
\(524\) 0 0
\(525\) −22.1047 + 8.00000i −0.964728 + 0.349149i
\(526\) 0 0
\(527\) 10.9658i 0.477678i
\(528\) 0 0
\(529\) −1.00000 −0.0434783
\(530\) 0 0
\(531\) −2.50105 −0.108536
\(532\) 0 0
\(533\) 6.46790i 0.280156i
\(534\) 0 0
\(535\) −9.86808 + 1.73077i −0.426634 + 0.0748276i
\(536\) 0 0
\(537\) 29.4919i 1.27267i
\(538\) 0 0
\(539\) 4.81439 0.207370
\(540\) 0 0
\(541\) 14.4350 0.620610 0.310305 0.950637i \(-0.399569\pi\)
0.310305 + 0.950637i \(0.399569\pi\)
\(542\) 0 0
\(543\) 10.2746i 0.440923i
\(544\) 0 0
\(545\) 6.61703 + 37.7274i 0.283443 + 1.61607i
\(546\) 0 0
\(547\) 0.846151i 0.0361788i −0.999836 0.0180894i \(-0.994242\pi\)
0.999836 0.0180894i \(-0.00575835\pi\)
\(548\) 0 0
\(549\) 11.3590 0.484788
\(550\) 0 0
\(551\) 14.4715 0.616508
\(552\) 0 0
\(553\) 49.9503i 2.12410i
\(554\) 0 0
\(555\) −3.20176 18.2551i −0.135907 0.774884i
\(556\) 0 0
\(557\) 19.3532i 0.820020i −0.912081 0.410010i \(-0.865525\pi\)
0.912081 0.410010i \(-0.134475\pi\)
\(558\) 0 0
\(559\) −13.1775 −0.557348
\(560\) 0 0
\(561\) 8.86433 0.374252
\(562\) 0 0
\(563\) 29.3647i 1.23758i 0.785558 + 0.618788i \(0.212376\pi\)
−0.785558 + 0.618788i \(0.787624\pi\)
\(564\) 0 0
\(565\) −21.5275 + 3.77572i −0.905669 + 0.158846i
\(566\) 0 0
\(567\) 17.5988i 0.739082i
\(568\) 0 0
\(569\) −6.41900 −0.269098 −0.134549 0.990907i \(-0.542959\pi\)
−0.134549 + 0.990907i \(0.542959\pi\)
\(570\) 0 0
\(571\) −35.3009 −1.47730 −0.738648 0.674092i \(-0.764535\pi\)
−0.738648 + 0.674092i \(0.764535\pi\)
\(572\) 0 0
\(573\) 24.1206i 1.00765i
\(574\) 0 0
\(575\) 1.70156 + 4.70156i 0.0709600 + 0.196069i
\(576\) 0 0
\(577\) 6.96339i 0.289890i 0.989440 + 0.144945i \(0.0463004\pi\)
−0.989440 + 0.144945i \(0.953700\pi\)
\(578\) 0 0
\(579\) −9.40312 −0.390781
\(580\) 0 0
\(581\) −6.60134 −0.273870
\(582\) 0 0
\(583\) 14.7982i 0.612880i
\(584\) 0 0
\(585\) −2.54693 + 0.446707i −0.105303 + 0.0184691i
\(586\) 0 0
\(587\) 23.7392i 0.979823i 0.871772 + 0.489912i \(0.162971\pi\)
−0.871772 + 0.489912i \(0.837029\pi\)
\(588\) 0 0
\(589\) 8.00256 0.329740
\(590\) 0 0
\(591\) −25.7066 −1.05743
\(592\) 0 0
\(593\) 23.1612i 0.951116i 0.879684 + 0.475558i \(0.157754\pi\)
−0.879684 + 0.475558i \(0.842246\pi\)
\(594\) 0 0
\(595\) −5.81616 33.1612i −0.238439 1.35948i
\(596\) 0 0
\(597\) 5.44526i 0.222860i
\(598\) 0 0
\(599\) 33.1344 1.35383 0.676916 0.736060i \(-0.263316\pi\)
0.676916 + 0.736060i \(0.263316\pi\)
\(600\) 0 0
\(601\) 40.0432 1.63340 0.816698 0.577065i \(-0.195802\pi\)
0.816698 + 0.577065i \(0.195802\pi\)
\(602\) 0 0
\(603\) 6.07186i 0.247265i
\(604\) 0 0
\(605\) 3.56600 + 20.3317i 0.144978 + 0.826603i
\(606\) 0 0
\(607\) 1.81294i 0.0735849i −0.999323 0.0367925i \(-0.988286\pi\)
0.999323 0.0367925i \(-0.0117140\pi\)
\(608\) 0 0
\(609\) −20.1794 −0.817713
\(610\) 0 0
\(611\) −7.63232 −0.308771
\(612\) 0 0
\(613\) 11.9329i 0.481964i −0.970530 0.240982i \(-0.922531\pi\)
0.970530 0.240982i \(-0.0774694\pi\)
\(614\) 0 0
\(615\) 16.3255 2.86335i 0.658309 0.115461i
\(616\) 0 0
\(617\) 16.5923i 0.667982i 0.942576 + 0.333991i \(0.108396\pi\)
−0.942576 + 0.333991i \(0.891604\pi\)
\(618\) 0 0
\(619\) −1.43811 −0.0578025 −0.0289013 0.999582i \(-0.509201\pi\)
−0.0289013 + 0.999582i \(0.509201\pi\)
\(620\) 0 0
\(621\) −5.65339 −0.226863
\(622\) 0 0
\(623\) 52.6307i 2.10861i
\(624\) 0 0
\(625\) 19.2094 16.0000i 0.768375 0.640000i
\(626\) 0 0
\(627\) 6.46896i 0.258346i
\(628\) 0 0
\(629\) 26.5436 1.05836
\(630\) 0 0
\(631\) −7.67446 −0.305515 −0.152758 0.988264i \(-0.548815\pi\)
−0.152758 + 0.988264i \(0.548815\pi\)
\(632\) 0 0
\(633\) 34.5714i 1.37409i
\(634\) 0 0
\(635\) 2.26287 0.396885i 0.0897991 0.0157499i
\(636\) 0 0
\(637\) 4.55730i 0.180567i
\(638\) 0 0
\(639\) −0.243640 −0.00963826
\(640\) 0 0
\(641\) −23.0562 −0.910665 −0.455332 0.890322i \(-0.650480\pi\)
−0.455332 + 0.890322i \(0.650480\pi\)
\(642\) 0 0
\(643\) 9.51595i 0.375272i 0.982239 + 0.187636i \(0.0600826\pi\)
−0.982239 + 0.187636i \(0.939917\pi\)
\(644\) 0 0
\(645\) 5.83368 + 33.2611i 0.229701 + 1.30965i
\(646\) 0 0
\(647\) 38.9857i 1.53269i 0.642432 + 0.766343i \(0.277926\pi\)
−0.642432 + 0.766343i \(0.722074\pi\)
\(648\) 0 0
\(649\) 3.62076 0.142127
\(650\) 0 0
\(651\) −11.1590 −0.437354
\(652\) 0 0
\(653\) 7.32529i 0.286661i 0.989675 + 0.143330i \(0.0457811\pi\)
−0.989675 + 0.143330i \(0.954219\pi\)
\(654\) 0 0
\(655\) 4.74692 + 27.0649i 0.185477 + 1.05751i
\(656\) 0 0
\(657\) 4.83617i 0.188677i
\(658\) 0 0
\(659\) −20.7177 −0.807048 −0.403524 0.914969i \(-0.632215\pi\)
−0.403524 + 0.914969i \(0.632215\pi\)
\(660\) 0 0
\(661\) 12.9749 0.504666 0.252333 0.967640i \(-0.418802\pi\)
0.252333 + 0.967640i \(0.418802\pi\)
\(662\) 0 0
\(663\) 8.39098i 0.325879i
\(664\) 0 0
\(665\) −24.2002 + 4.24448i −0.938443 + 0.164594i
\(666\) 0 0
\(667\) 4.29207i 0.166190i
\(668\) 0 0
\(669\) −29.1561 −1.12724
\(670\) 0 0
\(671\) −16.4443 −0.634827
\(672\) 0 0
\(673\) 15.8660i 0.611589i −0.952098 0.305794i \(-0.901078\pi\)
0.952098 0.305794i \(-0.0989220\pi\)
\(674\) 0 0
\(675\) 9.61959 + 26.5798i 0.370258 + 1.02306i
\(676\) 0 0
\(677\) 23.2787i 0.894675i −0.894365 0.447337i \(-0.852372\pi\)
0.894365 0.447337i \(-0.147628\pi\)
\(678\) 0 0
\(679\) −28.0920 −1.07807
\(680\) 0 0
\(681\) −2.31793 −0.0888234
\(682\) 0 0
\(683\) 27.5797i 1.05531i 0.849460 + 0.527654i \(0.176928\pi\)
−0.849460 + 0.527654i \(0.823072\pi\)
\(684\) 0 0
\(685\) 19.4439 3.41027i 0.742913 0.130300i
\(686\) 0 0
\(687\) 27.2698i 1.04041i
\(688\) 0 0
\(689\) −14.0080 −0.533663
\(690\) 0 0
\(691\) −8.61472 −0.327719 −0.163860 0.986484i \(-0.552394\pi\)
−0.163860 + 0.986484i \(0.552394\pi\)
\(692\) 0 0
\(693\) 3.98116i 0.151232i
\(694\) 0 0
\(695\) 4.46286 + 25.4453i 0.169286 + 0.965194i
\(696\) 0 0
\(697\) 23.7380i 0.899141i
\(698\) 0 0
\(699\) −27.4274 −1.03740
\(700\) 0 0
\(701\) 17.4254 0.658148 0.329074 0.944304i \(-0.393264\pi\)
0.329074 + 0.944304i \(0.393264\pi\)
\(702\) 0 0
\(703\) 19.3708i 0.730584i
\(704\) 0 0
\(705\) 3.37884 + 19.2646i 0.127254 + 0.725548i
\(706\) 0 0
\(707\) 47.2321i 1.77635i
\(708\) 0 0
\(709\) 6.42019 0.241115 0.120558 0.992706i \(-0.461532\pi\)
0.120558 + 0.992706i \(0.461532\pi\)
\(710\) 0 0
\(711\) −14.0801 −0.528044
\(712\) 0 0
\(713\) 2.37346i 0.0888867i
\(714\) 0 0
\(715\) 3.68719 0.646697i 0.137893 0.0241851i
\(716\) 0 0
\(717\) 40.8842i 1.52685i
\(718\) 0 0
\(719\) 1.50079 0.0559699 0.0279849 0.999608i \(-0.491091\pi\)
0.0279849 + 0.999608i \(0.491091\pi\)
\(720\) 0 0
\(721\) −60.4226 −2.25026
\(722\) 0 0
\(723\) 9.16318i 0.340782i
\(724\) 0 0
\(725\) 20.1794 7.30323i 0.749446 0.271235i
\(726\) 0 0
\(727\) 6.97867i 0.258825i 0.991591 + 0.129412i \(0.0413091\pi\)
−0.991591 + 0.129412i \(0.958691\pi\)
\(728\) 0 0
\(729\) −29.4292 −1.08997
\(730\) 0 0
\(731\) −48.3630 −1.78877
\(732\) 0 0
\(733\) 3.61138i 0.133389i −0.997773 0.0666947i \(-0.978755\pi\)
0.997773 0.0666947i \(-0.0212453\pi\)
\(734\) 0 0
\(735\) 11.5030 2.01752i 0.424295 0.0744174i
\(736\) 0 0
\(737\) 8.79022i 0.323792i
\(738\) 0 0
\(739\) 5.24953 0.193107 0.0965536 0.995328i \(-0.469218\pi\)
0.0965536 + 0.995328i \(0.469218\pi\)
\(740\) 0 0
\(741\) 6.12352 0.224953
\(742\) 0 0
\(743\) 2.72603i 0.100008i −0.998749 0.0500042i \(-0.984077\pi\)
0.998749 0.0500042i \(-0.0159235\pi\)
\(744\) 0 0
\(745\) −4.30067 24.5205i −0.157564 0.898363i
\(746\) 0 0
\(747\) 1.86080i 0.0680831i
\(748\) 0 0
\(749\) 14.6013 0.533521
\(750\) 0 0
\(751\) 20.6729 0.754364 0.377182 0.926139i \(-0.376893\pi\)
0.377182 + 0.926139i \(0.376893\pi\)
\(752\) 0 0
\(753\) 28.4545i 1.03694i
\(754\) 0 0
\(755\) −1.25072 7.13107i −0.0455185 0.259526i
\(756\) 0 0
\(757\) 8.87759i 0.322661i −0.986900 0.161331i \(-0.948421\pi\)
0.986900 0.161331i \(-0.0515786\pi\)
\(758\) 0 0
\(759\) 1.91861 0.0696413
\(760\) 0 0
\(761\) 31.8816 1.15571 0.577853 0.816141i \(-0.303891\pi\)
0.577853 + 0.816141i \(0.303891\pi\)
\(762\) 0 0
\(763\) 55.8235i 2.02095i
\(764\) 0 0
\(765\) −9.34754 + 1.63947i −0.337961 + 0.0592752i
\(766\) 0 0
\(767\) 3.42741i 0.123757i
\(768\) 0 0
\(769\) −37.6697 −1.35841 −0.679203 0.733951i \(-0.737674\pi\)
−0.679203 + 0.733951i \(0.737674\pi\)
\(770\) 0 0
\(771\) −1.70386 −0.0613631
\(772\) 0 0
\(773\) 6.14066i 0.220864i −0.993884 0.110432i \(-0.964777\pi\)
0.993884 0.110432i \(-0.0352235\pi\)
\(774\) 0 0
\(775\) 11.1590 4.03859i 0.400842 0.145070i
\(776\) 0 0
\(777\) 27.0112i 0.969020i
\(778\) 0 0
\(779\) 17.3234 0.620674
\(780\) 0 0
\(781\) 0.352718 0.0126212
\(782\) 0 0
\(783\) 24.2648i 0.867152i
\(784\) 0 0
\(785\) 38.8628 6.81616i 1.38707 0.243279i
\(786\) 0 0
\(787\) 17.9373i 0.639397i 0.947519 + 0.319698i \(0.103582\pi\)
−0.947519 + 0.319698i \(0.896418\pi\)
\(788\) 0 0
\(789\) −35.0849 −1.24906
\(790\) 0 0
\(791\) 31.8533 1.13257
\(792\) 0 0
\(793\) 15.5662i 0.552773i
\(794\) 0 0
\(795\) 6.20136 + 35.3574i 0.219940 + 1.25400i
\(796\) 0 0
\(797\) 6.03367i 0.213724i 0.994274 + 0.106862i \(0.0340802\pi\)
−0.994274 + 0.106862i \(0.965920\pi\)
\(798\) 0 0
\(799\) −28.0116 −0.990978
\(800\) 0 0
\(801\) −14.8357 −0.524192
\(802\) 0 0