Properties

Label 1840.2.e.d.369.3
Level $1840$
Weight $2$
Character 1840.369
Analytic conductor $14.692$
Analytic rank $0$
Dimension $8$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 1840 = 2^{4} \cdot 5 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1840.e (of order \(2\), degree \(1\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(14.6924739719\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.0.527896576.2
Defining polynomial: \(x^{8} - 2 x^{7} + 2 x^{6} + 2 x^{5} + 7 x^{4} - 10 x^{3} + 8 x^{2} + 4 x + 1\)
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 115)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 369.3
Root \(-0.199724 + 0.199724i\) of defining polynomial
Character \(\chi\) \(=\) 1840.369
Dual form 1840.2.e.d.369.6

$q$-expansion

\(f(q)\) \(=\) \(q-1.39945i q^{3} +(-1.19972 + 1.88697i) q^{5} +4.60747i q^{7} +1.04155 q^{9} +O(q^{10})\) \(q-1.39945i q^{3} +(-1.19972 + 1.88697i) q^{5} +4.60747i q^{7} +1.04155 q^{9} -1.56592 q^{11} +2.60055i q^{13} +(2.64072 + 1.67895i) q^{15} -0.559006i q^{17} -1.16647 q^{19} +6.44791 q^{21} +1.00000i q^{23} +(-2.12133 - 4.52769i) q^{25} -5.65593i q^{27} +3.17339 q^{29} -10.0554 q^{31} +2.19143i q^{33} +(-8.69416 - 5.52769i) q^{35} -5.07341i q^{37} +3.63934 q^{39} -11.8127 q^{41} +2.76426i q^{43} +(-1.24957 + 1.96537i) q^{45} +9.32298i q^{47} -14.2288 q^{49} -0.782299 q^{51} -5.54789i q^{53} +(1.87867 - 2.95485i) q^{55} +1.63242i q^{57} +3.84044 q^{59} -4.29832 q^{61} +4.79889i q^{63} +(-4.90717 - 3.11994i) q^{65} +2.60747i q^{67} +1.39945 q^{69} -7.89582 q^{71} +9.90579i q^{73} +(-6.33626 + 2.96868i) q^{75} -7.21494i q^{77} +12.0485 q^{79} -4.79054 q^{81} -13.3856i q^{83} +(1.05483 + 0.670652i) q^{85} -4.44099i q^{87} +7.71551 q^{89} -11.9820 q^{91} +14.0720i q^{93} +(1.39945 - 2.20111i) q^{95} +2.62130i q^{97} -1.63098 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8q - 6q^{5} - 8q^{9} + O(q^{10}) \) \( 8q - 6q^{5} - 8q^{9} - 4q^{11} - 6q^{15} - 8q^{19} - 4q^{21} - 16q^{25} - 8q^{29} - 28q^{35} - 16q^{39} - 16q^{41} + 24q^{45} - 20q^{51} + 16q^{55} - 16q^{61} - 14q^{65} + 4q^{69} + 48q^{71} + 48q^{79} + 16q^{81} + 12q^{85} + 16q^{89} - 52q^{91} + 4q^{95} + 72q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1840\mathbb{Z}\right)^\times\).

\(n\) \(737\) \(1151\) \(1201\) \(1381\)
\(\chi(n)\) \(-1\) \(1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.39945i 0.807971i −0.914765 0.403986i \(-0.867625\pi\)
0.914765 0.403986i \(-0.132375\pi\)
\(4\) 0 0
\(5\) −1.19972 + 1.88697i −0.536533 + 0.843879i
\(6\) 0 0
\(7\) 4.60747i 1.74146i 0.491762 + 0.870730i \(0.336353\pi\)
−0.491762 + 0.870730i \(0.663647\pi\)
\(8\) 0 0
\(9\) 1.04155 0.347182
\(10\) 0 0
\(11\) −1.56592 −0.472143 −0.236072 0.971736i \(-0.575860\pi\)
−0.236072 + 0.971736i \(0.575860\pi\)
\(12\) 0 0
\(13\) 2.60055i 0.721264i 0.932708 + 0.360632i \(0.117439\pi\)
−0.932708 + 0.360632i \(0.882561\pi\)
\(14\) 0 0
\(15\) 2.64072 + 1.67895i 0.681830 + 0.433503i
\(16\) 0 0
\(17\) 0.559006i 0.135579i −0.997700 0.0677894i \(-0.978405\pi\)
0.997700 0.0677894i \(-0.0215946\pi\)
\(18\) 0 0
\(19\) −1.16647 −0.267608 −0.133804 0.991008i \(-0.542719\pi\)
−0.133804 + 0.991008i \(0.542719\pi\)
\(20\) 0 0
\(21\) 6.44791 1.40705
\(22\) 0 0
\(23\) 1.00000i 0.208514i
\(24\) 0 0
\(25\) −2.12133 4.52769i −0.424265 0.905538i
\(26\) 0 0
\(27\) 5.65593i 1.08848i
\(28\) 0 0
\(29\) 3.17339 0.589284 0.294642 0.955608i \(-0.404800\pi\)
0.294642 + 0.955608i \(0.404800\pi\)
\(30\) 0 0
\(31\) −10.0554 −1.80600 −0.903000 0.429641i \(-0.858640\pi\)
−0.903000 + 0.429641i \(0.858640\pi\)
\(32\) 0 0
\(33\) 2.19143i 0.381478i
\(34\) 0 0
\(35\) −8.69416 5.52769i −1.46958 0.934350i
\(36\) 0 0
\(37\) 5.07341i 0.834064i −0.908892 0.417032i \(-0.863070\pi\)
0.908892 0.417032i \(-0.136930\pi\)
\(38\) 0 0
\(39\) 3.63934 0.582760
\(40\) 0 0
\(41\) −11.8127 −1.84484 −0.922419 0.386190i \(-0.873791\pi\)
−0.922419 + 0.386190i \(0.873791\pi\)
\(42\) 0 0
\(43\) 2.76426i 0.421546i 0.977535 + 0.210773i \(0.0675982\pi\)
−0.977535 + 0.210773i \(0.932402\pi\)
\(44\) 0 0
\(45\) −1.24957 + 1.96537i −0.186275 + 0.292980i
\(46\) 0 0
\(47\) 9.32298i 1.35990i 0.733260 + 0.679948i \(0.237998\pi\)
−0.733260 + 0.679948i \(0.762002\pi\)
\(48\) 0 0
\(49\) −14.2288 −2.03268
\(50\) 0 0
\(51\) −0.782299 −0.109544
\(52\) 0 0
\(53\) 5.54789i 0.762061i −0.924562 0.381030i \(-0.875569\pi\)
0.924562 0.381030i \(-0.124431\pi\)
\(54\) 0 0
\(55\) 1.87867 2.95485i 0.253320 0.398432i
\(56\) 0 0
\(57\) 1.63242i 0.216219i
\(58\) 0 0
\(59\) 3.84044 0.499983 0.249991 0.968248i \(-0.419572\pi\)
0.249991 + 0.968248i \(0.419572\pi\)
\(60\) 0 0
\(61\) −4.29832 −0.550343 −0.275172 0.961395i \(-0.588735\pi\)
−0.275172 + 0.961395i \(0.588735\pi\)
\(62\) 0 0
\(63\) 4.79889i 0.604604i
\(64\) 0 0
\(65\) −4.90717 3.11994i −0.608659 0.386981i
\(66\) 0 0
\(67\) 2.60747i 0.318553i 0.987234 + 0.159277i \(0.0509161\pi\)
−0.987234 + 0.159277i \(0.949084\pi\)
\(68\) 0 0
\(69\) 1.39945 0.168474
\(70\) 0 0
\(71\) −7.89582 −0.937062 −0.468531 0.883447i \(-0.655217\pi\)
−0.468531 + 0.883447i \(0.655217\pi\)
\(72\) 0 0
\(73\) 9.90579i 1.15938i 0.814835 + 0.579692i \(0.196827\pi\)
−0.814835 + 0.579692i \(0.803173\pi\)
\(74\) 0 0
\(75\) −6.33626 + 2.96868i −0.731649 + 0.342794i
\(76\) 0 0
\(77\) 7.21494i 0.822219i
\(78\) 0 0
\(79\) 12.0485 1.35556 0.677779 0.735266i \(-0.262943\pi\)
0.677779 + 0.735266i \(0.262943\pi\)
\(80\) 0 0
\(81\) −4.79054 −0.532282
\(82\) 0 0
\(83\) 13.3856i 1.46926i −0.678470 0.734628i \(-0.737357\pi\)
0.678470 0.734628i \(-0.262643\pi\)
\(84\) 0 0
\(85\) 1.05483 + 0.670652i 0.114412 + 0.0727425i
\(86\) 0 0
\(87\) 4.44099i 0.476125i
\(88\) 0 0
\(89\) 7.71551 0.817843 0.408921 0.912570i \(-0.365905\pi\)
0.408921 + 0.912570i \(0.365905\pi\)
\(90\) 0 0
\(91\) −11.9820 −1.25605
\(92\) 0 0
\(93\) 14.0720i 1.45920i
\(94\) 0 0
\(95\) 1.39945 2.20111i 0.143580 0.225829i
\(96\) 0 0
\(97\) 2.62130i 0.266153i 0.991106 + 0.133076i \(0.0424856\pi\)
−0.991106 + 0.133076i \(0.957514\pi\)
\(98\) 0 0
\(99\) −1.63098 −0.163920
\(100\) 0 0
\(101\) −8.88199 −0.883791 −0.441895 0.897067i \(-0.645694\pi\)
−0.441895 + 0.897067i \(0.645694\pi\)
\(102\) 0 0
\(103\) 8.65593i 0.852894i 0.904512 + 0.426447i \(0.140235\pi\)
−0.904512 + 0.426447i \(0.859765\pi\)
\(104\) 0 0
\(105\) −7.73571 + 12.1670i −0.754928 + 1.18738i
\(106\) 0 0
\(107\) 6.91662i 0.668655i −0.942457 0.334327i \(-0.891491\pi\)
0.942457 0.334327i \(-0.108509\pi\)
\(108\) 0 0
\(109\) 6.84736 0.655858 0.327929 0.944702i \(-0.393649\pi\)
0.327929 + 0.944702i \(0.393649\pi\)
\(110\) 0 0
\(111\) −7.09998 −0.673900
\(112\) 0 0
\(113\) 4.60747i 0.433434i −0.976234 0.216717i \(-0.930465\pi\)
0.976234 0.216717i \(-0.0695349\pi\)
\(114\) 0 0
\(115\) −1.88697 1.19972i −0.175961 0.111875i
\(116\) 0 0
\(117\) 2.70860i 0.250410i
\(118\) 0 0
\(119\) 2.57560 0.236105
\(120\) 0 0
\(121\) −8.54789 −0.777081
\(122\) 0 0
\(123\) 16.5313i 1.49058i
\(124\) 0 0
\(125\) 11.0886 + 1.42909i 0.991797 + 0.127822i
\(126\) 0 0
\(127\) 11.5324i 1.02334i 0.859182 + 0.511669i \(0.170973\pi\)
−0.859182 + 0.511669i \(0.829027\pi\)
\(128\) 0 0
\(129\) 3.86844 0.340597
\(130\) 0 0
\(131\) 12.9639 1.13266 0.566332 0.824177i \(-0.308362\pi\)
0.566332 + 0.824177i \(0.308362\pi\)
\(132\) 0 0
\(133\) 5.37450i 0.466028i
\(134\) 0 0
\(135\) 10.6726 + 6.78556i 0.918550 + 0.584008i
\(136\) 0 0
\(137\) 17.1457i 1.46485i 0.680846 + 0.732427i \(0.261612\pi\)
−0.680846 + 0.732427i \(0.738388\pi\)
\(138\) 0 0
\(139\) −19.4798 −1.65225 −0.826127 0.563485i \(-0.809460\pi\)
−0.826127 + 0.563485i \(0.809460\pi\)
\(140\) 0 0
\(141\) 13.0470 1.09876
\(142\) 0 0
\(143\) 4.07226i 0.340540i
\(144\) 0 0
\(145\) −3.80719 + 5.98810i −0.316170 + 0.497285i
\(146\) 0 0
\(147\) 19.9124i 1.64235i
\(148\) 0 0
\(149\) −13.2288 −1.08374 −0.541872 0.840461i \(-0.682284\pi\)
−0.541872 + 0.840461i \(0.682284\pi\)
\(150\) 0 0
\(151\) 2.50749 0.204057 0.102028 0.994781i \(-0.467467\pi\)
0.102028 + 0.994781i \(0.467467\pi\)
\(152\) 0 0
\(153\) 0.582231i 0.0470706i
\(154\) 0 0
\(155\) 12.0637 18.9742i 0.968978 1.52405i
\(156\) 0 0
\(157\) 8.52824i 0.680628i 0.940312 + 0.340314i \(0.110533\pi\)
−0.940312 + 0.340314i \(0.889467\pi\)
\(158\) 0 0
\(159\) −7.76398 −0.615723
\(160\) 0 0
\(161\) −4.60747 −0.363119
\(162\) 0 0
\(163\) 7.73240i 0.605648i 0.953046 + 0.302824i \(0.0979294\pi\)
−0.953046 + 0.302824i \(0.902071\pi\)
\(164\) 0 0
\(165\) −4.13516 2.62911i −0.321922 0.204676i
\(166\) 0 0
\(167\) 14.3064i 1.10706i −0.832829 0.553531i \(-0.813280\pi\)
0.832829 0.553531i \(-0.186720\pi\)
\(168\) 0 0
\(169\) 6.23713 0.479779
\(170\) 0 0
\(171\) −1.21494 −0.0929086
\(172\) 0 0
\(173\) 15.4714i 1.17627i 0.808763 + 0.588135i \(0.200138\pi\)
−0.808763 + 0.588135i \(0.799862\pi\)
\(174\) 0 0
\(175\) 20.8612 9.77394i 1.57696 0.738841i
\(176\) 0 0
\(177\) 5.37450i 0.403972i
\(178\) 0 0
\(179\) 5.98612 0.447424 0.223712 0.974655i \(-0.428183\pi\)
0.223712 + 0.974655i \(0.428183\pi\)
\(180\) 0 0
\(181\) −5.69892 −0.423597 −0.211799 0.977313i \(-0.567932\pi\)
−0.211799 + 0.977313i \(0.567932\pi\)
\(182\) 0 0
\(183\) 6.01527i 0.444662i
\(184\) 0 0
\(185\) 9.57339 + 6.08670i 0.703850 + 0.447503i
\(186\) 0 0
\(187\) 0.875359i 0.0640126i
\(188\) 0 0
\(189\) 26.0595 1.89555
\(190\) 0 0
\(191\) 8.34402 0.603752 0.301876 0.953347i \(-0.402387\pi\)
0.301876 + 0.953347i \(0.402387\pi\)
\(192\) 0 0
\(193\) 16.0250i 1.15350i 0.816920 + 0.576751i \(0.195680\pi\)
−0.816920 + 0.576751i \(0.804320\pi\)
\(194\) 0 0
\(195\) −4.36620 + 6.86733i −0.312670 + 0.491779i
\(196\) 0 0
\(197\) 5.78893i 0.412444i −0.978505 0.206222i \(-0.933883\pi\)
0.978505 0.206222i \(-0.0661169\pi\)
\(198\) 0 0
\(199\) −18.8085 −1.33330 −0.666651 0.745370i \(-0.732273\pi\)
−0.666651 + 0.745370i \(0.732273\pi\)
\(200\) 0 0
\(201\) 3.64902 0.257382
\(202\) 0 0
\(203\) 14.6213i 1.02621i
\(204\) 0 0
\(205\) 14.1720 22.2903i 0.989816 1.55682i
\(206\) 0 0
\(207\) 1.04155i 0.0723925i
\(208\) 0 0
\(209\) 1.82661 0.126349
\(210\) 0 0
\(211\) 4.88199 0.336090 0.168045 0.985779i \(-0.446255\pi\)
0.168045 + 0.985779i \(0.446255\pi\)
\(212\) 0 0
\(213\) 11.0498i 0.757119i
\(214\) 0 0
\(215\) −5.21609 3.31635i −0.355734 0.226173i
\(216\) 0 0
\(217\) 46.3299i 3.14508i
\(218\) 0 0
\(219\) 13.8626 0.936750
\(220\) 0 0
\(221\) 1.45372 0.0977880
\(222\) 0 0
\(223\) 13.4786i 0.902596i 0.892373 + 0.451298i \(0.149039\pi\)
−0.892373 + 0.451298i \(0.850961\pi\)
\(224\) 0 0
\(225\) −2.20946 4.71580i −0.147297 0.314387i
\(226\) 0 0
\(227\) 13.6894i 0.908598i 0.890849 + 0.454299i \(0.150110\pi\)
−0.890849 + 0.454299i \(0.849890\pi\)
\(228\) 0 0
\(229\) −27.3964 −1.81040 −0.905202 0.424981i \(-0.860281\pi\)
−0.905202 + 0.424981i \(0.860281\pi\)
\(230\) 0 0
\(231\) −10.0969 −0.664329
\(232\) 0 0
\(233\) 0.0387841i 0.00254083i −0.999999 0.00127041i \(-0.999596\pi\)
0.999999 0.00127041i \(-0.000404386\pi\)
\(234\) 0 0
\(235\) −17.5922 11.1850i −1.14759 0.729629i
\(236\) 0 0
\(237\) 16.8612i 1.09525i
\(238\) 0 0
\(239\) −13.9030 −0.899312 −0.449656 0.893202i \(-0.648453\pi\)
−0.449656 + 0.893202i \(0.648453\pi\)
\(240\) 0 0
\(241\) −11.9972 −0.772810 −0.386405 0.922329i \(-0.626283\pi\)
−0.386405 + 0.922329i \(0.626283\pi\)
\(242\) 0 0
\(243\) 10.2637i 0.658416i
\(244\) 0 0
\(245\) 17.0706 26.8493i 1.09060 1.71534i
\(246\) 0 0
\(247\) 3.03348i 0.193016i
\(248\) 0 0
\(249\) −18.7324 −1.18712
\(250\) 0 0
\(251\) 17.7806 1.12230 0.561150 0.827714i \(-0.310359\pi\)
0.561150 + 0.827714i \(0.310359\pi\)
\(252\) 0 0
\(253\) 1.56592i 0.0984487i
\(254\) 0 0
\(255\) 0.938543 1.47618i 0.0587738 0.0924418i
\(256\) 0 0
\(257\) 10.2315i 0.638226i −0.947717 0.319113i \(-0.896615\pi\)
0.947717 0.319113i \(-0.103385\pi\)
\(258\) 0 0
\(259\) 23.3756 1.45249
\(260\) 0 0
\(261\) 3.30524 0.204589
\(262\) 0 0
\(263\) 3.99856i 0.246562i 0.992372 + 0.123281i \(0.0393416\pi\)
−0.992372 + 0.123281i \(0.960658\pi\)
\(264\) 0 0
\(265\) 10.4687 + 6.65593i 0.643088 + 0.408871i
\(266\) 0 0
\(267\) 10.7975i 0.660794i
\(268\) 0 0
\(269\) 2.88084 0.175648 0.0878239 0.996136i \(-0.472009\pi\)
0.0878239 + 0.996136i \(0.472009\pi\)
\(270\) 0 0
\(271\) −14.1944 −0.862250 −0.431125 0.902292i \(-0.641883\pi\)
−0.431125 + 0.902292i \(0.641883\pi\)
\(272\) 0 0
\(273\) 16.7681i 1.01485i
\(274\) 0 0
\(275\) 3.32183 + 7.09001i 0.200314 + 0.427544i
\(276\) 0 0
\(277\) 9.13576i 0.548915i −0.961599 0.274457i \(-0.911502\pi\)
0.961599 0.274457i \(-0.0884982\pi\)
\(278\) 0 0
\(279\) −10.4731 −0.627011
\(280\) 0 0
\(281\) 14.8640 0.886709 0.443355 0.896346i \(-0.353788\pi\)
0.443355 + 0.896346i \(0.353788\pi\)
\(282\) 0 0
\(283\) 3.03878i 0.180637i −0.995913 0.0903185i \(-0.971212\pi\)
0.995913 0.0903185i \(-0.0287885\pi\)
\(284\) 0 0
\(285\) −3.08033 1.95845i −0.182463 0.116009i
\(286\) 0 0
\(287\) 54.4268i 3.21271i
\(288\) 0 0
\(289\) 16.6875 0.981618
\(290\) 0 0
\(291\) 3.66837 0.215044
\(292\) 0 0
\(293\) 19.2288i 1.12336i −0.827356 0.561678i \(-0.810156\pi\)
0.827356 0.561678i \(-0.189844\pi\)
\(294\) 0 0
\(295\) −4.60747 + 7.24681i −0.268257 + 0.421925i
\(296\) 0 0
\(297\) 8.85675i 0.513921i
\(298\) 0 0
\(299\) −2.60055 −0.150394
\(300\) 0 0
\(301\) −12.7363 −0.734106
\(302\) 0 0
\(303\) 12.4299i 0.714078i
\(304\) 0 0
\(305\) 5.15680 8.11081i 0.295277 0.464423i
\(306\) 0 0
\(307\) 20.5395i 1.17225i −0.810220 0.586127i \(-0.800652\pi\)
0.810220 0.586127i \(-0.199348\pi\)
\(308\) 0 0
\(309\) 12.1135 0.689114
\(310\) 0 0
\(311\) 9.83929 0.557935 0.278967 0.960301i \(-0.410008\pi\)
0.278967 + 0.960301i \(0.410008\pi\)
\(312\) 0 0
\(313\) 22.4659i 1.26985i 0.772574 + 0.634925i \(0.218969\pi\)
−0.772574 + 0.634925i \(0.781031\pi\)
\(314\) 0 0
\(315\) −9.05538 5.75735i −0.510213 0.324390i
\(316\) 0 0
\(317\) 17.8404i 1.00202i 0.865442 + 0.501010i \(0.167038\pi\)
−0.865442 + 0.501010i \(0.832962\pi\)
\(318\) 0 0
\(319\) −4.96928 −0.278226
\(320\) 0 0
\(321\) −9.67944 −0.540254
\(322\) 0 0
\(323\) 0.652066i 0.0362819i
\(324\) 0 0
\(325\) 11.7745 5.51662i 0.653132 0.306007i
\(326\) 0 0
\(327\) 9.58252i 0.529914i
\(328\) 0 0
\(329\) −42.9554 −2.36821
\(330\) 0 0
\(331\) −13.3130 −0.731750 −0.365875 0.930664i \(-0.619230\pi\)
−0.365875 + 0.930664i \(0.619230\pi\)
\(332\) 0 0
\(333\) 5.28420i 0.289572i
\(334\) 0 0
\(335\) −4.92022 3.12824i −0.268820 0.170914i
\(336\) 0 0
\(337\) 3.08338i 0.167962i −0.996467 0.0839812i \(-0.973236\pi\)
0.996467 0.0839812i \(-0.0267636\pi\)
\(338\) 0 0
\(339\) −6.44791 −0.350202
\(340\) 0 0
\(341\) 15.7459 0.852691
\(342\) 0 0
\(343\) 33.3063i 1.79837i
\(344\) 0 0
\(345\) −1.67895 + 2.64072i −0.0903916 + 0.142171i
\(346\) 0 0
\(347\) 11.5617i 0.620666i 0.950628 + 0.310333i \(0.100441\pi\)
−0.950628 + 0.310333i \(0.899559\pi\)
\(348\) 0 0
\(349\) 16.4980 0.883117 0.441558 0.897232i \(-0.354426\pi\)
0.441558 + 0.897232i \(0.354426\pi\)
\(350\) 0 0
\(351\) 14.7085 0.785084
\(352\) 0 0
\(353\) 13.7252i 0.730518i 0.930906 + 0.365259i \(0.119020\pi\)
−0.930906 + 0.365259i \(0.880980\pi\)
\(354\) 0 0
\(355\) 9.47280 14.8992i 0.502764 0.790767i
\(356\) 0 0
\(357\) 3.60442i 0.190766i
\(358\) 0 0
\(359\) 15.1442 0.799282 0.399641 0.916672i \(-0.369135\pi\)
0.399641 + 0.916672i \(0.369135\pi\)
\(360\) 0 0
\(361\) −17.6393 −0.928386
\(362\) 0 0
\(363\) 11.9623i 0.627859i
\(364\) 0 0
\(365\) −18.6919 11.8842i −0.978381 0.622048i
\(366\) 0 0
\(367\) 11.2719i 0.588390i 0.955745 + 0.294195i \(0.0950515\pi\)
−0.955745 + 0.294195i \(0.904949\pi\)
\(368\) 0 0
\(369\) −12.3035 −0.640495
\(370\) 0 0
\(371\) 25.5617 1.32710
\(372\) 0 0
\(373\) 35.3296i 1.82930i −0.404252 0.914648i \(-0.632468\pi\)
0.404252 0.914648i \(-0.367532\pi\)
\(374\) 0 0
\(375\) 1.99994 15.5180i 0.103277 0.801344i
\(376\) 0 0
\(377\) 8.25257i 0.425029i
\(378\) 0 0
\(379\) −36.8598 −1.89336 −0.946679 0.322178i \(-0.895585\pi\)
−0.946679 + 0.322178i \(0.895585\pi\)
\(380\) 0 0
\(381\) 16.1390 0.826828
\(382\) 0 0
\(383\) 4.27065i 0.218220i 0.994030 + 0.109110i \(0.0348001\pi\)
−0.994030 + 0.109110i \(0.965200\pi\)
\(384\) 0 0
\(385\) 13.6144 + 8.65593i 0.693853 + 0.441147i
\(386\) 0 0
\(387\) 2.87911i 0.146353i
\(388\) 0 0
\(389\) 6.42988 0.326008 0.163004 0.986625i \(-0.447882\pi\)
0.163004 + 0.986625i \(0.447882\pi\)
\(390\) 0 0
\(391\) 0.559006 0.0282701
\(392\) 0 0
\(393\) 18.1423i 0.915160i
\(394\) 0 0
\(395\) −14.4548 + 22.7351i −0.727301 + 1.14393i
\(396\) 0 0
\(397\) 33.9539i 1.70410i 0.523462 + 0.852049i \(0.324640\pi\)
−0.523462 + 0.852049i \(0.675360\pi\)
\(398\) 0 0
\(399\) −7.52133 −0.376537
\(400\) 0 0
\(401\) 27.6421 1.38038 0.690189 0.723629i \(-0.257527\pi\)
0.690189 + 0.723629i \(0.257527\pi\)
\(402\) 0 0
\(403\) 26.1495i 1.30260i
\(404\) 0 0
\(405\) 5.74732 9.03961i 0.285587 0.449182i
\(406\) 0 0
\(407\) 7.94457i 0.393798i
\(408\) 0 0
\(409\) 13.2161 0.653494 0.326747 0.945112i \(-0.394048\pi\)
0.326747 + 0.945112i \(0.394048\pi\)
\(410\) 0 0
\(411\) 23.9945 1.18356
\(412\) 0 0
\(413\) 17.6947i 0.870700i
\(414\) 0 0
\(415\) 25.2582 + 16.0590i 1.23988 + 0.788304i
\(416\) 0 0
\(417\) 27.2609i 1.33497i
\(418\) 0 0
\(419\) 23.4772 1.14694 0.573468 0.819228i \(-0.305598\pi\)
0.573468 + 0.819228i \(0.305598\pi\)
\(420\) 0 0
\(421\) 23.1138 1.12650 0.563249 0.826287i \(-0.309551\pi\)
0.563249 + 0.826287i \(0.309551\pi\)
\(422\) 0 0
\(423\) 9.71032i 0.472132i
\(424\) 0 0
\(425\) −2.53100 + 1.18583i −0.122772 + 0.0575214i
\(426\) 0 0
\(427\) 19.8044i 0.958401i
\(428\) 0 0
\(429\) −5.69892 −0.275146
\(430\) 0 0
\(431\) 9.52709 0.458904 0.229452 0.973320i \(-0.426307\pi\)
0.229452 + 0.973320i \(0.426307\pi\)
\(432\) 0 0
\(433\) 2.79445i 0.134293i 0.997743 + 0.0671464i \(0.0213895\pi\)
−0.997743 + 0.0671464i \(0.978611\pi\)
\(434\) 0 0
\(435\) 8.38003 + 5.32797i 0.401792 + 0.255456i
\(436\) 0 0
\(437\) 1.16647i 0.0558001i
\(438\) 0 0
\(439\) 2.09578 0.100026 0.0500129 0.998749i \(-0.484074\pi\)
0.0500129 + 0.998749i \(0.484074\pi\)
\(440\) 0 0
\(441\) −14.8199 −0.705711
\(442\) 0 0
\(443\) 27.0870i 1.28694i 0.765471 + 0.643470i \(0.222506\pi\)
−0.765471 + 0.643470i \(0.777494\pi\)
\(444\) 0 0
\(445\) −9.25648 + 14.5590i −0.438799 + 0.690161i
\(446\) 0 0
\(447\) 18.5130i 0.875633i
\(448\) 0 0
\(449\) 0.470272 0.0221935 0.0110967 0.999938i \(-0.496468\pi\)
0.0110967 + 0.999938i \(0.496468\pi\)
\(450\) 0 0
\(451\) 18.4978 0.871028
\(452\) 0 0
\(453\) 3.50910i 0.164872i
\(454\) 0 0
\(455\) 14.3750 22.6096i 0.673913 1.05996i
\(456\) 0 0
\(457\) 5.83768i 0.273075i −0.990635 0.136538i \(-0.956403\pi\)
0.990635 0.136538i \(-0.0435974\pi\)
\(458\) 0 0
\(459\) −3.16170 −0.147575
\(460\) 0 0
\(461\) 10.8487 0.505277 0.252638 0.967561i \(-0.418702\pi\)
0.252638 + 0.967561i \(0.418702\pi\)
\(462\) 0 0
\(463\) 1.06258i 0.0493825i −0.999695 0.0246912i \(-0.992140\pi\)
0.999695 0.0246912i \(-0.00786026\pi\)
\(464\) 0 0
\(465\) −26.5534 16.8825i −1.23139 0.782906i
\(466\) 0 0
\(467\) 4.99885i 0.231319i −0.993289 0.115660i \(-0.963102\pi\)
0.993289 0.115660i \(-0.0368982\pi\)
\(468\) 0 0
\(469\) −12.0138 −0.554747
\(470\) 0 0
\(471\) 11.9348 0.549928
\(472\) 0 0
\(473\) 4.32862i 0.199030i
\(474\) 0 0
\(475\) 2.47447 + 5.28144i 0.113537 + 0.242329i
\(476\) 0 0
\(477\) 5.77838i 0.264574i
\(478\) 0 0
\(479\) 33.4283 1.52738 0.763688 0.645585i \(-0.223387\pi\)
0.763688 + 0.645585i \(0.223387\pi\)
\(480\) 0 0
\(481\) 13.1937 0.601580
\(482\) 0 0
\(483\) 6.44791i 0.293390i
\(484\) 0 0
\(485\) −4.94632 3.14484i −0.224601 0.142800i
\(486\) 0 0
\(487\) 10.7901i 0.488945i −0.969656 0.244473i \(-0.921385\pi\)
0.969656 0.244473i \(-0.0786148\pi\)
\(488\) 0 0
\(489\) 10.8211 0.489346
\(490\) 0 0
\(491\) −15.8127 −0.713618 −0.356809 0.934177i \(-0.616135\pi\)
−0.356809 + 0.934177i \(0.616135\pi\)
\(492\) 0 0
\(493\) 1.77394i 0.0798944i
\(494\) 0 0
\(495\) 1.95673 3.07762i 0.0879483 0.138329i
\(496\) 0 0
\(497\) 36.3798i 1.63185i
\(498\) 0 0
\(499\) 12.9711 0.580668 0.290334 0.956925i \(-0.406234\pi\)
0.290334 + 0.956925i \(0.406234\pi\)
\(500\) 0 0
\(501\) −20.0210 −0.894474
\(502\) 0 0
\(503\) 0.998849i 0.0445365i 0.999752 + 0.0222682i \(0.00708878\pi\)
−0.999752 + 0.0222682i \(0.992911\pi\)
\(504\) 0 0
\(505\) 10.6559 16.7601i 0.474183 0.745813i
\(506\) 0 0
\(507\) 8.72853i 0.387648i
\(508\) 0 0
\(509\) 20.6936 0.917228 0.458614 0.888636i \(-0.348346\pi\)
0.458614 + 0.888636i \(0.348346\pi\)
\(510\) 0 0
\(511\) −45.6406 −2.01902
\(512\) 0 0
\(513\) 6.59750i 0.291287i
\(514\) 0 0
\(515\) −16.3335 10.3847i −0.719740 0.457606i
\(516\) 0 0
\(517\) 14.5991i 0.642066i
\(518\) 0 0
\(519\) 21.6514 0.950393
\(520\) 0 0
\(521\) 39.2620 1.72010 0.860049 0.510212i \(-0.170433\pi\)
0.860049 + 0.510212i \(0.170433\pi\)
\(522\) 0 0
\(523\) 1.74162i 0.0761556i 0.999275 + 0.0380778i \(0.0121235\pi\)
−0.999275 + 0.0380778i \(0.987877\pi\)
\(524\) 0 0
\(525\) −13.6781 29.1941i −0.596962 1.27414i
\(526\) 0 0
\(527\) 5.62101i 0.244855i
\(528\) 0 0
\(529\) −1.00000 −0.0434783
\(530\) 0 0
\(531\) 4.00000 0.173585
\(532\) 0 0
\(533\) 30.7196i 1.33061i
\(534\) 0 0
\(535\) 13.0515 + 8.29803i 0.564264 + 0.358755i
\(536\) 0 0
\(537\) 8.37726i 0.361505i
\(538\) 0 0
\(539\) 22.2811 0.959717
\(540\) 0 0
\(541\) −8.18117 −0.351736 −0.175868 0.984414i \(-0.556273\pi\)
−0.175868 + 0.984414i \(0.556273\pi\)
\(542\) 0 0
\(543\) 7.97534i 0.342254i
\(544\) 0 0
\(545\) −8.21494 + 12.9208i −0.351889 + 0.553465i
\(546\) 0 0
\(547\) 24.2470i 1.03673i −0.855160 0.518364i \(-0.826541\pi\)
0.855160 0.518364i \(-0.173459\pi\)
\(548\) 0 0
\(549\) −4.47690 −0.191069
\(550\) 0 0
\(551\) −3.70168 −0.157697
\(552\) 0 0
\(553\) 55.5129i 2.36065i
\(554\) 0 0
\(555\) 8.51801 13.3975i 0.361569 0.568690i
\(556\) 0 0
\(557\) 35.0966i 1.48709i 0.668685 + 0.743546i \(0.266858\pi\)
−0.668685 + 0.743546i \(0.733142\pi\)
\(558\) 0 0
\(559\) −7.18862 −0.304046
\(560\) 0 0
\(561\) 1.22502 0.0517204
\(562\) 0 0
\(563\) 6.98179i 0.294247i 0.989118 + 0.147124i \(0.0470016\pi\)
−0.989118 + 0.147124i \(0.952998\pi\)
\(564\) 0 0
\(565\) 8.69416 + 5.52769i 0.365766 + 0.232552i
\(566\) 0 0
\(567\) 22.0723i 0.926948i
\(568\) 0 0
\(569\) −21.7280 −0.910886 −0.455443 0.890265i \(-0.650519\pi\)
−0.455443 + 0.890265i \(0.650519\pi\)
\(570\) 0 0
\(571\) 4.71016 0.197114 0.0985570 0.995131i \(-0.468577\pi\)
0.0985570 + 0.995131i \(0.468577\pi\)
\(572\) 0 0
\(573\) 11.6770i 0.487814i
\(574\) 0 0
\(575\) 4.52769 2.12133i 0.188818 0.0884654i
\(576\) 0 0
\(577\) 9.49085i 0.395109i 0.980292 + 0.197555i \(0.0633000\pi\)
−0.980292 + 0.197555i \(0.936700\pi\)
\(578\) 0 0
\(579\) 22.4261 0.931996
\(580\) 0 0
\(581\) 61.6736 2.55865
\(582\) 0 0
\(583\) 8.68756i 0.359802i
\(584\) 0 0
\(585\) −5.11105 3.24957i −0.211316 0.134353i
\(586\) 0 0
\(587\) 10.4952i 0.433184i 0.976262 + 0.216592i \(0.0694942\pi\)
−0.976262 + 0.216592i \(0.930506\pi\)
\(588\) 0 0
\(589\) 11.7293 0.483299
\(590\) 0 0
\(591\) −8.10130 −0.333243
\(592\) 0 0
\(593\) 18.2138i 0.747951i −0.927439 0.373975i \(-0.877994\pi\)
0.927439 0.373975i \(-0.122006\pi\)
\(594\) 0 0
\(595\) −3.09001 + 4.86009i −0.126678 + 0.199244i
\(596\) 0 0
\(597\) 26.3215i 1.07727i
\(598\) 0 0
\(599\) −20.8055 −0.850091 −0.425045 0.905172i \(-0.639742\pi\)
−0.425045 + 0.905172i \(0.639742\pi\)
\(600\) 0 0
\(601\) −47.4004 −1.93350 −0.966752 0.255716i \(-0.917689\pi\)
−0.966752 + 0.255716i \(0.917689\pi\)
\(602\) 0 0
\(603\) 2.71580i 0.110596i
\(604\) 0 0
\(605\) 10.2551 16.1296i 0.416929 0.655762i
\(606\) 0 0
\(607\) 5.77118i 0.234245i −0.993117 0.117123i \(-0.962633\pi\)
0.993117 0.117123i \(-0.0373670\pi\)
\(608\) 0 0
\(609\) 20.4617 0.829152
\(610\) 0 0
\(611\) −24.2449 −0.980844
\(612\) 0 0
\(613\) 38.9329i 1.57248i 0.617919 + 0.786242i \(0.287976\pi\)
−0.617919 + 0.786242i \(0.712024\pi\)
\(614\) 0 0
\(615\) −31.1941 19.8330i −1.25787 0.799743i
\(616\) 0 0
\(617\) 10.1653i 0.409241i −0.978841 0.204620i \(-0.934404\pi\)
0.978841 0.204620i \(-0.0655959\pi\)
\(618\) 0 0
\(619\) 2.09923 0.0843752 0.0421876 0.999110i \(-0.486567\pi\)
0.0421876 + 0.999110i \(0.486567\pi\)
\(620\) 0 0
\(621\) 5.65593 0.226965
\(622\) 0 0
\(623\) 35.5490i 1.42424i
\(624\) 0 0
\(625\) −16.0000 + 19.2094i −0.639998 + 0.768377i
\(626\) 0 0
\(627\) 2.55624i 0.102087i
\(628\) 0 0
\(629\) −2.83607 −0.113081
\(630\) 0 0
\(631\) 32.3066 1.28611 0.643053 0.765821i \(-0.277667\pi\)
0.643053 + 0.765821i \(0.277667\pi\)
\(632\) 0 0
\(633\) 6.83209i 0.271551i
\(634\) 0 0
\(635\) −21.7614 13.8357i −0.863575 0.549055i
\(636\) 0 0
\(637\) 37.0027i 1.46610i
\(638\) 0 0
\(639\) −8.22387 −0.325331
\(640\) 0 0
\(641\) 14.5758 0.575711 0.287856 0.957674i \(-0.407058\pi\)
0.287856 + 0.957674i \(0.407058\pi\)
\(642\) 0 0
\(643\) 42.5090i 1.67639i 0.545369 + 0.838196i \(0.316389\pi\)
−0.545369 + 0.838196i \(0.683611\pi\)
\(644\) 0 0
\(645\) −4.64106 + 7.29964i −0.182742 + 0.287423i
\(646\) 0 0
\(647\) 3.04979i 0.119900i −0.998201 0.0599498i \(-0.980906\pi\)
0.998201 0.0599498i \(-0.0190940\pi\)
\(648\) 0 0
\(649\) −6.01383 −0.236064
\(650\) 0 0
\(651\) −64.8362 −2.54113
\(652\) 0 0
\(653\) 17.9600i 0.702830i 0.936220 + 0.351415i \(0.114299\pi\)
−0.936220 + 0.351415i \(0.885701\pi\)
\(654\) 0 0
\(655\) −15.5531 + 24.4626i −0.607711 + 0.955832i
\(656\) 0 0
\(657\) 10.3173i 0.402518i
\(658\) 0 0
\(659\) 46.3411 1.80519 0.902597 0.430486i \(-0.141658\pi\)
0.902597 + 0.430486i \(0.141658\pi\)
\(660\) 0 0
\(661\) 1.23165 0.0479056 0.0239528 0.999713i \(-0.492375\pi\)
0.0239528 + 0.999713i \(0.492375\pi\)
\(662\) 0 0
\(663\) 2.03441i 0.0790099i
\(664\) 0 0
\(665\) 10.1415 + 6.44791i 0.393271 + 0.250039i
\(666\) 0 0
\(667\) 3.17339i 0.122874i
\(668\) 0 0
\(669\) 18.8626 0.729271
\(670\) 0 0
\(671\) 6.73083 0.259841
\(672\) 0 0
\(673\) 42.4664i 1.63696i 0.574537 + 0.818479i \(0.305182\pi\)
−0.574537 + 0.818479i \(0.694818\pi\)
\(674\) 0 0
\(675\) −25.6083 + 11.9981i −0.985664 + 0.461806i
\(676\) 0 0
\(677\) 1.41777i 0.0544893i −0.999629 0.0272447i \(-0.991327\pi\)
0.999629 0.0272447i \(-0.00867332\pi\)
\(678\) 0 0
\(679\) −12.0776 −0.463495
\(680\) 0 0
\(681\) 19.1576 0.734121
\(682\) 0 0
\(683\) 4.60886i 0.176353i −0.996105 0.0881766i \(-0.971896\pi\)
0.996105 0.0881766i \(-0.0281040\pi\)
\(684\) 0 0
\(685\) −32.3534 20.5701i −1.23616 0.785942i
\(686\) 0 0
\(687\) 38.3398i 1.46276i
\(688\) 0 0
\(689\) 14.4276 0.549647
\(690\) 0 0
\(691\) 16.8903 0.642537 0.321269 0.946988i \(-0.395891\pi\)
0.321269 + 0.946988i \(0.395891\pi\)
\(692\) 0 0
\(693\) 7.51470i 0.285460i
\(694\) 0 0
\(695\) 23.3704 36.7578i 0.886488 1.39430i
\(696\) 0 0
\(697\) 6.60338i 0.250121i
\(698\) 0 0
\(699\) −0.0542763 −0.00205292
\(700\) 0 0
\(701\) −11.9543 −0.451508 −0.225754 0.974184i \(-0.572484\pi\)
−0.225754 + 0.974184i \(0.572484\pi\)
\(702\) 0 0
\(703\) 5.91801i 0.223202i
\(704\) 0 0
\(705\) −15.6528 + 24.6194i −0.589519 + 0.927219i
\(706\) 0 0
\(707\) 40.9235i 1.53909i
\(708\) 0 0
\(709\) 12.6755 0.476040 0.238020 0.971260i \(-0.423502\pi\)
0.238020 + 0.971260i \(0.423502\pi\)
\(710\) 0 0
\(711\) 12.5490 0.470626
\(712\) 0 0
\(713\) 10.0554i 0.376577i
\(714\) 0 0
\(715\) 7.68425 + 4.88559i 0.287375 + 0.182711i
\(716\) 0 0
\(717\) 19.4566i 0.726618i
\(718\) 0 0
\(719\) −34.7351 −1.29540 −0.647700 0.761896i \(-0.724269\pi\)
−0.647700 + 0.761896i \(0.724269\pi\)
\(720\) 0 0
\(721\) −39.8819 −1.48528
\(722\) 0 0
\(723\) 16.7895i 0.624408i
\(724\) 0 0
\(725\) −6.73180 14.3681i −0.250013 0.533619i
\(726\) 0 0
\(727\) 27.6631i 1.02597i 0.858398 + 0.512984i \(0.171460\pi\)
−0.858398 + 0.512984i \(0.828540\pi\)
\(728\) 0 0
\(729\) −28.7351 −1.06426
\(730\) 0 0
\(731\) 1.54524 0.0571528
\(732\) 0 0
\(733\) 2.14239i 0.0791309i −0.999217 0.0395654i \(-0.987403\pi\)
0.999217 0.0395654i \(-0.0125974\pi\)
\(734\) 0 0
\(735\) −37.5742 23.8894i −1.38594 0.881174i
\(736\) 0 0
\(737\) 4.08309i 0.150403i
\(738\) 0 0
\(739\) −42.6249 −1.56798 −0.783991 0.620772i \(-0.786819\pi\)
−0.783991 + 0.620772i \(0.786819\pi\)
\(740\) 0 0
\(741\) −4.24519 −0.155951
\(742\) 0 0
\(743\) 23.4687i 0.860982i −0.902595 0.430491i \(-0.858340\pi\)
0.902595 0.430491i \(-0.141660\pi\)
\(744\) 0 0
\(745\) 15.8709 24.9623i 0.581464 0.914549i
\(746\) 0 0
\(747\) 13.9417i 0.510100i
\(748\) 0 0
\(749\) 31.8681 1.16444
\(750\) 0 0
\(751\) 27.2579 0.994654 0.497327 0.867563i \(-0.334315\pi\)
0.497327 + 0.867563i \(0.334315\pi\)
\(752\) 0 0
\(753\) 24.8830i 0.906786i
\(754\) 0 0
\(755\) −3.00830 + 4.73157i −0.109483 + 0.172199i
\(756\) 0 0
\(757\) 12.7382i 0.462976i 0.972838 + 0.231488i \(0.0743595\pi\)
−0.972838 + 0.231488i \(0.925641\pi\)
\(758\) 0 0
\(759\) −2.19143 −0.0795437
\(760\) 0 0
\(761\) 6.61715 0.239871 0.119936 0.992782i \(-0.461731\pi\)
0.119936 + 0.992782i \(0.461731\pi\)
\(762\) 0 0
\(763\) 31.5490i 1.14215i
\(764\) 0 0
\(765\) 1.09865 + 0.698516i 0.0397219 + 0.0252549i
\(766\) 0 0
\(767\) 9.98727i 0.360619i
\(768\) 0 0
\(769\) 27.2116 0.981275 0.490638 0.871364i \(-0.336764\pi\)
0.490638 + 0.871364i \(0.336764\pi\)
\(770\) 0 0
\(771\) −14.3185 −0.515668
\(772\) 0 0
\(773\) 22.9249i 0.824552i 0.911059 + 0.412276i \(0.135266\pi\)
−0.911059 + 0.412276i \(0.864734\pi\)
\(774\) 0 0
\(775\) 21.3307 + 45.5276i 0.766223 + 1.63540i
\(776\) 0 0
\(777\) 32.7129i 1.17357i
\(778\) 0 0
\(779\) 13.7792 0.493693
\(780\) 0 0
\(781\) 12.3642 0.442427
\(782\) 0 0
\(783\) 17.9485i 0.641427i
\(784\) 0 0
\(785\) −16.0926 10.2315i −0.574368 0.365179i
\(786\) 0 0
\(787\) 13.0620i 0.465610i 0.972523 + 0.232805i \(0.0747904\pi\)
−0.972523 + 0.232805i \(0.925210\pi\)
\(788\) 0 0
\(789\) 5.59578 0.199215
\(790\) 0 0
\(791\) 21.2288 0.754808
\(792\) 0 0
\(793\) 11.1780i 0.396943i
\(794\) 0 0
\(795\) 9.31463 14.6504i 0.330356 0.519596i
\(796\) 0 0
\(797\) 20.9305i 0.741395i −0.928754 0.370697i \(-0.879119\pi\)
0.928754 0.370697i \(-0.120881\pi\)
\(798\) 0 0
\(799\) 5.21160 0.184373
\(800\) 0 0
\(801\) 8.03607 0.283941
\(802\) 0 0
\(803\)