Properties

Label 1840.2.e.d
Level $1840$
Weight $2$
Character orbit 1840.e
Analytic conductor $14.692$
Analytic rank $0$
Dimension $8$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 1840 = 2^{4} \cdot 5 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1840.e (of order \(2\), degree \(1\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(14.6924739719\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.0.527896576.2
Defining polynomial: \(x^{8} - 2 x^{7} + 2 x^{6} + 2 x^{5} + 7 x^{4} - 10 x^{3} + 8 x^{2} + 4 x + 1\)
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 115)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{7}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( -\beta_{1} + \beta_{2} + \beta_{4} ) q^{3} + ( -1 - \beta_{6} ) q^{5} + ( -\beta_{4} - \beta_{6} + \beta_{7} ) q^{7} + ( -2 - \beta_{1} - \beta_{2} + \beta_{5} - \beta_{7} ) q^{9} +O(q^{10})\) \( q + ( -\beta_{1} + \beta_{2} + \beta_{4} ) q^{3} + ( -1 - \beta_{6} ) q^{5} + ( -\beta_{4} - \beta_{6} + \beta_{7} ) q^{7} + ( -2 - \beta_{1} - \beta_{2} + \beta_{5} - \beta_{7} ) q^{9} + ( -1 - \beta_{1} + \beta_{3} + \beta_{5} - \beta_{7} ) q^{11} + ( -\beta_{1} + \beta_{2} - 3 \beta_{4} ) q^{13} + ( -1 - 2 \beta_{2} - 3 \beta_{4} - \beta_{5} ) q^{15} + ( 4 \beta_{4} + \beta_{5} + \beta_{7} ) q^{17} + ( -1 - \beta_{1} + \beta_{3} ) q^{19} + ( -1 - \beta_{1} - 2 \beta_{2} - \beta_{3} - \beta_{5} + \beta_{7} ) q^{21} -\beta_{4} q^{23} + ( -1 + \beta_{2} - \beta_{4} - 2 \beta_{5} + \beta_{6} ) q^{25} + ( -5 \beta_{4} - \beta_{5} + 2 \beta_{6} - 3 \beta_{7} ) q^{27} + ( -1 + \beta_{1} - \beta_{2} - 2 \beta_{3} - \beta_{5} + \beta_{7} ) q^{29} + ( 1 + \beta_{1} + 3 \beta_{2} + 2 \beta_{3} + \beta_{5} - \beta_{7} ) q^{31} + ( 2 \beta_{1} - 2 \beta_{2} - 5 \beta_{4} + \beta_{6} - \beta_{7} ) q^{33} + ( -3 - \beta_{1} + 2 \beta_{2} + 2 \beta_{3} + \beta_{6} - 2 \beta_{7} ) q^{35} + ( -2 \beta_{1} + 2 \beta_{2} + \beta_{4} - 2 \beta_{5} - \beta_{6} - \beta_{7} ) q^{37} + ( -1 - \beta_{1} - \beta_{2} - 3 \beta_{5} + 3 \beta_{7} ) q^{39} + ( -3 + 2 \beta_{2} + 2 \beta_{3} + 4 \beta_{5} - 4 \beta_{7} ) q^{41} + ( 4 \beta_{1} - 4 \beta_{2} - \beta_{4} - \beta_{5} - \beta_{6} ) q^{43} + ( 5 + 3 \beta_{1} + \beta_{3} - \beta_{4} - 3 \beta_{5} - \beta_{6} + 2 \beta_{7} ) q^{45} + ( \beta_{4} + 3 \beta_{5} + 3 \beta_{7} ) q^{47} + ( 1 + 4 \beta_{2} + 4 \beta_{3} + 2 \beta_{5} - 2 \beta_{7} ) q^{49} + ( -6 - 2 \beta_{2} - 2 \beta_{3} + 5 \beta_{5} - 5 \beta_{7} ) q^{51} + ( -2 \beta_{4} + 2 \beta_{5} + 4 \beta_{6} - 2 \beta_{7} ) q^{53} + ( 3 + 2 \beta_{1} - \beta_{2} + 2 \beta_{4} - 3 \beta_{5} - \beta_{6} + \beta_{7} ) q^{55} + ( 2 \beta_{1} - 2 \beta_{2} - \beta_{4} + \beta_{5} + \beta_{6} ) q^{57} + ( -\beta_{1} - \beta_{2} - \beta_{5} + \beta_{7} ) q^{59} + ( -3 - 3 \beta_{1} + 3 \beta_{3} + 2 \beta_{5} - 2 \beta_{7} ) q^{61} + ( 2 \beta_{1} - 2 \beta_{2} - 4 \beta_{4} ) q^{63} + ( -1 - 4 \beta_{1} + 2 \beta_{2} + 4 \beta_{3} + \beta_{4} - \beta_{5} ) q^{65} + ( \beta_{4} - \beta_{6} + \beta_{7} ) q^{67} + ( 1 - \beta_{5} + \beta_{7} ) q^{69} + ( 7 + 2 \beta_{1} + 4 \beta_{2} + 2 \beta_{3} + 2 \beta_{5} - 2 \beta_{7} ) q^{71} + ( 2 \beta_{1} - 2 \beta_{2} - 5 \beta_{4} - 3 \beta_{5} - 4 \beta_{6} + \beta_{7} ) q^{73} + ( 2 + \beta_{1} + 2 \beta_{2} + 2 \beta_{3} + 6 \beta_{4} - \beta_{6} + 4 \beta_{7} ) q^{75} + ( 2 \beta_{6} - 2 \beta_{7} ) q^{77} + ( 5 - \beta_{1} - 2 \beta_{2} - \beta_{3} ) q^{79} + ( 5 - \beta_{1} + 3 \beta_{2} + 4 \beta_{3} - 3 \beta_{5} + 3 \beta_{7} ) q^{81} + ( -6 \beta_{1} + 6 \beta_{2} + \beta_{5} + 4 \beta_{6} - 3 \beta_{7} ) q^{83} + ( 4 \beta_{1} - 3 \beta_{2} - 2 \beta_{3} - 5 \beta_{4} + 2 \beta_{5} + \beta_{6} - 4 \beta_{7} ) q^{85} + ( \beta_{4} - \beta_{5} - \beta_{7} ) q^{87} + ( 1 - 3 \beta_{1} - 2 \beta_{2} + \beta_{3} ) q^{89} + ( -5 - \beta_{1} + 2 \beta_{2} + 3 \beta_{3} - \beta_{5} + \beta_{7} ) q^{91} + ( -2 \beta_{1} + 2 \beta_{2} + 3 \beta_{4} + \beta_{5} - 4 \beta_{6} + 5 \beta_{7} ) q^{93} + ( 1 + 2 \beta_{1} - 2 \beta_{2} + 3 \beta_{4} - \beta_{5} + \beta_{7} ) q^{95} + ( 2 \beta_{1} - 2 \beta_{2} + 9 \beta_{4} - 3 \beta_{6} + 3 \beta_{7} ) q^{97} + ( 12 + 4 \beta_{2} + 4 \beta_{3} - 2 \beta_{5} + 2 \beta_{7} ) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8q - 6q^{5} - 8q^{9} + O(q^{10}) \) \( 8q - 6q^{5} - 8q^{9} - 4q^{11} - 6q^{15} - 8q^{19} - 4q^{21} - 16q^{25} - 8q^{29} - 28q^{35} - 16q^{39} - 16q^{41} + 24q^{45} - 20q^{51} + 16q^{55} - 16q^{61} - 14q^{65} + 4q^{69} + 48q^{71} + 48q^{79} + 16q^{81} + 12q^{85} + 16q^{89} - 52q^{91} + 4q^{95} + 72q^{99} + O(q^{100}) \)

Basis of coefficient ring in terms of a root \(\nu\) of \(x^{8} - 2 x^{7} + 2 x^{6} + 2 x^{5} + 7 x^{4} - 10 x^{3} + 8 x^{2} + 4 x + 1\):

\(\beta_{0}\)\(=\)\( 1 \)
\(\beta_{1}\)\(=\)\((\)\( 25 \nu^{7} - 46 \nu^{6} + 80 \nu^{5} - 124 \nu^{4} + 398 \nu^{3} - 205 \nu^{2} + 354 \nu - 740 \)\()/467\)
\(\beta_{2}\)\(=\)\((\)\( -27 \nu^{7} + 31 \nu^{6} + 7 \nu^{5} - 221 \nu^{4} - 187 \nu^{3} + 128 \nu^{2} - 401 \nu - 882 \)\()/467\)
\(\beta_{3}\)\(=\)\((\)\( -108 \nu^{7} + 124 \nu^{6} + 28 \nu^{5} - 417 \nu^{4} - 748 \nu^{3} + 512 \nu^{2} + 731 \nu - 726 \)\()/467\)
\(\beta_{4}\)\(=\)\((\)\( -142 \nu^{7} + 336 \nu^{6} - 361 \nu^{5} - 211 \nu^{4} - 897 \nu^{3} + 2005 \nu^{2} - 1469 \nu - 280 \)\()/467\)
\(\beta_{5}\)\(=\)\((\)\( 232 \nu^{7} - 595 \nu^{6} + 649 \nu^{5} + 325 \nu^{4} + 1209 \nu^{3} - 3210 \nu^{2} + 2650 \nu + 418 \)\()/467\)
\(\beta_{6}\)\(=\)\((\)\( -269 \nu^{7} + 551 \nu^{6} - 674 \nu^{5} - 403 \nu^{4} - 1742 \nu^{3} + 2486 \nu^{2} - 3286 \nu - 537 \)\()/467\)
\(\beta_{7}\)\(=\)\((\)\( 284 \nu^{7} - 672 \nu^{6} + 722 \nu^{5} + 422 \nu^{4} + 1794 \nu^{3} - 3543 \nu^{2} + 2471 \nu + 560 \)\()/467\)
\(1\)\(=\)\(\beta_0\)
\(\nu\)\(=\)\((\)\(-\beta_{7} + \beta_{5} - \beta_{2} + \beta_{1}\)\()/2\)
\(\nu^{2}\)\(=\)\((\)\(\beta_{7} + \beta_{5} + 4 \beta_{4} - \beta_{2} + \beta_{1}\)\()/2\)
\(\nu^{3}\)\(=\)\((\)\(3 \beta_{7} + \beta_{6} - 2 \beta_{5} + \beta_{4} + \beta_{3} - 3 \beta_{2} + 2 \beta_{1} - 1\)\()/2\)
\(\nu^{4}\)\(=\)\((\)\(5 \beta_{7} - 5 \beta_{5} + 2 \beta_{3} - 3 \beta_{2} - 5 \beta_{1} - 12\)\()/2\)
\(\nu^{5}\)\(=\)\((\)\(10 \beta_{7} - 5 \beta_{6} - 17 \beta_{5} - 7 \beta_{4} + 5 \beta_{3} + 10 \beta_{2} - 17 \beta_{1} - 7\)\()/2\)
\(\nu^{6}\)\(=\)\(-5 \beta_{7} - 6 \beta_{6} - 11 \beta_{5} - 21 \beta_{4} + 12 \beta_{2} - 12 \beta_{1}\)
\(\nu^{7}\)\(=\)\((\)\(-51 \beta_{7} - 22 \beta_{6} + 15 \beta_{5} - 38 \beta_{4} - 22 \beta_{3} + 51 \beta_{2} - 15 \beta_{1} + 38\)\()/2\)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1840\mathbb{Z}\right)^\times\).

\(n\) \(737\) \(1151\) \(1201\) \(1381\)
\(\chi(n)\) \(-1\) \(1\) \(1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
369.1
−1.07037 + 1.07037i
1.47984 + 1.47984i
−0.199724 + 0.199724i
0.790245 + 0.790245i
0.790245 0.790245i
−0.199724 0.199724i
1.47984 1.47984i
−1.07037 1.07037i
0 3.14073i 0 −2.07037 0.844739i 0 1.20647i 0 −6.86420 0
369.2 0 1.95969i 0 0.479844 2.18398i 0 2.28394i 0 −0.840379 0
369.3 0 1.39945i 0 −1.19972 + 1.88697i 0 4.60747i 0 1.04155 0
369.4 0 0.580491i 0 −0.209755 + 2.22621i 0 0.315061i 0 2.66303 0
369.5 0 0.580491i 0 −0.209755 2.22621i 0 0.315061i 0 2.66303 0
369.6 0 1.39945i 0 −1.19972 1.88697i 0 4.60747i 0 1.04155 0
369.7 0 1.95969i 0 0.479844 + 2.18398i 0 2.28394i 0 −0.840379 0
369.8 0 3.14073i 0 −2.07037 + 0.844739i 0 1.20647i 0 −6.86420 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 369.8
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1840.2.e.d 8
4.b odd 2 1 115.2.b.b 8
5.b even 2 1 inner 1840.2.e.d 8
5.c odd 4 1 9200.2.a.ck 4
5.c odd 4 1 9200.2.a.cq 4
12.b even 2 1 1035.2.b.e 8
20.d odd 2 1 115.2.b.b 8
20.e even 4 1 575.2.a.i 4
20.e even 4 1 575.2.a.j 4
60.h even 2 1 1035.2.b.e 8
60.l odd 4 1 5175.2.a.bv 4
60.l odd 4 1 5175.2.a.bw 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
115.2.b.b 8 4.b odd 2 1
115.2.b.b 8 20.d odd 2 1
575.2.a.i 4 20.e even 4 1
575.2.a.j 4 20.e even 4 1
1035.2.b.e 8 12.b even 2 1
1035.2.b.e 8 60.h even 2 1
1840.2.e.d 8 1.a even 1 1 trivial
1840.2.e.d 8 5.b even 2 1 inner
5175.2.a.bv 4 60.l odd 4 1
5175.2.a.bw 4 60.l odd 4 1
9200.2.a.ck 4 5.c odd 4 1
9200.2.a.cq 4 5.c odd 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(1840, [\chi])\):

\( T_{3}^{8} + 16 T_{3}^{6} + 70 T_{3}^{4} + 96 T_{3}^{2} + 25 \)
\( T_{7}^{8} + 28 T_{7}^{6} + 152 T_{7}^{4} + 176 T_{7}^{2} + 16 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{8} \)
$3$ \( 25 + 96 T^{2} + 70 T^{4} + 16 T^{6} + T^{8} \)
$5$ \( 625 + 750 T + 650 T^{2} + 410 T^{3} + 206 T^{4} + 82 T^{5} + 26 T^{6} + 6 T^{7} + T^{8} \)
$7$ \( 16 + 176 T^{2} + 152 T^{4} + 28 T^{6} + T^{8} \)
$11$ \( ( -28 - 44 T - 16 T^{2} + 2 T^{3} + T^{4} )^{2} \)
$13$ \( 3721 + 5872 T^{2} + 1174 T^{4} + 64 T^{6} + T^{8} \)
$17$ \( 400 + 1776 T^{2} + 1612 T^{4} + 80 T^{6} + T^{8} \)
$19$ \( ( -20 - 28 T - 6 T^{2} + 4 T^{3} + T^{4} )^{2} \)
$23$ \( ( 1 + T^{2} )^{4} \)
$29$ \( ( 5 - 4 T - 22 T^{2} + 4 T^{3} + T^{4} )^{2} \)
$31$ \( ( -167 + 256 T - 74 T^{2} + T^{4} )^{2} \)
$37$ \( 226576 + 75856 T^{2} + 5752 T^{4} + 148 T^{6} + T^{8} \)
$41$ \( ( 2485 - 368 T - 94 T^{2} + 8 T^{3} + T^{4} )^{2} \)
$43$ \( 3857296 + 653600 T^{2} + 21340 T^{4} + 252 T^{6} + T^{8} \)
$47$ \( 20367169 + 1273144 T^{2} + 28734 T^{4} + 280 T^{6} + T^{8} \)
$53$ \( 4804864 + 468480 T^{2} + 16096 T^{4} + 224 T^{6} + T^{8} \)
$59$ \( ( 16 + 16 T - 20 T^{2} + T^{4} )^{2} \)
$61$ \( ( -2756 - 1148 T - 102 T^{2} + 8 T^{3} + T^{4} )^{2} \)
$67$ \( 16 + 208 T^{2} + 120 T^{4} + 20 T^{6} + T^{8} \)
$71$ \( ( -7435 + 1568 T + 66 T^{2} - 24 T^{3} + T^{4} )^{2} \)
$73$ \( 69538921 + 3070400 T^{2} + 50550 T^{4} + 368 T^{6} + T^{8} \)
$79$ \( ( 28 - 412 T + 178 T^{2} - 24 T^{3} + T^{4} )^{2} \)
$83$ \( 223442704 + 9024496 T^{2} + 114508 T^{4} + 576 T^{6} + T^{8} \)
$89$ \( ( 2380 + 372 T - 86 T^{2} - 8 T^{3} + T^{4} )^{2} \)
$97$ \( 21864976 + 3638896 T^{2} + 69592 T^{4} + 460 T^{6} + T^{8} \)
show more
show less