# Properties

 Label 1840.2.ch Level $1840$ Weight $2$ Character orbit 1840.ch Rep. character $\chi_{1840}(3,\cdot)$ Character field $\Q(\zeta_{44})$ Dimension $5680$ Sturm bound $576$

# Related objects

## Defining parameters

 Level: $$N$$ $$=$$ $$1840 = 2^{4} \cdot 5 \cdot 23$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 1840.ch (of order $$44$$ and degree $$20$$) Character conductor: $$\operatorname{cond}(\chi)$$ $$=$$ $$1840$$ Character field: $$\Q(\zeta_{44})$$ Sturm bound: $$576$$

## Dimensions

The following table gives the dimensions of various subspaces of $$M_{2}(1840, [\chi])$$.

Total New Old
Modular forms 5840 5840 0
Cusp forms 5680 5680 0
Eisenstein series 160 160 0

## Trace form

 $$5680q - 18q^{2} - 36q^{3} - 8q^{4} - 18q^{5} - 36q^{6} - 36q^{7} - 18q^{8} - 552q^{9} + O(q^{10})$$ $$5680q - 18q^{2} - 36q^{3} - 8q^{4} - 18q^{5} - 36q^{6} - 36q^{7} - 18q^{8} - 552q^{9} - 26q^{10} - 36q^{11} - 6q^{12} + 24q^{15} - 28q^{16} - 36q^{17} + 2q^{18} + 16q^{19} - 18q^{20} - 36q^{21} - 52q^{22} - 40q^{23} + 24q^{24} - 36q^{26} - 12q^{27} - 66q^{28} - 38q^{30} - 38q^{32} - 36q^{33} - 32q^{34} - 38q^{35} - 36q^{36} - 26q^{38} - 58q^{40} + 190q^{42} - 216q^{44} - 8q^{45} - 56q^{46} - 90q^{48} - 38q^{50} - 52q^{51} + 182q^{52} - 36q^{53} + 40q^{54} - 36q^{55} - 84q^{56} + 24q^{57} - 42q^{58} - 62q^{60} - 68q^{61} - 10q^{62} + 24q^{63} - 32q^{64} - 36q^{65} - 36q^{66} - 4q^{68} + 28q^{69} - 44q^{70} - 72q^{71} - 40q^{72} + 16q^{74} - 6q^{75} - 36q^{76} + 20q^{77} - 90q^{78} + 22q^{80} - 576q^{81} - 26q^{82} - 116q^{83} + 24q^{84} - 38q^{85} - 4q^{86} - 36q^{87} - 50q^{88} - 10q^{90} - 80q^{91} - 18q^{92} + 8q^{94} - 80q^{95} - 36q^{96} - 36q^{97} - 26q^{98} + 24q^{99} + O(q^{100})$$

## Decomposition of $$S_{2}^{\mathrm{new}}(1840, [\chi])$$ into newform subspaces

The newforms in this space have not yet been added to the LMFDB.