Properties

Label 1840.2.a.j
Level $1840$
Weight $2$
Character orbit 1840.a
Self dual yes
Analytic conductor $14.692$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 1840 = 2^{4} \cdot 5 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1840.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(14.6924739719\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{13}) \)
Defining polynomial: \(x^{2} - x - 3\)
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 230)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \frac{1}{2}(1 + \sqrt{13})\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( -1 - \beta ) q^{3} + q^{5} + ( -2 + \beta ) q^{7} + ( 1 + 3 \beta ) q^{9} +O(q^{10})\) \( q + ( -1 - \beta ) q^{3} + q^{5} + ( -2 + \beta ) q^{7} + ( 1 + 3 \beta ) q^{9} + ( 3 + \beta ) q^{11} + ( 2 - \beta ) q^{13} + ( -1 - \beta ) q^{15} + ( 3 - 3 \beta ) q^{17} + ( -2 + 3 \beta ) q^{19} - q^{21} + q^{23} + q^{25} + ( -7 - 4 \beta ) q^{27} + 2 \beta q^{29} + ( 4 - 3 \beta ) q^{31} + ( -6 - 5 \beta ) q^{33} + ( -2 + \beta ) q^{35} + 8 q^{37} + q^{39} + ( -3 - 3 \beta ) q^{41} + ( 4 - 4 \beta ) q^{43} + ( 1 + 3 \beta ) q^{45} -2 \beta q^{47} -3 \beta q^{49} + ( 6 + 3 \beta ) q^{51} + ( -6 + 4 \beta ) q^{53} + ( 3 + \beta ) q^{55} + ( -7 - 4 \beta ) q^{57} + ( 6 + 2 \beta ) q^{59} + ( 5 - 5 \beta ) q^{61} + ( 7 - 2 \beta ) q^{63} + ( 2 - \beta ) q^{65} + 4 q^{67} + ( -1 - \beta ) q^{69} + ( 15 - \beta ) q^{71} + ( 2 + 6 \beta ) q^{73} + ( -1 - \beta ) q^{75} + ( -3 + 2 \beta ) q^{77} + ( 4 - 8 \beta ) q^{79} + ( 16 + 6 \beta ) q^{81} + ( -6 + 4 \beta ) q^{83} + ( 3 - 3 \beta ) q^{85} + ( -6 - 4 \beta ) q^{87} + ( -7 + 3 \beta ) q^{91} + ( 5 + 2 \beta ) q^{93} + ( -2 + 3 \beta ) q^{95} + ( 5 - \beta ) q^{97} + ( 12 + 13 \beta ) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2q - 3q^{3} + 2q^{5} - 3q^{7} + 5q^{9} + O(q^{10}) \) \( 2q - 3q^{3} + 2q^{5} - 3q^{7} + 5q^{9} + 7q^{11} + 3q^{13} - 3q^{15} + 3q^{17} - q^{19} - 2q^{21} + 2q^{23} + 2q^{25} - 18q^{27} + 2q^{29} + 5q^{31} - 17q^{33} - 3q^{35} + 16q^{37} + 2q^{39} - 9q^{41} + 4q^{43} + 5q^{45} - 2q^{47} - 3q^{49} + 15q^{51} - 8q^{53} + 7q^{55} - 18q^{57} + 14q^{59} + 5q^{61} + 12q^{63} + 3q^{65} + 8q^{67} - 3q^{69} + 29q^{71} + 10q^{73} - 3q^{75} - 4q^{77} + 38q^{81} - 8q^{83} + 3q^{85} - 16q^{87} - 11q^{91} + 12q^{93} - q^{95} + 9q^{97} + 37q^{99} + O(q^{100}) \)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
2.30278
−1.30278
0 −3.30278 0 1.00000 0 0.302776 0 7.90833 0
1.2 0 0.302776 0 1.00000 0 −3.30278 0 −2.90833 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \(-1\)
\(5\) \(-1\)
\(23\) \(-1\)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1840.2.a.j 2
4.b odd 2 1 230.2.a.b 2
5.b even 2 1 9200.2.a.ca 2
8.b even 2 1 7360.2.a.bu 2
8.d odd 2 1 7360.2.a.bc 2
12.b even 2 1 2070.2.a.w 2
20.d odd 2 1 1150.2.a.m 2
20.e even 4 2 1150.2.b.f 4
92.b even 2 1 5290.2.a.j 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
230.2.a.b 2 4.b odd 2 1
1150.2.a.m 2 20.d odd 2 1
1150.2.b.f 4 20.e even 4 2
1840.2.a.j 2 1.a even 1 1 trivial
2070.2.a.w 2 12.b even 2 1
5290.2.a.j 2 92.b even 2 1
7360.2.a.bc 2 8.d odd 2 1
7360.2.a.bu 2 8.b even 2 1
9200.2.a.ca 2 5.b even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(1840))\):

\( T_{3}^{2} + 3 T_{3} - 1 \)
\( T_{7}^{2} + 3 T_{7} - 1 \)
\( T_{11}^{2} - 7 T_{11} + 9 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \)
$3$ \( -1 + 3 T + T^{2} \)
$5$ \( ( -1 + T )^{2} \)
$7$ \( -1 + 3 T + T^{2} \)
$11$ \( 9 - 7 T + T^{2} \)
$13$ \( -1 - 3 T + T^{2} \)
$17$ \( -27 - 3 T + T^{2} \)
$19$ \( -29 + T + T^{2} \)
$23$ \( ( -1 + T )^{2} \)
$29$ \( -12 - 2 T + T^{2} \)
$31$ \( -23 - 5 T + T^{2} \)
$37$ \( ( -8 + T )^{2} \)
$41$ \( -9 + 9 T + T^{2} \)
$43$ \( -48 - 4 T + T^{2} \)
$47$ \( -12 + 2 T + T^{2} \)
$53$ \( -36 + 8 T + T^{2} \)
$59$ \( 36 - 14 T + T^{2} \)
$61$ \( -75 - 5 T + T^{2} \)
$67$ \( ( -4 + T )^{2} \)
$71$ \( 207 - 29 T + T^{2} \)
$73$ \( -92 - 10 T + T^{2} \)
$79$ \( -208 + T^{2} \)
$83$ \( -36 + 8 T + T^{2} \)
$89$ \( T^{2} \)
$97$ \( 17 - 9 T + T^{2} \)
show more
show less