# Properties

 Label 1840.2.a.i Level $1840$ Weight $2$ Character orbit 1840.a Self dual yes Analytic conductor $14.692$ Analytic rank $0$ Dimension $1$ CM no Inner twists $1$

# Related objects

Show commands: Magma / PariGP / SageMath

## Newspace parameters

comment: Compute space of new eigenforms

[N,k,chi] = [1840,2,Mod(1,1840)]

mf = mfinit([N,k,chi],0)

lf = mfeigenbasis(mf)

from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup(1840, base_ring=CyclotomicField(2))

chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))

N = Newforms(chi, 2, names="a")

//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code

chi := DirichletCharacter("1840.1");

S:= CuspForms(chi, 2);

N := Newforms(S);

 Level: $$N$$ $$=$$ $$1840 = 2^{4} \cdot 5 \cdot 23$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 1840.a (trivial)

## Newform invariants

comment: select newform

sage: f = N[0] # Warning: the index may be different

gp: f = lf[1] \\ Warning: the index may be different

 Self dual: yes Analytic conductor: $$14.6924739719$$ Analytic rank: $$0$$ Dimension: $$1$$ Coefficient field: $$\mathbb{Q}$$ Coefficient ring: $$\mathbb{Z}$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 920) Fricke sign: $$-1$$ Sato-Tate group: $\mathrm{SU}(2)$

## $q$-expansion

comment: q-expansion

sage: f.q_expansion() # note that sage often uses an isomorphic number field

gp: mfcoefs(f, 20)

 $$f(q)$$ $$=$$ $$q + 3 q^{3} + q^{5} + 2 q^{7} + 6 q^{9}+O(q^{10})$$ q + 3 * q^3 + q^5 + 2 * q^7 + 6 * q^9 $$q + 3 q^{3} + q^{5} + 2 q^{7} + 6 q^{9} + q^{13} + 3 q^{15} + 6 q^{21} - q^{23} + q^{25} + 9 q^{27} - 3 q^{29} - 3 q^{31} + 2 q^{35} - 8 q^{37} + 3 q^{39} + 3 q^{41} + 2 q^{43} + 6 q^{45} + 11 q^{47} - 3 q^{49} - 14 q^{53} + 8 q^{59} - 4 q^{61} + 12 q^{63} + q^{65} + 4 q^{67} - 3 q^{69} - 7 q^{71} - 9 q^{73} + 3 q^{75} + 9 q^{81} - 4 q^{83} - 9 q^{87} - 2 q^{89} + 2 q^{91} - 9 q^{93} + 18 q^{97}+O(q^{100})$$ q + 3 * q^3 + q^5 + 2 * q^7 + 6 * q^9 + q^13 + 3 * q^15 + 6 * q^21 - q^23 + q^25 + 9 * q^27 - 3 * q^29 - 3 * q^31 + 2 * q^35 - 8 * q^37 + 3 * q^39 + 3 * q^41 + 2 * q^43 + 6 * q^45 + 11 * q^47 - 3 * q^49 - 14 * q^53 + 8 * q^59 - 4 * q^61 + 12 * q^63 + q^65 + 4 * q^67 - 3 * q^69 - 7 * q^71 - 9 * q^73 + 3 * q^75 + 9 * q^81 - 4 * q^83 - 9 * q^87 - 2 * q^89 + 2 * q^91 - 9 * q^93 + 18 * q^97

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field

gp: mfembed(f)

Label   $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
1.1
 0
0 3.00000 0 1.00000 0 2.00000 0 6.00000 0
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Atkin-Lehner signs

$$p$$ Sign
$$2$$ $$1$$
$$5$$ $$-1$$
$$23$$ $$1$$

## Inner twists

This newform does not admit any (nontrivial) inner twists.

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1840.2.a.i 1
4.b odd 2 1 920.2.a.a 1
5.b even 2 1 9200.2.a.c 1
8.b even 2 1 7360.2.a.a 1
8.d odd 2 1 7360.2.a.ba 1
12.b even 2 1 8280.2.a.d 1
20.d odd 2 1 4600.2.a.p 1
20.e even 4 2 4600.2.e.b 2

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
920.2.a.a 1 4.b odd 2 1
1840.2.a.i 1 1.a even 1 1 trivial
4600.2.a.p 1 20.d odd 2 1
4600.2.e.b 2 20.e even 4 2
7360.2.a.a 1 8.b even 2 1
7360.2.a.ba 1 8.d odd 2 1
8280.2.a.d 1 12.b even 2 1
9200.2.a.c 1 5.b even 2 1

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(\Gamma_0(1840))$$:

 $$T_{3} - 3$$ T3 - 3 $$T_{7} - 2$$ T7 - 2 $$T_{11}$$ T11

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$T$$
$3$ $$T - 3$$
$5$ $$T - 1$$
$7$ $$T - 2$$
$11$ $$T$$
$13$ $$T - 1$$
$17$ $$T$$
$19$ $$T$$
$23$ $$T + 1$$
$29$ $$T + 3$$
$31$ $$T + 3$$
$37$ $$T + 8$$
$41$ $$T - 3$$
$43$ $$T - 2$$
$47$ $$T - 11$$
$53$ $$T + 14$$
$59$ $$T - 8$$
$61$ $$T + 4$$
$67$ $$T - 4$$
$71$ $$T + 7$$
$73$ $$T + 9$$
$79$ $$T$$
$83$ $$T + 4$$
$89$ $$T + 2$$
$97$ $$T - 18$$