Properties

Label 1840.2.a.h.1.1
Level $1840$
Weight $2$
Character 1840.1
Self dual yes
Analytic conductor $14.692$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 1840 = 2^{4} \cdot 5 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1840.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(14.6924739719\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 460)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 1840.1

$q$-expansion

\(f(q)\) \(=\) \(q+1.00000 q^{3} +1.00000 q^{5} +2.00000 q^{7} -2.00000 q^{9} +O(q^{10})\) \(q+1.00000 q^{3} +1.00000 q^{5} +2.00000 q^{7} -2.00000 q^{9} +4.00000 q^{11} +1.00000 q^{13} +1.00000 q^{15} +4.00000 q^{19} +2.00000 q^{21} +1.00000 q^{23} +1.00000 q^{25} -5.00000 q^{27} -7.00000 q^{29} +7.00000 q^{31} +4.00000 q^{33} +2.00000 q^{35} -4.00000 q^{37} +1.00000 q^{39} +3.00000 q^{41} -6.00000 q^{43} -2.00000 q^{45} +13.0000 q^{47} -3.00000 q^{49} +10.0000 q^{53} +4.00000 q^{55} +4.00000 q^{57} +8.00000 q^{59} -4.00000 q^{63} +1.00000 q^{65} -8.00000 q^{67} +1.00000 q^{69} -13.0000 q^{71} +11.0000 q^{73} +1.00000 q^{75} +8.00000 q^{77} -4.00000 q^{79} +1.00000 q^{81} +4.00000 q^{83} -7.00000 q^{87} -6.00000 q^{89} +2.00000 q^{91} +7.00000 q^{93} +4.00000 q^{95} -2.00000 q^{97} -8.00000 q^{99} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.00000 0.577350 0.288675 0.957427i \(-0.406785\pi\)
0.288675 + 0.957427i \(0.406785\pi\)
\(4\) 0 0
\(5\) 1.00000 0.447214
\(6\) 0 0
\(7\) 2.00000 0.755929 0.377964 0.925820i \(-0.376624\pi\)
0.377964 + 0.925820i \(0.376624\pi\)
\(8\) 0 0
\(9\) −2.00000 −0.666667
\(10\) 0 0
\(11\) 4.00000 1.20605 0.603023 0.797724i \(-0.293963\pi\)
0.603023 + 0.797724i \(0.293963\pi\)
\(12\) 0 0
\(13\) 1.00000 0.277350 0.138675 0.990338i \(-0.455716\pi\)
0.138675 + 0.990338i \(0.455716\pi\)
\(14\) 0 0
\(15\) 1.00000 0.258199
\(16\) 0 0
\(17\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(18\) 0 0
\(19\) 4.00000 0.917663 0.458831 0.888523i \(-0.348268\pi\)
0.458831 + 0.888523i \(0.348268\pi\)
\(20\) 0 0
\(21\) 2.00000 0.436436
\(22\) 0 0
\(23\) 1.00000 0.208514
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) 0 0
\(27\) −5.00000 −0.962250
\(28\) 0 0
\(29\) −7.00000 −1.29987 −0.649934 0.759991i \(-0.725203\pi\)
−0.649934 + 0.759991i \(0.725203\pi\)
\(30\) 0 0
\(31\) 7.00000 1.25724 0.628619 0.777714i \(-0.283621\pi\)
0.628619 + 0.777714i \(0.283621\pi\)
\(32\) 0 0
\(33\) 4.00000 0.696311
\(34\) 0 0
\(35\) 2.00000 0.338062
\(36\) 0 0
\(37\) −4.00000 −0.657596 −0.328798 0.944400i \(-0.606644\pi\)
−0.328798 + 0.944400i \(0.606644\pi\)
\(38\) 0 0
\(39\) 1.00000 0.160128
\(40\) 0 0
\(41\) 3.00000 0.468521 0.234261 0.972174i \(-0.424733\pi\)
0.234261 + 0.972174i \(0.424733\pi\)
\(42\) 0 0
\(43\) −6.00000 −0.914991 −0.457496 0.889212i \(-0.651253\pi\)
−0.457496 + 0.889212i \(0.651253\pi\)
\(44\) 0 0
\(45\) −2.00000 −0.298142
\(46\) 0 0
\(47\) 13.0000 1.89624 0.948122 0.317905i \(-0.102979\pi\)
0.948122 + 0.317905i \(0.102979\pi\)
\(48\) 0 0
\(49\) −3.00000 −0.428571
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 10.0000 1.37361 0.686803 0.726844i \(-0.259014\pi\)
0.686803 + 0.726844i \(0.259014\pi\)
\(54\) 0 0
\(55\) 4.00000 0.539360
\(56\) 0 0
\(57\) 4.00000 0.529813
\(58\) 0 0
\(59\) 8.00000 1.04151 0.520756 0.853706i \(-0.325650\pi\)
0.520756 + 0.853706i \(0.325650\pi\)
\(60\) 0 0
\(61\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(62\) 0 0
\(63\) −4.00000 −0.503953
\(64\) 0 0
\(65\) 1.00000 0.124035
\(66\) 0 0
\(67\) −8.00000 −0.977356 −0.488678 0.872464i \(-0.662521\pi\)
−0.488678 + 0.872464i \(0.662521\pi\)
\(68\) 0 0
\(69\) 1.00000 0.120386
\(70\) 0 0
\(71\) −13.0000 −1.54282 −0.771408 0.636341i \(-0.780447\pi\)
−0.771408 + 0.636341i \(0.780447\pi\)
\(72\) 0 0
\(73\) 11.0000 1.28745 0.643726 0.765256i \(-0.277388\pi\)
0.643726 + 0.765256i \(0.277388\pi\)
\(74\) 0 0
\(75\) 1.00000 0.115470
\(76\) 0 0
\(77\) 8.00000 0.911685
\(78\) 0 0
\(79\) −4.00000 −0.450035 −0.225018 0.974355i \(-0.572244\pi\)
−0.225018 + 0.974355i \(0.572244\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) 4.00000 0.439057 0.219529 0.975606i \(-0.429548\pi\)
0.219529 + 0.975606i \(0.429548\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) −7.00000 −0.750479
\(88\) 0 0
\(89\) −6.00000 −0.635999 −0.317999 0.948091i \(-0.603011\pi\)
−0.317999 + 0.948091i \(0.603011\pi\)
\(90\) 0 0
\(91\) 2.00000 0.209657
\(92\) 0 0
\(93\) 7.00000 0.725866
\(94\) 0 0
\(95\) 4.00000 0.410391
\(96\) 0 0
\(97\) −2.00000 −0.203069 −0.101535 0.994832i \(-0.532375\pi\)
−0.101535 + 0.994832i \(0.532375\pi\)
\(98\) 0 0
\(99\) −8.00000 −0.804030
\(100\) 0 0
\(101\) 10.0000 0.995037 0.497519 0.867453i \(-0.334245\pi\)
0.497519 + 0.867453i \(0.334245\pi\)
\(102\) 0 0
\(103\) −4.00000 −0.394132 −0.197066 0.980390i \(-0.563141\pi\)
−0.197066 + 0.980390i \(0.563141\pi\)
\(104\) 0 0
\(105\) 2.00000 0.195180
\(106\) 0 0
\(107\) 4.00000 0.386695 0.193347 0.981130i \(-0.438066\pi\)
0.193347 + 0.981130i \(0.438066\pi\)
\(108\) 0 0
\(109\) 10.0000 0.957826 0.478913 0.877862i \(-0.341031\pi\)
0.478913 + 0.877862i \(0.341031\pi\)
\(110\) 0 0
\(111\) −4.00000 −0.379663
\(112\) 0 0
\(113\) −10.0000 −0.940721 −0.470360 0.882474i \(-0.655876\pi\)
−0.470360 + 0.882474i \(0.655876\pi\)
\(114\) 0 0
\(115\) 1.00000 0.0932505
\(116\) 0 0
\(117\) −2.00000 −0.184900
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 5.00000 0.454545
\(122\) 0 0
\(123\) 3.00000 0.270501
\(124\) 0 0
\(125\) 1.00000 0.0894427
\(126\) 0 0
\(127\) −5.00000 −0.443678 −0.221839 0.975083i \(-0.571206\pi\)
−0.221839 + 0.975083i \(0.571206\pi\)
\(128\) 0 0
\(129\) −6.00000 −0.528271
\(130\) 0 0
\(131\) −1.00000 −0.0873704 −0.0436852 0.999045i \(-0.513910\pi\)
−0.0436852 + 0.999045i \(0.513910\pi\)
\(132\) 0 0
\(133\) 8.00000 0.693688
\(134\) 0 0
\(135\) −5.00000 −0.430331
\(136\) 0 0
\(137\) −12.0000 −1.02523 −0.512615 0.858619i \(-0.671323\pi\)
−0.512615 + 0.858619i \(0.671323\pi\)
\(138\) 0 0
\(139\) 5.00000 0.424094 0.212047 0.977259i \(-0.431987\pi\)
0.212047 + 0.977259i \(0.431987\pi\)
\(140\) 0 0
\(141\) 13.0000 1.09480
\(142\) 0 0
\(143\) 4.00000 0.334497
\(144\) 0 0
\(145\) −7.00000 −0.581318
\(146\) 0 0
\(147\) −3.00000 −0.247436
\(148\) 0 0
\(149\) −22.0000 −1.80231 −0.901155 0.433497i \(-0.857280\pi\)
−0.901155 + 0.433497i \(0.857280\pi\)
\(150\) 0 0
\(151\) 19.0000 1.54620 0.773099 0.634285i \(-0.218706\pi\)
0.773099 + 0.634285i \(0.218706\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 7.00000 0.562254
\(156\) 0 0
\(157\) 22.0000 1.75579 0.877896 0.478852i \(-0.158947\pi\)
0.877896 + 0.478852i \(0.158947\pi\)
\(158\) 0 0
\(159\) 10.0000 0.793052
\(160\) 0 0
\(161\) 2.00000 0.157622
\(162\) 0 0
\(163\) −13.0000 −1.01824 −0.509119 0.860696i \(-0.670029\pi\)
−0.509119 + 0.860696i \(0.670029\pi\)
\(164\) 0 0
\(165\) 4.00000 0.311400
\(166\) 0 0
\(167\) 8.00000 0.619059 0.309529 0.950890i \(-0.399829\pi\)
0.309529 + 0.950890i \(0.399829\pi\)
\(168\) 0 0
\(169\) −12.0000 −0.923077
\(170\) 0 0
\(171\) −8.00000 −0.611775
\(172\) 0 0
\(173\) −2.00000 −0.152057 −0.0760286 0.997106i \(-0.524224\pi\)
−0.0760286 + 0.997106i \(0.524224\pi\)
\(174\) 0 0
\(175\) 2.00000 0.151186
\(176\) 0 0
\(177\) 8.00000 0.601317
\(178\) 0 0
\(179\) 13.0000 0.971666 0.485833 0.874052i \(-0.338516\pi\)
0.485833 + 0.874052i \(0.338516\pi\)
\(180\) 0 0
\(181\) 16.0000 1.18927 0.594635 0.803996i \(-0.297296\pi\)
0.594635 + 0.803996i \(0.297296\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −4.00000 −0.294086
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) −10.0000 −0.727393
\(190\) 0 0
\(191\) 10.0000 0.723575 0.361787 0.932261i \(-0.382167\pi\)
0.361787 + 0.932261i \(0.382167\pi\)
\(192\) 0 0
\(193\) −13.0000 −0.935760 −0.467880 0.883792i \(-0.654982\pi\)
−0.467880 + 0.883792i \(0.654982\pi\)
\(194\) 0 0
\(195\) 1.00000 0.0716115
\(196\) 0 0
\(197\) −13.0000 −0.926212 −0.463106 0.886303i \(-0.653265\pi\)
−0.463106 + 0.886303i \(0.653265\pi\)
\(198\) 0 0
\(199\) −16.0000 −1.13421 −0.567105 0.823646i \(-0.691937\pi\)
−0.567105 + 0.823646i \(0.691937\pi\)
\(200\) 0 0
\(201\) −8.00000 −0.564276
\(202\) 0 0
\(203\) −14.0000 −0.982607
\(204\) 0 0
\(205\) 3.00000 0.209529
\(206\) 0 0
\(207\) −2.00000 −0.139010
\(208\) 0 0
\(209\) 16.0000 1.10674
\(210\) 0 0
\(211\) −16.0000 −1.10149 −0.550743 0.834675i \(-0.685655\pi\)
−0.550743 + 0.834675i \(0.685655\pi\)
\(212\) 0 0
\(213\) −13.0000 −0.890745
\(214\) 0 0
\(215\) −6.00000 −0.409197
\(216\) 0 0
\(217\) 14.0000 0.950382
\(218\) 0 0
\(219\) 11.0000 0.743311
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) −8.00000 −0.535720 −0.267860 0.963458i \(-0.586316\pi\)
−0.267860 + 0.963458i \(0.586316\pi\)
\(224\) 0 0
\(225\) −2.00000 −0.133333
\(226\) 0 0
\(227\) −2.00000 −0.132745 −0.0663723 0.997795i \(-0.521143\pi\)
−0.0663723 + 0.997795i \(0.521143\pi\)
\(228\) 0 0
\(229\) 2.00000 0.132164 0.0660819 0.997814i \(-0.478950\pi\)
0.0660819 + 0.997814i \(0.478950\pi\)
\(230\) 0 0
\(231\) 8.00000 0.526361
\(232\) 0 0
\(233\) −15.0000 −0.982683 −0.491341 0.870967i \(-0.663493\pi\)
−0.491341 + 0.870967i \(0.663493\pi\)
\(234\) 0 0
\(235\) 13.0000 0.848026
\(236\) 0 0
\(237\) −4.00000 −0.259828
\(238\) 0 0
\(239\) 19.0000 1.22901 0.614504 0.788914i \(-0.289356\pi\)
0.614504 + 0.788914i \(0.289356\pi\)
\(240\) 0 0
\(241\) −14.0000 −0.901819 −0.450910 0.892570i \(-0.648900\pi\)
−0.450910 + 0.892570i \(0.648900\pi\)
\(242\) 0 0
\(243\) 16.0000 1.02640
\(244\) 0 0
\(245\) −3.00000 −0.191663
\(246\) 0 0
\(247\) 4.00000 0.254514
\(248\) 0 0
\(249\) 4.00000 0.253490
\(250\) 0 0
\(251\) 8.00000 0.504956 0.252478 0.967603i \(-0.418755\pi\)
0.252478 + 0.967603i \(0.418755\pi\)
\(252\) 0 0
\(253\) 4.00000 0.251478
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −15.0000 −0.935674 −0.467837 0.883815i \(-0.654967\pi\)
−0.467837 + 0.883815i \(0.654967\pi\)
\(258\) 0 0
\(259\) −8.00000 −0.497096
\(260\) 0 0
\(261\) 14.0000 0.866578
\(262\) 0 0
\(263\) 8.00000 0.493301 0.246651 0.969104i \(-0.420670\pi\)
0.246651 + 0.969104i \(0.420670\pi\)
\(264\) 0 0
\(265\) 10.0000 0.614295
\(266\) 0 0
\(267\) −6.00000 −0.367194
\(268\) 0 0
\(269\) 21.0000 1.28039 0.640196 0.768211i \(-0.278853\pi\)
0.640196 + 0.768211i \(0.278853\pi\)
\(270\) 0 0
\(271\) 20.0000 1.21491 0.607457 0.794353i \(-0.292190\pi\)
0.607457 + 0.794353i \(0.292190\pi\)
\(272\) 0 0
\(273\) 2.00000 0.121046
\(274\) 0 0
\(275\) 4.00000 0.241209
\(276\) 0 0
\(277\) −21.0000 −1.26177 −0.630884 0.775877i \(-0.717308\pi\)
−0.630884 + 0.775877i \(0.717308\pi\)
\(278\) 0 0
\(279\) −14.0000 −0.838158
\(280\) 0 0
\(281\) −22.0000 −1.31241 −0.656205 0.754583i \(-0.727839\pi\)
−0.656205 + 0.754583i \(0.727839\pi\)
\(282\) 0 0
\(283\) −14.0000 −0.832214 −0.416107 0.909316i \(-0.636606\pi\)
−0.416107 + 0.909316i \(0.636606\pi\)
\(284\) 0 0
\(285\) 4.00000 0.236940
\(286\) 0 0
\(287\) 6.00000 0.354169
\(288\) 0 0
\(289\) −17.0000 −1.00000
\(290\) 0 0
\(291\) −2.00000 −0.117242
\(292\) 0 0
\(293\) 8.00000 0.467365 0.233682 0.972313i \(-0.424922\pi\)
0.233682 + 0.972313i \(0.424922\pi\)
\(294\) 0 0
\(295\) 8.00000 0.465778
\(296\) 0 0
\(297\) −20.0000 −1.16052
\(298\) 0 0
\(299\) 1.00000 0.0578315
\(300\) 0 0
\(301\) −12.0000 −0.691669
\(302\) 0 0
\(303\) 10.0000 0.574485
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) −28.0000 −1.59804 −0.799022 0.601302i \(-0.794649\pi\)
−0.799022 + 0.601302i \(0.794649\pi\)
\(308\) 0 0
\(309\) −4.00000 −0.227552
\(310\) 0 0
\(311\) −1.00000 −0.0567048 −0.0283524 0.999598i \(-0.509026\pi\)
−0.0283524 + 0.999598i \(0.509026\pi\)
\(312\) 0 0
\(313\) −28.0000 −1.58265 −0.791327 0.611393i \(-0.790609\pi\)
−0.791327 + 0.611393i \(0.790609\pi\)
\(314\) 0 0
\(315\) −4.00000 −0.225374
\(316\) 0 0
\(317\) 18.0000 1.01098 0.505490 0.862832i \(-0.331312\pi\)
0.505490 + 0.862832i \(0.331312\pi\)
\(318\) 0 0
\(319\) −28.0000 −1.56770
\(320\) 0 0
\(321\) 4.00000 0.223258
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) 1.00000 0.0554700
\(326\) 0 0
\(327\) 10.0000 0.553001
\(328\) 0 0
\(329\) 26.0000 1.43343
\(330\) 0 0
\(331\) 9.00000 0.494685 0.247342 0.968928i \(-0.420443\pi\)
0.247342 + 0.968928i \(0.420443\pi\)
\(332\) 0 0
\(333\) 8.00000 0.438397
\(334\) 0 0
\(335\) −8.00000 −0.437087
\(336\) 0 0
\(337\) −26.0000 −1.41631 −0.708155 0.706057i \(-0.750472\pi\)
−0.708155 + 0.706057i \(0.750472\pi\)
\(338\) 0 0
\(339\) −10.0000 −0.543125
\(340\) 0 0
\(341\) 28.0000 1.51629
\(342\) 0 0
\(343\) −20.0000 −1.07990
\(344\) 0 0
\(345\) 1.00000 0.0538382
\(346\) 0 0
\(347\) −12.0000 −0.644194 −0.322097 0.946707i \(-0.604388\pi\)
−0.322097 + 0.946707i \(0.604388\pi\)
\(348\) 0 0
\(349\) −27.0000 −1.44528 −0.722638 0.691226i \(-0.757071\pi\)
−0.722638 + 0.691226i \(0.757071\pi\)
\(350\) 0 0
\(351\) −5.00000 −0.266880
\(352\) 0 0
\(353\) −25.0000 −1.33062 −0.665308 0.746569i \(-0.731700\pi\)
−0.665308 + 0.746569i \(0.731700\pi\)
\(354\) 0 0
\(355\) −13.0000 −0.689968
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −20.0000 −1.05556 −0.527780 0.849381i \(-0.676975\pi\)
−0.527780 + 0.849381i \(0.676975\pi\)
\(360\) 0 0
\(361\) −3.00000 −0.157895
\(362\) 0 0
\(363\) 5.00000 0.262432
\(364\) 0 0
\(365\) 11.0000 0.575766
\(366\) 0 0
\(367\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(368\) 0 0
\(369\) −6.00000 −0.312348
\(370\) 0 0
\(371\) 20.0000 1.03835
\(372\) 0 0
\(373\) −6.00000 −0.310668 −0.155334 0.987862i \(-0.549645\pi\)
−0.155334 + 0.987862i \(0.549645\pi\)
\(374\) 0 0
\(375\) 1.00000 0.0516398
\(376\) 0 0
\(377\) −7.00000 −0.360518
\(378\) 0 0
\(379\) −8.00000 −0.410932 −0.205466 0.978664i \(-0.565871\pi\)
−0.205466 + 0.978664i \(0.565871\pi\)
\(380\) 0 0
\(381\) −5.00000 −0.256158
\(382\) 0 0
\(383\) −6.00000 −0.306586 −0.153293 0.988181i \(-0.548988\pi\)
−0.153293 + 0.988181i \(0.548988\pi\)
\(384\) 0 0
\(385\) 8.00000 0.407718
\(386\) 0 0
\(387\) 12.0000 0.609994
\(388\) 0 0
\(389\) 16.0000 0.811232 0.405616 0.914044i \(-0.367057\pi\)
0.405616 + 0.914044i \(0.367057\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) −1.00000 −0.0504433
\(394\) 0 0
\(395\) −4.00000 −0.201262
\(396\) 0 0
\(397\) −31.0000 −1.55585 −0.777923 0.628360i \(-0.783727\pi\)
−0.777923 + 0.628360i \(0.783727\pi\)
\(398\) 0 0
\(399\) 8.00000 0.400501
\(400\) 0 0
\(401\) 14.0000 0.699127 0.349563 0.936913i \(-0.386330\pi\)
0.349563 + 0.936913i \(0.386330\pi\)
\(402\) 0 0
\(403\) 7.00000 0.348695
\(404\) 0 0
\(405\) 1.00000 0.0496904
\(406\) 0 0
\(407\) −16.0000 −0.793091
\(408\) 0 0
\(409\) 29.0000 1.43396 0.716979 0.697095i \(-0.245524\pi\)
0.716979 + 0.697095i \(0.245524\pi\)
\(410\) 0 0
\(411\) −12.0000 −0.591916
\(412\) 0 0
\(413\) 16.0000 0.787309
\(414\) 0 0
\(415\) 4.00000 0.196352
\(416\) 0 0
\(417\) 5.00000 0.244851
\(418\) 0 0
\(419\) −6.00000 −0.293119 −0.146560 0.989202i \(-0.546820\pi\)
−0.146560 + 0.989202i \(0.546820\pi\)
\(420\) 0 0
\(421\) 30.0000 1.46211 0.731055 0.682318i \(-0.239028\pi\)
0.731055 + 0.682318i \(0.239028\pi\)
\(422\) 0 0
\(423\) −26.0000 −1.26416
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 4.00000 0.193122
\(430\) 0 0
\(431\) 22.0000 1.05970 0.529851 0.848091i \(-0.322248\pi\)
0.529851 + 0.848091i \(0.322248\pi\)
\(432\) 0 0
\(433\) 14.0000 0.672797 0.336399 0.941720i \(-0.390791\pi\)
0.336399 + 0.941720i \(0.390791\pi\)
\(434\) 0 0
\(435\) −7.00000 −0.335624
\(436\) 0 0
\(437\) 4.00000 0.191346
\(438\) 0 0
\(439\) −19.0000 −0.906821 −0.453410 0.891302i \(-0.649793\pi\)
−0.453410 + 0.891302i \(0.649793\pi\)
\(440\) 0 0
\(441\) 6.00000 0.285714
\(442\) 0 0
\(443\) 13.0000 0.617649 0.308824 0.951119i \(-0.400064\pi\)
0.308824 + 0.951119i \(0.400064\pi\)
\(444\) 0 0
\(445\) −6.00000 −0.284427
\(446\) 0 0
\(447\) −22.0000 −1.04056
\(448\) 0 0
\(449\) −18.0000 −0.849473 −0.424736 0.905317i \(-0.639633\pi\)
−0.424736 + 0.905317i \(0.639633\pi\)
\(450\) 0 0
\(451\) 12.0000 0.565058
\(452\) 0 0
\(453\) 19.0000 0.892698
\(454\) 0 0
\(455\) 2.00000 0.0937614
\(456\) 0 0
\(457\) 28.0000 1.30978 0.654892 0.755722i \(-0.272714\pi\)
0.654892 + 0.755722i \(0.272714\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 9.00000 0.419172 0.209586 0.977790i \(-0.432788\pi\)
0.209586 + 0.977790i \(0.432788\pi\)
\(462\) 0 0
\(463\) 4.00000 0.185896 0.0929479 0.995671i \(-0.470371\pi\)
0.0929479 + 0.995671i \(0.470371\pi\)
\(464\) 0 0
\(465\) 7.00000 0.324617
\(466\) 0 0
\(467\) −6.00000 −0.277647 −0.138823 0.990317i \(-0.544332\pi\)
−0.138823 + 0.990317i \(0.544332\pi\)
\(468\) 0 0
\(469\) −16.0000 −0.738811
\(470\) 0 0
\(471\) 22.0000 1.01371
\(472\) 0 0
\(473\) −24.0000 −1.10352
\(474\) 0 0
\(475\) 4.00000 0.183533
\(476\) 0 0
\(477\) −20.0000 −0.915737
\(478\) 0 0
\(479\) −24.0000 −1.09659 −0.548294 0.836286i \(-0.684723\pi\)
−0.548294 + 0.836286i \(0.684723\pi\)
\(480\) 0 0
\(481\) −4.00000 −0.182384
\(482\) 0 0
\(483\) 2.00000 0.0910032
\(484\) 0 0
\(485\) −2.00000 −0.0908153
\(486\) 0 0
\(487\) −41.0000 −1.85789 −0.928944 0.370221i \(-0.879282\pi\)
−0.928944 + 0.370221i \(0.879282\pi\)
\(488\) 0 0
\(489\) −13.0000 −0.587880
\(490\) 0 0
\(491\) 33.0000 1.48927 0.744635 0.667472i \(-0.232624\pi\)
0.744635 + 0.667472i \(0.232624\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) −8.00000 −0.359573
\(496\) 0 0
\(497\) −26.0000 −1.16626
\(498\) 0 0
\(499\) −41.0000 −1.83541 −0.917706 0.397260i \(-0.869961\pi\)
−0.917706 + 0.397260i \(0.869961\pi\)
\(500\) 0 0
\(501\) 8.00000 0.357414
\(502\) 0 0
\(503\) −30.0000 −1.33763 −0.668817 0.743427i \(-0.733199\pi\)
−0.668817 + 0.743427i \(0.733199\pi\)
\(504\) 0 0
\(505\) 10.0000 0.444994
\(506\) 0 0
\(507\) −12.0000 −0.532939
\(508\) 0 0
\(509\) −15.0000 −0.664863 −0.332432 0.943127i \(-0.607869\pi\)
−0.332432 + 0.943127i \(0.607869\pi\)
\(510\) 0 0
\(511\) 22.0000 0.973223
\(512\) 0 0
\(513\) −20.0000 −0.883022
\(514\) 0 0
\(515\) −4.00000 −0.176261
\(516\) 0 0
\(517\) 52.0000 2.28696
\(518\) 0 0
\(519\) −2.00000 −0.0877903
\(520\) 0 0
\(521\) 12.0000 0.525730 0.262865 0.964833i \(-0.415333\pi\)
0.262865 + 0.964833i \(0.415333\pi\)
\(522\) 0 0
\(523\) 38.0000 1.66162 0.830812 0.556553i \(-0.187876\pi\)
0.830812 + 0.556553i \(0.187876\pi\)
\(524\) 0 0
\(525\) 2.00000 0.0872872
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) 1.00000 0.0434783
\(530\) 0 0
\(531\) −16.0000 −0.694341
\(532\) 0 0
\(533\) 3.00000 0.129944
\(534\) 0 0
\(535\) 4.00000 0.172935
\(536\) 0 0
\(537\) 13.0000 0.560991
\(538\) 0 0
\(539\) −12.0000 −0.516877
\(540\) 0 0
\(541\) −35.0000 −1.50477 −0.752384 0.658725i \(-0.771096\pi\)
−0.752384 + 0.658725i \(0.771096\pi\)
\(542\) 0 0
\(543\) 16.0000 0.686626
\(544\) 0 0
\(545\) 10.0000 0.428353
\(546\) 0 0
\(547\) −1.00000 −0.0427569 −0.0213785 0.999771i \(-0.506805\pi\)
−0.0213785 + 0.999771i \(0.506805\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −28.0000 −1.19284
\(552\) 0 0
\(553\) −8.00000 −0.340195
\(554\) 0 0
\(555\) −4.00000 −0.169791
\(556\) 0 0
\(557\) −38.0000 −1.61011 −0.805056 0.593199i \(-0.797865\pi\)
−0.805056 + 0.593199i \(0.797865\pi\)
\(558\) 0 0
\(559\) −6.00000 −0.253773
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 24.0000 1.01148 0.505740 0.862686i \(-0.331220\pi\)
0.505740 + 0.862686i \(0.331220\pi\)
\(564\) 0 0
\(565\) −10.0000 −0.420703
\(566\) 0 0
\(567\) 2.00000 0.0839921
\(568\) 0 0
\(569\) 22.0000 0.922288 0.461144 0.887325i \(-0.347439\pi\)
0.461144 + 0.887325i \(0.347439\pi\)
\(570\) 0 0
\(571\) −12.0000 −0.502184 −0.251092 0.967963i \(-0.580790\pi\)
−0.251092 + 0.967963i \(0.580790\pi\)
\(572\) 0 0
\(573\) 10.0000 0.417756
\(574\) 0 0
\(575\) 1.00000 0.0417029
\(576\) 0 0
\(577\) −37.0000 −1.54033 −0.770165 0.637845i \(-0.779826\pi\)
−0.770165 + 0.637845i \(0.779826\pi\)
\(578\) 0 0
\(579\) −13.0000 −0.540262
\(580\) 0 0
\(581\) 8.00000 0.331896
\(582\) 0 0
\(583\) 40.0000 1.65663
\(584\) 0 0
\(585\) −2.00000 −0.0826898
\(586\) 0 0
\(587\) −3.00000 −0.123823 −0.0619116 0.998082i \(-0.519720\pi\)
−0.0619116 + 0.998082i \(0.519720\pi\)
\(588\) 0 0
\(589\) 28.0000 1.15372
\(590\) 0 0
\(591\) −13.0000 −0.534749
\(592\) 0 0
\(593\) 18.0000 0.739171 0.369586 0.929197i \(-0.379500\pi\)
0.369586 + 0.929197i \(0.379500\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −16.0000 −0.654836
\(598\) 0 0
\(599\) 16.0000 0.653742 0.326871 0.945069i \(-0.394006\pi\)
0.326871 + 0.945069i \(0.394006\pi\)
\(600\) 0 0
\(601\) −35.0000 −1.42768 −0.713840 0.700309i \(-0.753046\pi\)
−0.713840 + 0.700309i \(0.753046\pi\)
\(602\) 0 0
\(603\) 16.0000 0.651570
\(604\) 0 0
\(605\) 5.00000 0.203279
\(606\) 0 0
\(607\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(608\) 0 0
\(609\) −14.0000 −0.567309
\(610\) 0 0
\(611\) 13.0000 0.525924
\(612\) 0 0
\(613\) −32.0000 −1.29247 −0.646234 0.763139i \(-0.723657\pi\)
−0.646234 + 0.763139i \(0.723657\pi\)
\(614\) 0 0
\(615\) 3.00000 0.120972
\(616\) 0 0
\(617\) −36.0000 −1.44931 −0.724653 0.689114i \(-0.758000\pi\)
−0.724653 + 0.689114i \(0.758000\pi\)
\(618\) 0 0
\(619\) −4.00000 −0.160774 −0.0803868 0.996764i \(-0.525616\pi\)
−0.0803868 + 0.996764i \(0.525616\pi\)
\(620\) 0 0
\(621\) −5.00000 −0.200643
\(622\) 0 0
\(623\) −12.0000 −0.480770
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0 0
\(627\) 16.0000 0.638978
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) 2.00000 0.0796187 0.0398094 0.999207i \(-0.487325\pi\)
0.0398094 + 0.999207i \(0.487325\pi\)
\(632\) 0 0
\(633\) −16.0000 −0.635943
\(634\) 0 0
\(635\) −5.00000 −0.198419
\(636\) 0 0
\(637\) −3.00000 −0.118864
\(638\) 0 0
\(639\) 26.0000 1.02854
\(640\) 0 0
\(641\) −18.0000 −0.710957 −0.355479 0.934684i \(-0.615682\pi\)
−0.355479 + 0.934684i \(0.615682\pi\)
\(642\) 0 0
\(643\) 2.00000 0.0788723 0.0394362 0.999222i \(-0.487444\pi\)
0.0394362 + 0.999222i \(0.487444\pi\)
\(644\) 0 0
\(645\) −6.00000 −0.236250
\(646\) 0 0
\(647\) −23.0000 −0.904223 −0.452112 0.891961i \(-0.649329\pi\)
−0.452112 + 0.891961i \(0.649329\pi\)
\(648\) 0 0
\(649\) 32.0000 1.25611
\(650\) 0 0
\(651\) 14.0000 0.548703
\(652\) 0 0
\(653\) −3.00000 −0.117399 −0.0586995 0.998276i \(-0.518695\pi\)
−0.0586995 + 0.998276i \(0.518695\pi\)
\(654\) 0 0
\(655\) −1.00000 −0.0390732
\(656\) 0 0
\(657\) −22.0000 −0.858302
\(658\) 0 0
\(659\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(660\) 0 0
\(661\) −10.0000 −0.388955 −0.194477 0.980907i \(-0.562301\pi\)
−0.194477 + 0.980907i \(0.562301\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 8.00000 0.310227
\(666\) 0 0
\(667\) −7.00000 −0.271041
\(668\) 0 0
\(669\) −8.00000 −0.309298
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) −7.00000 −0.269830 −0.134915 0.990857i \(-0.543076\pi\)
−0.134915 + 0.990857i \(0.543076\pi\)
\(674\) 0 0
\(675\) −5.00000 −0.192450
\(676\) 0 0
\(677\) 10.0000 0.384331 0.192166 0.981363i \(-0.438449\pi\)
0.192166 + 0.981363i \(0.438449\pi\)
\(678\) 0 0
\(679\) −4.00000 −0.153506
\(680\) 0 0
\(681\) −2.00000 −0.0766402
\(682\) 0 0
\(683\) 39.0000 1.49229 0.746147 0.665782i \(-0.231902\pi\)
0.746147 + 0.665782i \(0.231902\pi\)
\(684\) 0 0
\(685\) −12.0000 −0.458496
\(686\) 0 0
\(687\) 2.00000 0.0763048
\(688\) 0 0
\(689\) 10.0000 0.380970
\(690\) 0 0
\(691\) −8.00000 −0.304334 −0.152167 0.988355i \(-0.548625\pi\)
−0.152167 + 0.988355i \(0.548625\pi\)
\(692\) 0 0
\(693\) −16.0000 −0.607790
\(694\) 0 0
\(695\) 5.00000 0.189661
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) −15.0000 −0.567352
\(700\) 0 0
\(701\) 30.0000 1.13308 0.566542 0.824033i \(-0.308281\pi\)
0.566542 + 0.824033i \(0.308281\pi\)
\(702\) 0 0
\(703\) −16.0000 −0.603451
\(704\) 0 0
\(705\) 13.0000 0.489608
\(706\) 0 0
\(707\) 20.0000 0.752177
\(708\) 0 0
\(709\) 10.0000 0.375558 0.187779 0.982211i \(-0.439871\pi\)
0.187779 + 0.982211i \(0.439871\pi\)
\(710\) 0 0
\(711\) 8.00000 0.300023
\(712\) 0 0
\(713\) 7.00000 0.262152
\(714\) 0 0
\(715\) 4.00000 0.149592
\(716\) 0 0
\(717\) 19.0000 0.709568
\(718\) 0 0
\(719\) 20.0000 0.745874 0.372937 0.927857i \(-0.378351\pi\)
0.372937 + 0.927857i \(0.378351\pi\)
\(720\) 0 0
\(721\) −8.00000 −0.297936
\(722\) 0 0
\(723\) −14.0000 −0.520666
\(724\) 0 0
\(725\) −7.00000 −0.259973
\(726\) 0 0
\(727\) −14.0000 −0.519231 −0.259616 0.965712i \(-0.583596\pi\)
−0.259616 + 0.965712i \(0.583596\pi\)
\(728\) 0 0
\(729\) 13.0000 0.481481
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) −40.0000 −1.47743 −0.738717 0.674016i \(-0.764568\pi\)
−0.738717 + 0.674016i \(0.764568\pi\)
\(734\) 0 0
\(735\) −3.00000 −0.110657
\(736\) 0 0
\(737\) −32.0000 −1.17874
\(738\) 0 0
\(739\) 49.0000 1.80249 0.901247 0.433306i \(-0.142653\pi\)
0.901247 + 0.433306i \(0.142653\pi\)
\(740\) 0 0
\(741\) 4.00000 0.146944
\(742\) 0 0
\(743\) −44.0000 −1.61420 −0.807102 0.590412i \(-0.798965\pi\)
−0.807102 + 0.590412i \(0.798965\pi\)
\(744\) 0 0
\(745\) −22.0000 −0.806018
\(746\) 0 0
\(747\) −8.00000 −0.292705
\(748\) 0 0
\(749\) 8.00000 0.292314
\(750\) 0 0
\(751\) 10.0000 0.364905 0.182453 0.983215i \(-0.441596\pi\)
0.182453 + 0.983215i \(0.441596\pi\)
\(752\) 0 0
\(753\) 8.00000 0.291536
\(754\) 0 0
\(755\) 19.0000 0.691481
\(756\) 0 0
\(757\) 28.0000 1.01768 0.508839 0.860862i \(-0.330075\pi\)
0.508839 + 0.860862i \(0.330075\pi\)
\(758\) 0 0
\(759\) 4.00000 0.145191
\(760\) 0 0
\(761\) 45.0000 1.63125 0.815624 0.578582i \(-0.196394\pi\)
0.815624 + 0.578582i \(0.196394\pi\)
\(762\) 0 0
\(763\) 20.0000 0.724049
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 8.00000 0.288863
\(768\) 0 0
\(769\) 50.0000 1.80305 0.901523 0.432731i \(-0.142450\pi\)
0.901523 + 0.432731i \(0.142450\pi\)
\(770\) 0 0
\(771\) −15.0000 −0.540212
\(772\) 0 0
\(773\) 42.0000 1.51064 0.755318 0.655359i \(-0.227483\pi\)
0.755318 + 0.655359i \(0.227483\pi\)
\(774\) 0 0
\(775\) 7.00000 0.251447
\(776\) 0 0
\(777\) −8.00000 −0.286998
\(778\) 0 0
\(779\) 12.0000 0.429945
\(780\) 0 0
\(781\) −52.0000 −1.86071
\(782\) 0 0
\(783\) 35.0000 1.25080
\(784\) 0 0
\(785\) 22.0000 0.785214
\(786\) 0 0
\(787\) 40.0000 1.42585 0.712923 0.701242i \(-0.247371\pi\)
0.712923 + 0.701242i \(0.247371\pi\)
\(788\) 0 0
\(789\) 8.00000 0.284808
\(790\) 0 0
\(791\) −20.0000 −0.711118
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) 10.0000 0.354663
\(796\) 0 0
\(797\) 48.0000 1.70025 0.850124 0.526583i \(-0.176527\pi\)
0.850124 + 0.526583i \(0.176527\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) 12.0000 0.423999
\(802\) 0 0
\(803\) 44.0000 1.55273
\(804\) 0 0
\(805\) 2.00000 0.0704907
\(806\) 0 0
\(807\) 21.0000 0.739235
\(808\) 0 0
\(809\) −30.0000 −1.05474 −0.527372 0.849635i \(-0.676823\pi\)
−0.527372 + 0.849635i \(0.676823\pi\)
\(810\) 0 0
\(811\) 27.0000 0.948098 0.474049 0.880498i \(-0.342792\pi\)
0.474049 + 0.880498i \(0.342792\pi\)
\(812\) 0 0
\(813\) 20.0000 0.701431
\(814\) 0 0
\(815\) −13.0000 −0.455370
\(816\) 0 0
\(817\) −24.0000 −0.839654
\(818\) 0 0
\(819\) −4.00000 −0.139771
\(820\) 0 0
\(821\) 42.0000 1.46581 0.732905 0.680331i \(-0.238164\pi\)
0.732905 + 0.680331i \(0.238164\pi\)
\(822\) 0 0
\(823\) −39.0000 −1.35945 −0.679727 0.733465i \(-0.737902\pi\)
−0.679727 + 0.733465i \(0.737902\pi\)
\(824\) 0 0
\(825\) 4.00000 0.139262
\(826\) 0 0
\(827\) −12.0000 −0.417281 −0.208640 0.977992i \(-0.566904\pi\)
−0.208640 + 0.977992i \(0.566904\pi\)
\(828\) 0 0
\(829\) −26.0000 −0.903017 −0.451509 0.892267i \(-0.649114\pi\)
−0.451509 + 0.892267i \(0.649114\pi\)
\(830\) 0 0
\(831\) −21.0000 −0.728482
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 8.00000 0.276851
\(836\) 0 0
\(837\) −35.0000 −1.20978
\(838\) 0 0
\(839\) 42.0000 1.45000 0.725001 0.688748i \(-0.241839\pi\)
0.725001 + 0.688748i \(0.241839\pi\)
\(840\) 0 0
\(841\) 20.0000 0.689655
\(842\) 0 0
\(843\) −22.0000 −0.757720
\(844\) 0 0
\(845\) −12.0000 −0.412813
\(846\) 0 0
\(847\) 10.0000 0.343604
\(848\) 0 0
\(849\) −14.0000 −0.480479
\(850\) 0 0
\(851\) −4.00000 −0.137118
\(852\) 0 0
\(853\) 14.0000 0.479351 0.239675 0.970853i \(-0.422959\pi\)
0.239675 + 0.970853i \(0.422959\pi\)
\(854\) 0 0
\(855\) −8.00000 −0.273594
\(856\) 0 0
\(857\) 45.0000 1.53717 0.768585 0.639747i \(-0.220961\pi\)
0.768585 + 0.639747i \(0.220961\pi\)
\(858\) 0 0
\(859\) 31.0000 1.05771 0.528853 0.848713i \(-0.322622\pi\)
0.528853 + 0.848713i \(0.322622\pi\)
\(860\) 0 0
\(861\) 6.00000 0.204479
\(862\) 0 0
\(863\) 39.0000 1.32758 0.663788 0.747921i \(-0.268948\pi\)
0.663788 + 0.747921i \(0.268948\pi\)
\(864\) 0 0
\(865\) −2.00000 −0.0680020
\(866\) 0 0
\(867\) −17.0000 −0.577350
\(868\) 0 0
\(869\) −16.0000 −0.542763
\(870\) 0 0
\(871\) −8.00000 −0.271070
\(872\) 0 0
\(873\) 4.00000 0.135379
\(874\) 0 0
\(875\) 2.00000 0.0676123
\(876\) 0 0
\(877\) 26.0000 0.877958 0.438979 0.898497i \(-0.355340\pi\)
0.438979 + 0.898497i \(0.355340\pi\)
\(878\) 0 0
\(879\) 8.00000 0.269833
\(880\) 0 0
\(881\) 12.0000 0.404290 0.202145 0.979356i \(-0.435209\pi\)
0.202145 + 0.979356i \(0.435209\pi\)
\(882\) 0 0
\(883\) −20.0000 −0.673054 −0.336527 0.941674i \(-0.609252\pi\)
−0.336527 + 0.941674i \(0.609252\pi\)
\(884\) 0 0
\(885\) 8.00000 0.268917
\(886\) 0 0
\(887\) 33.0000 1.10803 0.554016 0.832506i \(-0.313095\pi\)
0.554016 + 0.832506i \(0.313095\pi\)
\(888\) 0 0
\(889\) −10.0000 −0.335389
\(890\) 0 0
\(891\) 4.00000 0.134005
\(892\) 0 0
\(893\) 52.0000 1.74011
\(894\) 0 0
\(895\) 13.0000 0.434542
\(896\) 0 0
\(897\) 1.00000 0.0333890
\(898\) 0 0
\(899\) −49.0000 −1.63424
\(900\) 0 0
\(901\) 0 0
\(902\) 0 0
\(903\) −12.0000 −0.399335
\(904\) 0 0
\(905\) 16.0000 0.531858
\(906\) 0 0
\(907\) −28.0000 −0.929725 −0.464862 0.885383i \(-0.653896\pi\)
−0.464862 + 0.885383i \(0.653896\pi\)
\(908\) 0 0
\(909\) −20.0000 −0.663358
\(910\) 0 0
\(911\) −24.0000 −0.795155 −0.397578 0.917568i \(-0.630149\pi\)
−0.397578 + 0.917568i \(0.630149\pi\)
\(912\) 0 0
\(913\) 16.0000 0.529523
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −2.00000 −0.0660458
\(918\) 0 0
\(919\) 34.0000 1.12156 0.560778 0.827966i \(-0.310502\pi\)
0.560778 + 0.827966i \(0.310502\pi\)
\(920\) 0 0
\(921\) −28.0000 −0.922631
\(922\) 0 0
\(923\) −13.0000 −0.427900
\(924\) 0 0
\(925\) −4.00000 −0.131519
\(926\) 0 0
\(927\) 8.00000 0.262754
\(928\) 0 0
\(929\) 27.0000 0.885841 0.442921 0.896561i \(-0.353942\pi\)
0.442921 + 0.896561i \(0.353942\pi\)
\(930\) 0 0
\(931\) −12.0000 −0.393284
\(932\) 0 0
\(933\) −1.00000 −0.0327385
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 48.0000 1.56809 0.784046 0.620703i \(-0.213153\pi\)
0.784046 + 0.620703i \(0.213153\pi\)
\(938\) 0 0
\(939\) −28.0000 −0.913745
\(940\) 0 0
\(941\) −4.00000 −0.130396 −0.0651981 0.997872i \(-0.520768\pi\)
−0.0651981 + 0.997872i \(0.520768\pi\)
\(942\) 0 0
\(943\) 3.00000 0.0976934
\(944\) 0 0
\(945\) −10.0000 −0.325300
\(946\) 0 0
\(947\) −43.0000 −1.39731 −0.698656 0.715458i \(-0.746218\pi\)
−0.698656 + 0.715458i \(0.746218\pi\)
\(948\) 0 0
\(949\) 11.0000 0.357075
\(950\) 0 0
\(951\) 18.0000 0.583690
\(952\) 0 0
\(953\) −22.0000 −0.712650 −0.356325 0.934362i \(-0.615970\pi\)
−0.356325 + 0.934362i \(0.615970\pi\)
\(954\) 0 0
\(955\) 10.0000 0.323592
\(956\) 0 0
\(957\) −28.0000 −0.905111
\(958\) 0 0
\(959\) −24.0000 −0.775000
\(960\) 0 0
\(961\) 18.0000 0.580645
\(962\) 0 0
\(963\) −8.00000 −0.257796
\(964\) 0 0
\(965\) −13.0000 −0.418485
\(966\) 0 0
\(967\) −13.0000 −0.418052 −0.209026 0.977910i \(-0.567029\pi\)
−0.209026 + 0.977910i \(0.567029\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −6.00000 −0.192549 −0.0962746 0.995355i \(-0.530693\pi\)
−0.0962746 + 0.995355i \(0.530693\pi\)
\(972\) 0 0
\(973\) 10.0000 0.320585
\(974\) 0 0
\(975\) 1.00000 0.0320256
\(976\) 0 0
\(977\) 52.0000 1.66363 0.831814 0.555055i \(-0.187303\pi\)
0.831814 + 0.555055i \(0.187303\pi\)
\(978\) 0 0
\(979\) −24.0000 −0.767043
\(980\) 0 0
\(981\) −20.0000 −0.638551
\(982\) 0 0
\(983\) 42.0000 1.33959 0.669796 0.742545i \(-0.266382\pi\)
0.669796 + 0.742545i \(0.266382\pi\)
\(984\) 0 0
\(985\) −13.0000 −0.414214
\(986\) 0 0
\(987\) 26.0000 0.827589
\(988\) 0 0
\(989\) −6.00000 −0.190789
\(990\) 0 0
\(991\) 32.0000 1.01651 0.508257 0.861206i \(-0.330290\pi\)
0.508257 + 0.861206i \(0.330290\pi\)
\(992\) 0 0
\(993\) 9.00000 0.285606
\(994\) 0 0
\(995\) −16.0000 −0.507234
\(996\) 0 0
\(997\) −14.0000 −0.443384 −0.221692 0.975117i \(-0.571158\pi\)
−0.221692 + 0.975117i \(0.571158\pi\)
\(998\) 0 0
\(999\) 20.0000 0.632772
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1840.2.a.h.1.1 1
4.3 odd 2 460.2.a.a.1.1 1
5.4 even 2 9200.2.a.m.1.1 1
8.3 odd 2 7360.2.a.s.1.1 1
8.5 even 2 7360.2.a.h.1.1 1
12.11 even 2 4140.2.a.d.1.1 1
20.3 even 4 2300.2.c.e.1749.1 2
20.7 even 4 2300.2.c.e.1749.2 2
20.19 odd 2 2300.2.a.f.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
460.2.a.a.1.1 1 4.3 odd 2
1840.2.a.h.1.1 1 1.1 even 1 trivial
2300.2.a.f.1.1 1 20.19 odd 2
2300.2.c.e.1749.1 2 20.3 even 4
2300.2.c.e.1749.2 2 20.7 even 4
4140.2.a.d.1.1 1 12.11 even 2
7360.2.a.h.1.1 1 8.5 even 2
7360.2.a.s.1.1 1 8.3 odd 2
9200.2.a.m.1.1 1 5.4 even 2