# Properties

 Label 1840.2.a.h Level $1840$ Weight $2$ Character orbit 1840.a Self dual yes Analytic conductor $14.692$ Analytic rank $0$ Dimension $1$ CM no Inner twists $1$

# Related objects

Show commands: Magma / PariGP / SageMath

## Newspace parameters

comment: Compute space of new eigenforms

[N,k,chi] = [1840,2,Mod(1,1840)]

mf = mfinit([N,k,chi],0)

lf = mfeigenbasis(mf)

from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup(1840, base_ring=CyclotomicField(2))

chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))

N = Newforms(chi, 2, names="a")

//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code

chi := DirichletCharacter("1840.1");

S:= CuspForms(chi, 2);

N := Newforms(S);

 Level: $$N$$ $$=$$ $$1840 = 2^{4} \cdot 5 \cdot 23$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 1840.a (trivial)

## Newform invariants

comment: select newform

sage: f = N[0] # Warning: the index may be different

gp: f = lf[1] \\ Warning: the index may be different

 Self dual: yes Analytic conductor: $$14.6924739719$$ Analytic rank: $$0$$ Dimension: $$1$$ Coefficient field: $$\mathbb{Q}$$ Coefficient ring: $$\mathbb{Z}$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 460) Fricke sign: $$-1$$ Sato-Tate group: $\mathrm{SU}(2)$

## $q$-expansion

comment: q-expansion

sage: f.q_expansion() # note that sage often uses an isomorphic number field

gp: mfcoefs(f, 20)

 $$f(q)$$ $$=$$ $$q + q^{3} + q^{5} + 2 q^{7} - 2 q^{9}+O(q^{10})$$ q + q^3 + q^5 + 2 * q^7 - 2 * q^9 $$q + q^{3} + q^{5} + 2 q^{7} - 2 q^{9} + 4 q^{11} + q^{13} + q^{15} + 4 q^{19} + 2 q^{21} + q^{23} + q^{25} - 5 q^{27} - 7 q^{29} + 7 q^{31} + 4 q^{33} + 2 q^{35} - 4 q^{37} + q^{39} + 3 q^{41} - 6 q^{43} - 2 q^{45} + 13 q^{47} - 3 q^{49} + 10 q^{53} + 4 q^{55} + 4 q^{57} + 8 q^{59} - 4 q^{63} + q^{65} - 8 q^{67} + q^{69} - 13 q^{71} + 11 q^{73} + q^{75} + 8 q^{77} - 4 q^{79} + q^{81} + 4 q^{83} - 7 q^{87} - 6 q^{89} + 2 q^{91} + 7 q^{93} + 4 q^{95} - 2 q^{97} - 8 q^{99}+O(q^{100})$$ q + q^3 + q^5 + 2 * q^7 - 2 * q^9 + 4 * q^11 + q^13 + q^15 + 4 * q^19 + 2 * q^21 + q^23 + q^25 - 5 * q^27 - 7 * q^29 + 7 * q^31 + 4 * q^33 + 2 * q^35 - 4 * q^37 + q^39 + 3 * q^41 - 6 * q^43 - 2 * q^45 + 13 * q^47 - 3 * q^49 + 10 * q^53 + 4 * q^55 + 4 * q^57 + 8 * q^59 - 4 * q^63 + q^65 - 8 * q^67 + q^69 - 13 * q^71 + 11 * q^73 + q^75 + 8 * q^77 - 4 * q^79 + q^81 + 4 * q^83 - 7 * q^87 - 6 * q^89 + 2 * q^91 + 7 * q^93 + 4 * q^95 - 2 * q^97 - 8 * q^99

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field

gp: mfembed(f)

Label   $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
1.1
 0
0 1.00000 0 1.00000 0 2.00000 0 −2.00000 0
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Atkin-Lehner signs

$$p$$ Sign
$$2$$ $$-1$$
$$5$$ $$-1$$
$$23$$ $$-1$$

## Inner twists

This newform does not admit any (nontrivial) inner twists.

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1840.2.a.h 1
4.b odd 2 1 460.2.a.a 1
5.b even 2 1 9200.2.a.m 1
8.b even 2 1 7360.2.a.h 1
8.d odd 2 1 7360.2.a.s 1
12.b even 2 1 4140.2.a.d 1
20.d odd 2 1 2300.2.a.f 1
20.e even 4 2 2300.2.c.e 2

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
460.2.a.a 1 4.b odd 2 1
1840.2.a.h 1 1.a even 1 1 trivial
2300.2.a.f 1 20.d odd 2 1
2300.2.c.e 2 20.e even 4 2
4140.2.a.d 1 12.b even 2 1
7360.2.a.h 1 8.b even 2 1
7360.2.a.s 1 8.d odd 2 1
9200.2.a.m 1 5.b even 2 1

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(\Gamma_0(1840))$$:

 $$T_{3} - 1$$ T3 - 1 $$T_{7} - 2$$ T7 - 2 $$T_{11} - 4$$ T11 - 4

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$T$$
$3$ $$T - 1$$
$5$ $$T - 1$$
$7$ $$T - 2$$
$11$ $$T - 4$$
$13$ $$T - 1$$
$17$ $$T$$
$19$ $$T - 4$$
$23$ $$T - 1$$
$29$ $$T + 7$$
$31$ $$T - 7$$
$37$ $$T + 4$$
$41$ $$T - 3$$
$43$ $$T + 6$$
$47$ $$T - 13$$
$53$ $$T - 10$$
$59$ $$T - 8$$
$61$ $$T$$
$67$ $$T + 8$$
$71$ $$T + 13$$
$73$ $$T - 11$$
$79$ $$T + 4$$
$83$ $$T - 4$$
$89$ $$T + 6$$
$97$ $$T + 2$$