Defining parameters
Level: | \( N \) | \(=\) | \( 1840 = 2^{4} \cdot 5 \cdot 23 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 1840.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 22 \) | ||
Sturm bound: | \(576\) | ||
Trace bound: | \(9\) | ||
Distinguishing \(T_p\): | \(3\), \(7\), \(11\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(1840))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 300 | 44 | 256 |
Cusp forms | 277 | 44 | 233 |
Eisenstein series | 23 | 0 | 23 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(2\) | \(5\) | \(23\) | Fricke | Dim |
---|---|---|---|---|
\(+\) | \(+\) | \(+\) | \(+\) | \(4\) |
\(+\) | \(+\) | \(-\) | \(-\) | \(7\) |
\(+\) | \(-\) | \(+\) | \(-\) | \(7\) |
\(+\) | \(-\) | \(-\) | \(+\) | \(4\) |
\(-\) | \(+\) | \(+\) | \(-\) | \(4\) |
\(-\) | \(+\) | \(-\) | \(+\) | \(7\) |
\(-\) | \(-\) | \(+\) | \(+\) | \(4\) |
\(-\) | \(-\) | \(-\) | \(-\) | \(7\) |
Plus space | \(+\) | \(19\) | ||
Minus space | \(-\) | \(25\) |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(1840))\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(1840))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(1840)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(20))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(23))\)\(^{\oplus 10}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(40))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(46))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(80))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(92))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(115))\)\(^{\oplus 5}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(184))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(230))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(368))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(460))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(920))\)\(^{\oplus 2}\)