Defining parameters
Level: | \( N \) | \(=\) | \( 184 = 2^{3} \cdot 23 \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 184.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 6 \) | ||
Sturm bound: | \(96\) | ||
Trace bound: | \(3\) | ||
Distinguishing \(T_p\): | \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_0(184))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 76 | 16 | 60 |
Cusp forms | 68 | 16 | 52 |
Eisenstein series | 8 | 0 | 8 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(2\) | \(23\) | Fricke | Dim |
---|---|---|---|
\(+\) | \(+\) | \(+\) | \(4\) |
\(+\) | \(-\) | \(-\) | \(3\) |
\(-\) | \(+\) | \(-\) | \(4\) |
\(-\) | \(-\) | \(+\) | \(5\) |
Plus space | \(+\) | \(9\) | |
Minus space | \(-\) | \(7\) |
Trace form
Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_0(184))\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | A-L signs | $q$-expansion | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | 2 | 23 | |||||||
184.4.a.a | $1$ | $10.856$ | \(\Q\) | None | \(0\) | \(-4\) | \(22\) | \(8\) | $-$ | $-$ | \(q-4q^{3}+22q^{5}+8q^{7}-11q^{9}-20q^{11}+\cdots\) | |
184.4.a.b | $1$ | $10.856$ | \(\Q\) | None | \(0\) | \(8\) | \(-4\) | \(-4\) | $+$ | $+$ | \(q+8q^{3}-4q^{5}-4q^{7}+37q^{9}+26q^{11}+\cdots\) | |
184.4.a.c | $3$ | $10.856$ | 3.3.761.1 | None | \(0\) | \(-3\) | \(2\) | \(-28\) | $+$ | $-$ | \(q+(-1+\beta _{2})q^{3}+(1-\beta _{1}-\beta _{2})q^{5}+\cdots\) | |
184.4.a.d | $3$ | $10.856$ | 3.3.761.1 | None | \(0\) | \(1\) | \(16\) | \(18\) | $+$ | $+$ | \(q+\beta _{1}q^{3}+(5+2\beta _{1}+\beta _{2})q^{5}+(5+3\beta _{1}+\cdots)q^{7}+\cdots\) | |
184.4.a.e | $4$ | $10.856$ | 4.4.167313.1 | None | \(0\) | \(1\) | \(-20\) | \(-10\) | $-$ | $+$ | \(q-\beta _{2}q^{3}+(-5+\beta _{2}+\beta _{3})q^{5}+(-1+\cdots)q^{7}+\cdots\) | |
184.4.a.f | $4$ | $10.856$ | 4.4.2822449.1 | None | \(0\) | \(5\) | \(-2\) | \(-32\) | $-$ | $-$ | \(q+(1-\beta _{1})q^{3}+(-1-\beta _{1}+\beta _{3})q^{5}+\cdots\) |
Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_0(184))\) into lower level spaces
\( S_{4}^{\mathrm{old}}(\Gamma_0(184)) \simeq \) \(S_{4}^{\mathrm{new}}(\Gamma_0(8))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(23))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(46))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(92))\)\(^{\oplus 2}\)