Properties

Label 184.4.a
Level $184$
Weight $4$
Character orbit 184.a
Rep. character $\chi_{184}(1,\cdot)$
Character field $\Q$
Dimension $16$
Newform subspaces $6$
Sturm bound $96$
Trace bound $3$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 184 = 2^{3} \cdot 23 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 184.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 6 \)
Sturm bound: \(96\)
Trace bound: \(3\)
Distinguishing \(T_p\): \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_0(184))\).

Total New Old
Modular forms 76 16 60
Cusp forms 68 16 52
Eisenstein series 8 0 8

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)\(23\)FrickeDim
\(+\)\(+\)\(+\)\(4\)
\(+\)\(-\)\(-\)\(3\)
\(-\)\(+\)\(-\)\(4\)
\(-\)\(-\)\(+\)\(5\)
Plus space\(+\)\(9\)
Minus space\(-\)\(7\)

Trace form

\( 16 q + 8 q^{3} + 14 q^{5} - 48 q^{7} + 156 q^{9} + 50 q^{11} - 44 q^{13} + 84 q^{15} - 32 q^{17} - 270 q^{19} - 60 q^{21} + 764 q^{25} + 140 q^{27} - 312 q^{29} + 516 q^{31} - 468 q^{33} + 432 q^{35} + 350 q^{37}+ \cdots - 2770 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_0(184))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 2 23
184.4.a.a 184.a 1.a $1$ $10.856$ \(\Q\) None 184.4.a.a \(0\) \(-4\) \(22\) \(8\) $-$ $-$ $\mathrm{SU}(2)$ \(q-4q^{3}+22q^{5}+8q^{7}-11q^{9}-20q^{11}+\cdots\)
184.4.a.b 184.a 1.a $1$ $10.856$ \(\Q\) None 184.4.a.b \(0\) \(8\) \(-4\) \(-4\) $+$ $+$ $\mathrm{SU}(2)$ \(q+8q^{3}-4q^{5}-4q^{7}+37q^{9}+26q^{11}+\cdots\)
184.4.a.c 184.a 1.a $3$ $10.856$ 3.3.761.1 None 184.4.a.c \(0\) \(-3\) \(2\) \(-28\) $+$ $-$ $\mathrm{SU}(2)$ \(q+(-1+\beta _{2})q^{3}+(1-\beta _{1}-\beta _{2})q^{5}+\cdots\)
184.4.a.d 184.a 1.a $3$ $10.856$ 3.3.761.1 None 184.4.a.d \(0\) \(1\) \(16\) \(18\) $+$ $+$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{3}+(5+2\beta _{1}+\beta _{2})q^{5}+(5+3\beta _{1}+\cdots)q^{7}+\cdots\)
184.4.a.e 184.a 1.a $4$ $10.856$ 4.4.167313.1 None 184.4.a.e \(0\) \(1\) \(-20\) \(-10\) $-$ $+$ $\mathrm{SU}(2)$ \(q-\beta _{2}q^{3}+(-5+\beta _{2}+\beta _{3})q^{5}+(-1+\cdots)q^{7}+\cdots\)
184.4.a.f 184.a 1.a $4$ $10.856$ 4.4.2822449.1 None 184.4.a.f \(0\) \(5\) \(-2\) \(-32\) $-$ $-$ $\mathrm{SU}(2)$ \(q+(1-\beta _{1})q^{3}+(-1-\beta _{1}+\beta _{3})q^{5}+\cdots\)

Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_0(184))\) into lower level spaces

\( S_{4}^{\mathrm{old}}(\Gamma_0(184)) \simeq \) \(S_{4}^{\mathrm{new}}(\Gamma_0(8))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(23))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(46))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(92))\)\(^{\oplus 2}\)