Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [184,2,Mod(13,184)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(184, base_ring=CyclotomicField(22))
chi = DirichletCharacter(H, H._module([0, 11, 14]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("184.13");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 184 = 2^{3} \cdot 23 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 184.p (of order \(22\), degree \(10\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(1.46924739719\) |
Analytic rank: | \(0\) |
Dimension: | \(220\) |
Relative dimension: | \(22\) over \(\Q(\zeta_{22})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{22}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
13.1 | −1.41340 | + | 0.0480184i | 1.16787 | − | 1.81725i | 1.99539 | − | 0.135738i | −0.362199 | − | 0.165411i | −1.56341 | + | 2.62457i | 4.46721 | + | 1.31169i | −2.81376 | + | 0.287667i | −0.692209 | − | 1.51573i | 0.519873 | + | 0.216399i |
13.2 | −1.38759 | − | 0.273122i | 0.00705328 | − | 0.0109751i | 1.85081 | + | 0.757962i | 3.12173 | + | 1.42565i | −0.0127846 | + | 0.0133026i | −2.69654 | − | 0.791776i | −2.36115 | − | 1.55724i | 1.24617 | + | 2.72874i | −3.94231 | − | 2.83083i |
13.3 | −1.38192 | + | 0.300513i | −1.16603 | + | 1.81437i | 1.81938 | − | 0.830568i | −1.93519 | − | 0.883774i | 1.06611 | − | 2.85772i | −1.41177 | − | 0.414532i | −2.26464 | + | 1.69452i | −0.686086 | − | 1.50232i | 2.93986 | + | 0.639750i |
13.4 | −1.15854 | − | 0.811046i | −0.429687 | + | 0.668606i | 0.684409 | + | 1.87925i | −2.58320 | − | 1.17971i | 1.04008 | − | 0.426108i | 2.06173 | + | 0.605378i | 0.731246 | − | 2.73227i | 0.983842 | + | 2.15431i | 2.03593 | + | 3.46182i |
13.5 | −1.04742 | + | 0.950221i | −0.510908 | + | 0.794988i | 0.194160 | − | 1.99055i | 1.50887 | + | 0.689079i | −0.220282 | − | 1.31816i | 0.462185 | + | 0.135710i | 1.68810 | + | 2.26943i | 0.875266 | + | 1.91656i | −2.23519 | + | 0.712010i |
13.6 | −1.00874 | − | 0.991179i | 1.73543 | − | 2.70038i | 0.0351273 | + | 1.99969i | −0.678074 | − | 0.309666i | −4.42717 | + | 1.00387i | −2.93526 | − | 0.861871i | 1.94662 | − | 2.05199i | −3.03410 | − | 6.64376i | 0.377068 | + | 0.984467i |
13.7 | −0.859833 | + | 1.12280i | 1.14322 | − | 1.77888i | −0.521373 | − | 1.93085i | −2.56635 | − | 1.17201i | 1.01436 | + | 2.81315i | −2.17612 | − | 0.638967i | 2.61625 | + | 1.07481i | −0.611228 | − | 1.33840i | 3.52257 | − | 1.87377i |
13.8 | −0.837531 | − | 1.13954i | −1.73543 | + | 2.70038i | −0.597083 | + | 1.90879i | 0.678074 | + | 0.309666i | 4.53066 | − | 0.284070i | −2.93526 | − | 0.861871i | 2.67521 | − | 0.918277i | −3.03410 | − | 6.64376i | −0.215033 | − | 1.03204i |
13.9 | −0.637914 | − | 1.26217i | 0.429687 | − | 0.668606i | −1.18613 | + | 1.61031i | 2.58320 | + | 1.17971i | −1.11800 | − | 0.115824i | 2.06173 | + | 0.605378i | 2.78913 | + | 0.469860i | 0.983842 | + | 2.15431i | −0.158870 | − | 4.01298i |
13.10 | −0.329997 | + | 1.37517i | 0.583943 | − | 0.908634i | −1.78220 | − | 0.907607i | 0.293263 | + | 0.133929i | 1.05683 | + | 1.10287i | 1.64760 | + | 0.483779i | 1.83624 | − | 2.15133i | 0.761620 | + | 1.66772i | −0.280951 | + | 0.359091i |
13.11 | −0.0728674 | − | 1.41234i | −0.00705328 | + | 0.0109751i | −1.98938 | + | 0.205826i | −3.12173 | − | 1.42565i | 0.0160145 | + | 0.00916187i | −2.69654 | − | 0.791776i | 0.435657 | + | 2.79467i | 1.24617 | + | 2.72874i | −1.78602 | + | 4.51282i |
13.12 | 0.248677 | − | 1.39218i | −1.16787 | + | 1.81725i | −1.87632 | − | 0.692406i | 0.362199 | + | 0.165411i | 2.23951 | + | 2.07779i | 4.46721 | + | 1.31169i | −1.43055 | + | 2.43999i | −0.692209 | − | 1.51573i | 0.320351 | − | 0.463111i |
13.13 | 0.297466 | + | 1.38258i | −1.35779 | + | 2.11277i | −1.82303 | + | 0.822538i | 3.81860 | + | 1.74390i | −3.32496 | − | 1.24878i | 1.23190 | + | 0.361720i | −1.67951 | − | 2.27580i | −1.37394 | − | 3.00851i | −1.27516 | + | 5.79825i |
13.14 | 0.304232 | + | 1.38110i | −0.603355 | + | 0.938838i | −1.81489 | + | 0.840351i | −1.75955 | − | 0.803560i | −1.48019 | − | 0.547670i | −4.74970 | − | 1.39464i | −1.71276 | − | 2.25088i | 0.728865 | + | 1.59599i | 0.574487 | − | 2.67459i |
13.15 | 0.494121 | − | 1.32508i | 1.16603 | − | 1.81437i | −1.51169 | − | 1.30950i | 1.93519 | + | 0.883774i | −1.82804 | − | 2.44160i | −1.41177 | − | 0.414532i | −2.48216 | + | 1.35606i | −0.686086 | − | 1.50232i | 2.12729 | − | 2.12760i |
13.16 | 0.500600 | + | 1.32265i | 1.57562 | − | 2.45171i | −1.49880 | + | 1.32424i | 1.68414 | + | 0.769120i | 4.03151 | + | 0.856663i | 0.338518 | + | 0.0993980i | −2.50180 | − | 1.31947i | −2.28207 | − | 4.99704i | −0.174195 | + | 2.61254i |
13.17 | 1.08961 | − | 0.901524i | 0.510908 | − | 0.794988i | 0.374509 | − | 1.96462i | −1.50887 | − | 0.689079i | −0.160010 | − | 1.32682i | 0.462185 | + | 0.135710i | −1.36309 | − | 2.47831i | 0.875266 | + | 1.91656i | −2.26531 | + | 0.609456i |
13.18 | 1.23374 | − | 0.691290i | −1.14322 | + | 1.77888i | 1.04424 | − | 1.70575i | 2.56635 | + | 1.17201i | −0.180712 | + | 2.98498i | −2.17612 | − | 0.638967i | 0.109152 | − | 2.82632i | −0.611228 | − | 1.33840i | 3.97641 | − | 0.328131i |
13.19 | 1.23794 | + | 0.683738i | −1.57562 | + | 2.45171i | 1.06501 | + | 1.69286i | −1.68414 | − | 0.769120i | −3.62686 | + | 1.95777i | 0.338518 | + | 0.0993980i | 0.160947 | + | 2.82384i | −2.28207 | − | 4.99704i | −1.55899 | − | 2.10363i |
13.20 | 1.32375 | + | 0.497687i | 0.603355 | − | 0.938838i | 1.50462 | + | 1.31762i | 1.75955 | + | 0.803560i | 1.26594 | − | 0.942503i | −4.74970 | − | 1.39464i | 1.33597 | + | 2.49303i | 0.728865 | + | 1.59599i | 1.92928 | + | 1.93942i |
See next 80 embeddings (of 220 total) |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
8.b | even | 2 | 1 | inner |
23.c | even | 11 | 1 | inner |
184.p | even | 22 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 184.2.p.a | ✓ | 220 |
4.b | odd | 2 | 1 | 736.2.x.a | 220 | ||
8.b | even | 2 | 1 | inner | 184.2.p.a | ✓ | 220 |
8.d | odd | 2 | 1 | 736.2.x.a | 220 | ||
23.c | even | 11 | 1 | inner | 184.2.p.a | ✓ | 220 |
92.g | odd | 22 | 1 | 736.2.x.a | 220 | ||
184.k | odd | 22 | 1 | 736.2.x.a | 220 | ||
184.p | even | 22 | 1 | inner | 184.2.p.a | ✓ | 220 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
184.2.p.a | ✓ | 220 | 1.a | even | 1 | 1 | trivial |
184.2.p.a | ✓ | 220 | 8.b | even | 2 | 1 | inner |
184.2.p.a | ✓ | 220 | 23.c | even | 11 | 1 | inner |
184.2.p.a | ✓ | 220 | 184.p | even | 22 | 1 | inner |
736.2.x.a | 220 | 4.b | odd | 2 | 1 | ||
736.2.x.a | 220 | 8.d | odd | 2 | 1 | ||
736.2.x.a | 220 | 92.g | odd | 22 | 1 | ||
736.2.x.a | 220 | 184.k | odd | 22 | 1 |
Hecke kernels
This newform subspace is the entire newspace \(S_{2}^{\mathrm{new}}(184, [\chi])\).