Properties

Label 184.2.j
Level $184$
Weight $2$
Character orbit 184.j
Rep. character $\chi_{184}(11,\cdot)$
Character field $\Q(\zeta_{22})$
Dimension $220$
Newform subspaces $1$
Sturm bound $48$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 184 = 2^{3} \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 184.j (of order \(22\) and degree \(10\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 184 \)
Character field: \(\Q(\zeta_{22})\)
Newform subspaces: \( 1 \)
Sturm bound: \(48\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(184, [\chi])\).

Total New Old
Modular forms 260 260 0
Cusp forms 220 220 0
Eisenstein series 40 40 0

Trace form

\( 220 q - 11 q^{2} - 18 q^{3} - 3 q^{4} - 12 q^{6} - 8 q^{8} - 36 q^{9} - 11 q^{10} - 22 q^{11} - 6 q^{12} - 11 q^{14} + 5 q^{16} - 22 q^{17} - 6 q^{18} - 22 q^{19} - 11 q^{20} - 18 q^{24} - 32 q^{25} - 10 q^{26}+ \cdots - 22 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(184, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
184.2.j.a 184.j 184.j $220$ $1.469$ None 184.2.j.a \(-11\) \(-18\) \(0\) \(0\) $\mathrm{SU}(2)[C_{22}]$