Properties

Label 184.2.j
Level $184$
Weight $2$
Character orbit 184.j
Rep. character $\chi_{184}(11,\cdot)$
Character field $\Q(\zeta_{22})$
Dimension $220$
Newform subspaces $1$
Sturm bound $48$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 184 = 2^{3} \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 184.j (of order \(22\) and degree \(10\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 184 \)
Character field: \(\Q(\zeta_{22})\)
Newform subspaces: \( 1 \)
Sturm bound: \(48\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(184, [\chi])\).

Total New Old
Modular forms 260 260 0
Cusp forms 220 220 0
Eisenstein series 40 40 0

Trace form

\( 220q - 11q^{2} - 18q^{3} - 3q^{4} - 12q^{6} - 8q^{8} - 36q^{9} + O(q^{10}) \) \( 220q - 11q^{2} - 18q^{3} - 3q^{4} - 12q^{6} - 8q^{8} - 36q^{9} - 11q^{10} - 22q^{11} - 6q^{12} - 11q^{14} + 5q^{16} - 22q^{17} - 6q^{18} - 22q^{19} - 11q^{20} - 18q^{24} - 32q^{25} - 10q^{26} - 18q^{27} - 11q^{28} - 11q^{30} - 11q^{32} - 22q^{33} + 11q^{34} + 2q^{35} - 41q^{36} + 44q^{38} - 99q^{40} - 18q^{41} + 99q^{42} - 22q^{43} - 88q^{44} + 45q^{46} - 100q^{48} - 28q^{49} + 14q^{50} - 22q^{51} - 118q^{52} + 102q^{54} - 66q^{56} - 22q^{57} + 43q^{58} - 6q^{59} - 33q^{60} - 56q^{62} + 18q^{64} - 22q^{65} + 22q^{66} - 22q^{67} - 10q^{70} - 23q^{72} - 18q^{73} + 14q^{75} + 44q^{76} + 98q^{78} + 88q^{80} + 4q^{81} + 14q^{82} - 22q^{83} + 143q^{84} + 99q^{86} + 77q^{88} - 22q^{89} + 176q^{90} + 36q^{92} + 111q^{94} + 101q^{96} - 22q^{97} + 121q^{98} - 22q^{99} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(184, [\chi])\) into newform subspaces

Label Dim. \(A\) Field CM Traces $q$-expansion
\(a_2\) \(a_3\) \(a_5\) \(a_7\)
184.2.j.a \(220\) \(1.469\) None \(-11\) \(-18\) \(0\) \(0\)