Properties

Label 184.2.i
Level $184$
Weight $2$
Character orbit 184.i
Rep. character $\chi_{184}(9,\cdot)$
Character field $\Q(\zeta_{11})$
Dimension $60$
Newform subspaces $2$
Sturm bound $48$
Trace bound $3$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 184 = 2^{3} \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 184.i (of order \(11\) and degree \(10\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 23 \)
Character field: \(\Q(\zeta_{11})\)
Newform subspaces: \( 2 \)
Sturm bound: \(48\)
Trace bound: \(3\)
Distinguishing \(T_p\): \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(184, [\chi])\).

Total New Old
Modular forms 280 60 220
Cusp forms 200 60 140
Eisenstein series 80 0 80

Trace form

\( 60 q + 2 q^{5} - 2 q^{9} - 2 q^{11} - 4 q^{15} + 4 q^{17} - 2 q^{19} + 4 q^{21} + 2 q^{25} - 12 q^{27} - 12 q^{29} + 12 q^{31} + 12 q^{33} - 22 q^{35} - 26 q^{37} - 16 q^{39} - 26 q^{41} - 34 q^{43} - 84 q^{45}+ \cdots + 184 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(184, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
184.2.i.a 184.i 23.c $30$ $1.469$ None 184.2.i.a \(0\) \(-2\) \(2\) \(13\) $\mathrm{SU}(2)[C_{11}]$
184.2.i.b 184.i 23.c $30$ $1.469$ None 184.2.i.b \(0\) \(2\) \(0\) \(-13\) $\mathrm{SU}(2)[C_{11}]$

Decomposition of \(S_{2}^{\mathrm{old}}(184, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(184, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(23, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(46, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(92, [\chi])\)\(^{\oplus 2}\)