Properties

Label 184.2.h.a.91.4
Level $184$
Weight $2$
Character 184.91
Analytic conductor $1.469$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [184,2,Mod(91,184)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(184, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("184.91"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 184 = 2^{3} \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 184.h (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.46924739719\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(i, \sqrt{14})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 49 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 91.4
Root \(1.87083 - 1.87083i\) of defining polynomial
Character \(\chi\) \(=\) 184.91
Dual form 184.2.h.a.91.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.00000 + 1.00000i) q^{2} -2.00000 q^{3} +2.00000i q^{4} +3.74166 q^{5} +(-2.00000 - 2.00000i) q^{6} +(-2.00000 + 2.00000i) q^{8} +1.00000 q^{9} +(3.74166 + 3.74166i) q^{10} +3.74166i q^{11} -4.00000i q^{12} +4.00000i q^{13} -7.48331 q^{15} -4.00000 q^{16} -7.48331i q^{17} +(1.00000 + 1.00000i) q^{18} -3.74166i q^{19} +7.48331i q^{20} +(-3.74166 + 3.74166i) q^{22} +(3.74166 - 3.00000i) q^{23} +(4.00000 - 4.00000i) q^{24} +9.00000 q^{25} +(-4.00000 + 4.00000i) q^{26} +4.00000 q^{27} +(-7.48331 - 7.48331i) q^{30} -2.00000i q^{31} +(-4.00000 - 4.00000i) q^{32} -7.48331i q^{33} +(7.48331 - 7.48331i) q^{34} +2.00000i q^{36} -3.74166 q^{37} +(3.74166 - 3.74166i) q^{38} -8.00000i q^{39} +(-7.48331 + 7.48331i) q^{40} -4.00000 q^{41} -3.74166i q^{43} -7.48331 q^{44} +3.74166 q^{45} +(6.74166 + 0.741657i) q^{46} -4.00000i q^{47} +8.00000 q^{48} -7.00000 q^{49} +(9.00000 + 9.00000i) q^{50} +14.9666i q^{51} -8.00000 q^{52} -3.74166 q^{53} +(4.00000 + 4.00000i) q^{54} +14.0000i q^{55} +7.48331i q^{57} -2.00000 q^{59} -14.9666i q^{60} +11.2250 q^{61} +(2.00000 - 2.00000i) q^{62} -8.00000i q^{64} +14.9666i q^{65} +(7.48331 - 7.48331i) q^{66} -11.2250i q^{67} +14.9666 q^{68} +(-7.48331 + 6.00000i) q^{69} +12.0000i q^{71} +(-2.00000 + 2.00000i) q^{72} +8.00000 q^{73} +(-3.74166 - 3.74166i) q^{74} -18.0000 q^{75} +7.48331 q^{76} +(8.00000 - 8.00000i) q^{78} -7.48331 q^{79} -14.9666 q^{80} -11.0000 q^{81} +(-4.00000 - 4.00000i) q^{82} +11.2250i q^{83} -28.0000i q^{85} +(3.74166 - 3.74166i) q^{86} +(-7.48331 - 7.48331i) q^{88} +7.48331i q^{89} +(3.74166 + 3.74166i) q^{90} +(6.00000 + 7.48331i) q^{92} +4.00000i q^{93} +(4.00000 - 4.00000i) q^{94} -14.0000i q^{95} +(8.00000 + 8.00000i) q^{96} -7.48331i q^{97} +(-7.00000 - 7.00000i) q^{98} +3.74166i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{2} - 8 q^{3} - 8 q^{6} - 8 q^{8} + 4 q^{9} - 16 q^{16} + 4 q^{18} + 16 q^{24} + 36 q^{25} - 16 q^{26} + 16 q^{27} - 16 q^{32} - 16 q^{41} + 12 q^{46} + 32 q^{48} - 28 q^{49} + 36 q^{50} - 32 q^{52}+ \cdots - 28 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/184\mathbb{Z}\right)^\times\).

\(n\) \(47\) \(93\) \(97\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 + 1.00000i 0.707107 + 0.707107i
\(3\) −2.00000 −1.15470 −0.577350 0.816497i \(-0.695913\pi\)
−0.577350 + 0.816497i \(0.695913\pi\)
\(4\) 2.00000i 1.00000i
\(5\) 3.74166 1.67332 0.836660 0.547723i \(-0.184505\pi\)
0.836660 + 0.547723i \(0.184505\pi\)
\(6\) −2.00000 2.00000i −0.816497 0.816497i
\(7\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(8\) −2.00000 + 2.00000i −0.707107 + 0.707107i
\(9\) 1.00000 0.333333
\(10\) 3.74166 + 3.74166i 1.18322 + 1.18322i
\(11\) 3.74166i 1.12815i 0.825723 + 0.564076i \(0.190768\pi\)
−0.825723 + 0.564076i \(0.809232\pi\)
\(12\) 4.00000i 1.15470i
\(13\) 4.00000i 1.10940i 0.832050 + 0.554700i \(0.187167\pi\)
−0.832050 + 0.554700i \(0.812833\pi\)
\(14\) 0 0
\(15\) −7.48331 −1.93218
\(16\) −4.00000 −1.00000
\(17\) 7.48331i 1.81497i −0.420084 0.907485i \(-0.637999\pi\)
0.420084 0.907485i \(-0.362001\pi\)
\(18\) 1.00000 + 1.00000i 0.235702 + 0.235702i
\(19\) 3.74166i 0.858395i −0.903211 0.429198i \(-0.858796\pi\)
0.903211 0.429198i \(-0.141204\pi\)
\(20\) 7.48331i 1.67332i
\(21\) 0 0
\(22\) −3.74166 + 3.74166i −0.797724 + 0.797724i
\(23\) 3.74166 3.00000i 0.780189 0.625543i
\(24\) 4.00000 4.00000i 0.816497 0.816497i
\(25\) 9.00000 1.80000
\(26\) −4.00000 + 4.00000i −0.784465 + 0.784465i
\(27\) 4.00000 0.769800
\(28\) 0 0
\(29\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(30\) −7.48331 7.48331i −1.36626 1.36626i
\(31\) 2.00000i 0.359211i −0.983739 0.179605i \(-0.942518\pi\)
0.983739 0.179605i \(-0.0574821\pi\)
\(32\) −4.00000 4.00000i −0.707107 0.707107i
\(33\) 7.48331i 1.30268i
\(34\) 7.48331 7.48331i 1.28338 1.28338i
\(35\) 0 0
\(36\) 2.00000i 0.333333i
\(37\) −3.74166 −0.615125 −0.307562 0.951528i \(-0.599513\pi\)
−0.307562 + 0.951528i \(0.599513\pi\)
\(38\) 3.74166 3.74166i 0.606977 0.606977i
\(39\) 8.00000i 1.28103i
\(40\) −7.48331 + 7.48331i −1.18322 + 1.18322i
\(41\) −4.00000 −0.624695 −0.312348 0.949968i \(-0.601115\pi\)
−0.312348 + 0.949968i \(0.601115\pi\)
\(42\) 0 0
\(43\) 3.74166i 0.570597i −0.958439 0.285299i \(-0.907907\pi\)
0.958439 0.285299i \(-0.0920928\pi\)
\(44\) −7.48331 −1.12815
\(45\) 3.74166 0.557773
\(46\) 6.74166 + 0.741657i 0.994003 + 0.109351i
\(47\) 4.00000i 0.583460i −0.956501 0.291730i \(-0.905769\pi\)
0.956501 0.291730i \(-0.0942309\pi\)
\(48\) 8.00000 1.15470
\(49\) −7.00000 −1.00000
\(50\) 9.00000 + 9.00000i 1.27279 + 1.27279i
\(51\) 14.9666i 2.09575i
\(52\) −8.00000 −1.10940
\(53\) −3.74166 −0.513956 −0.256978 0.966417i \(-0.582727\pi\)
−0.256978 + 0.966417i \(0.582727\pi\)
\(54\) 4.00000 + 4.00000i 0.544331 + 0.544331i
\(55\) 14.0000i 1.88776i
\(56\) 0 0
\(57\) 7.48331i 0.991189i
\(58\) 0 0
\(59\) −2.00000 −0.260378 −0.130189 0.991489i \(-0.541558\pi\)
−0.130189 + 0.991489i \(0.541558\pi\)
\(60\) 14.9666i 1.93218i
\(61\) 11.2250 1.43721 0.718605 0.695418i \(-0.244781\pi\)
0.718605 + 0.695418i \(0.244781\pi\)
\(62\) 2.00000 2.00000i 0.254000 0.254000i
\(63\) 0 0
\(64\) 8.00000i 1.00000i
\(65\) 14.9666i 1.85638i
\(66\) 7.48331 7.48331i 0.921132 0.921132i
\(67\) 11.2250i 1.37135i −0.727908 0.685674i \(-0.759507\pi\)
0.727908 0.685674i \(-0.240493\pi\)
\(68\) 14.9666 1.81497
\(69\) −7.48331 + 6.00000i −0.900885 + 0.722315i
\(70\) 0 0
\(71\) 12.0000i 1.42414i 0.702109 + 0.712069i \(0.252242\pi\)
−0.702109 + 0.712069i \(0.747758\pi\)
\(72\) −2.00000 + 2.00000i −0.235702 + 0.235702i
\(73\) 8.00000 0.936329 0.468165 0.883641i \(-0.344915\pi\)
0.468165 + 0.883641i \(0.344915\pi\)
\(74\) −3.74166 3.74166i −0.434959 0.434959i
\(75\) −18.0000 −2.07846
\(76\) 7.48331 0.858395
\(77\) 0 0
\(78\) 8.00000 8.00000i 0.905822 0.905822i
\(79\) −7.48331 −0.841939 −0.420969 0.907075i \(-0.638310\pi\)
−0.420969 + 0.907075i \(0.638310\pi\)
\(80\) −14.9666 −1.67332
\(81\) −11.0000 −1.22222
\(82\) −4.00000 4.00000i −0.441726 0.441726i
\(83\) 11.2250i 1.23210i 0.787707 + 0.616050i \(0.211268\pi\)
−0.787707 + 0.616050i \(0.788732\pi\)
\(84\) 0 0
\(85\) 28.0000i 3.03703i
\(86\) 3.74166 3.74166i 0.403473 0.403473i
\(87\) 0 0
\(88\) −7.48331 7.48331i −0.797724 0.797724i
\(89\) 7.48331i 0.793230i 0.917985 + 0.396615i \(0.129815\pi\)
−0.917985 + 0.396615i \(0.870185\pi\)
\(90\) 3.74166 + 3.74166i 0.394405 + 0.394405i
\(91\) 0 0
\(92\) 6.00000 + 7.48331i 0.625543 + 0.780189i
\(93\) 4.00000i 0.414781i
\(94\) 4.00000 4.00000i 0.412568 0.412568i
\(95\) 14.0000i 1.43637i
\(96\) 8.00000 + 8.00000i 0.816497 + 0.816497i
\(97\) 7.48331i 0.759815i −0.925024 0.379908i \(-0.875956\pi\)
0.925024 0.379908i \(-0.124044\pi\)
\(98\) −7.00000 7.00000i −0.707107 0.707107i
\(99\) 3.74166i 0.376051i
\(100\) 18.0000i 1.80000i
\(101\) 16.0000i 1.59206i 0.605257 + 0.796030i \(0.293070\pi\)
−0.605257 + 0.796030i \(0.706930\pi\)
\(102\) −14.9666 + 14.9666i −1.48192 + 1.48192i
\(103\) 7.48331 0.737353 0.368676 0.929558i \(-0.379811\pi\)
0.368676 + 0.929558i \(0.379811\pi\)
\(104\) −8.00000 8.00000i −0.784465 0.784465i
\(105\) 0 0
\(106\) −3.74166 3.74166i −0.363422 0.363422i
\(107\) 3.74166i 0.361720i 0.983509 + 0.180860i \(0.0578880\pi\)
−0.983509 + 0.180860i \(0.942112\pi\)
\(108\) 8.00000i 0.769800i
\(109\) −3.74166 −0.358386 −0.179193 0.983814i \(-0.557349\pi\)
−0.179193 + 0.983814i \(0.557349\pi\)
\(110\) −14.0000 + 14.0000i −1.33485 + 1.33485i
\(111\) 7.48331 0.710285
\(112\) 0 0
\(113\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(114\) −7.48331 + 7.48331i −0.700877 + 0.700877i
\(115\) 14.0000 11.2250i 1.30551 1.04673i
\(116\) 0 0
\(117\) 4.00000i 0.369800i
\(118\) −2.00000 2.00000i −0.184115 0.184115i
\(119\) 0 0
\(120\) 14.9666 14.9666i 1.36626 1.36626i
\(121\) −3.00000 −0.272727
\(122\) 11.2250 + 11.2250i 1.01626 + 1.01626i
\(123\) 8.00000 0.721336
\(124\) 4.00000 0.359211
\(125\) 14.9666 1.33866
\(126\) 0 0
\(127\) 4.00000i 0.354943i 0.984126 + 0.177471i \(0.0567917\pi\)
−0.984126 + 0.177471i \(0.943208\pi\)
\(128\) 8.00000 8.00000i 0.707107 0.707107i
\(129\) 7.48331i 0.658869i
\(130\) −14.9666 + 14.9666i −1.31266 + 1.31266i
\(131\) −18.0000 −1.57267 −0.786334 0.617802i \(-0.788023\pi\)
−0.786334 + 0.617802i \(0.788023\pi\)
\(132\) 14.9666 1.30268
\(133\) 0 0
\(134\) 11.2250 11.2250i 0.969690 0.969690i
\(135\) 14.9666 1.28812
\(136\) 14.9666 + 14.9666i 1.28338 + 1.28338i
\(137\) 14.9666i 1.27869i −0.768922 0.639343i \(-0.779207\pi\)
0.768922 0.639343i \(-0.220793\pi\)
\(138\) −13.4833 1.48331i −1.14778 0.126268i
\(139\) 10.0000 0.848189 0.424094 0.905618i \(-0.360592\pi\)
0.424094 + 0.905618i \(0.360592\pi\)
\(140\) 0 0
\(141\) 8.00000i 0.673722i
\(142\) −12.0000 + 12.0000i −1.00702 + 1.00702i
\(143\) −14.9666 −1.25157
\(144\) −4.00000 −0.333333
\(145\) 0 0
\(146\) 8.00000 + 8.00000i 0.662085 + 0.662085i
\(147\) 14.0000 1.15470
\(148\) 7.48331i 0.615125i
\(149\) −11.2250 −0.919586 −0.459793 0.888026i \(-0.652076\pi\)
−0.459793 + 0.888026i \(0.652076\pi\)
\(150\) −18.0000 18.0000i −1.46969 1.46969i
\(151\) 6.00000i 0.488273i −0.969741 0.244137i \(-0.921495\pi\)
0.969741 0.244137i \(-0.0785045\pi\)
\(152\) 7.48331 + 7.48331i 0.606977 + 0.606977i
\(153\) 7.48331i 0.604990i
\(154\) 0 0
\(155\) 7.48331i 0.601074i
\(156\) 16.0000 1.28103
\(157\) −11.2250 −0.895850 −0.447925 0.894071i \(-0.647837\pi\)
−0.447925 + 0.894071i \(0.647837\pi\)
\(158\) −7.48331 7.48331i −0.595341 0.595341i
\(159\) 7.48331 0.593465
\(160\) −14.9666 14.9666i −1.18322 1.18322i
\(161\) 0 0
\(162\) −11.0000 11.0000i −0.864242 0.864242i
\(163\) −6.00000 −0.469956 −0.234978 0.972001i \(-0.575502\pi\)
−0.234978 + 0.972001i \(0.575502\pi\)
\(164\) 8.00000i 0.624695i
\(165\) 28.0000i 2.17980i
\(166\) −11.2250 + 11.2250i −0.871227 + 0.871227i
\(167\) 20.0000i 1.54765i 0.633402 + 0.773823i \(0.281658\pi\)
−0.633402 + 0.773823i \(0.718342\pi\)
\(168\) 0 0
\(169\) −3.00000 −0.230769
\(170\) 28.0000 28.0000i 2.14750 2.14750i
\(171\) 3.74166i 0.286132i
\(172\) 7.48331 0.570597
\(173\) 12.0000i 0.912343i 0.889892 + 0.456172i \(0.150780\pi\)
−0.889892 + 0.456172i \(0.849220\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 14.9666i 1.12815i
\(177\) 4.00000 0.300658
\(178\) −7.48331 + 7.48331i −0.560898 + 0.560898i
\(179\) 6.00000 0.448461 0.224231 0.974536i \(-0.428013\pi\)
0.224231 + 0.974536i \(0.428013\pi\)
\(180\) 7.48331i 0.557773i
\(181\) −26.1916 −1.94681 −0.973403 0.229099i \(-0.926422\pi\)
−0.973403 + 0.229099i \(0.926422\pi\)
\(182\) 0 0
\(183\) −22.4499 −1.65955
\(184\) −1.48331 + 13.4833i −0.109351 + 0.994003i
\(185\) −14.0000 −1.02930
\(186\) −4.00000 + 4.00000i −0.293294 + 0.293294i
\(187\) 28.0000 2.04756
\(188\) 8.00000 0.583460
\(189\) 0 0
\(190\) 14.0000 14.0000i 1.01567 1.01567i
\(191\) 7.48331 0.541474 0.270737 0.962653i \(-0.412733\pi\)
0.270737 + 0.962653i \(0.412733\pi\)
\(192\) 16.0000i 1.15470i
\(193\) 10.0000 0.719816 0.359908 0.932988i \(-0.382808\pi\)
0.359908 + 0.932988i \(0.382808\pi\)
\(194\) 7.48331 7.48331i 0.537271 0.537271i
\(195\) 29.9333i 2.14357i
\(196\) 14.0000i 1.00000i
\(197\) 12.0000i 0.854965i −0.904024 0.427482i \(-0.859401\pi\)
0.904024 0.427482i \(-0.140599\pi\)
\(198\) −3.74166 + 3.74166i −0.265908 + 0.265908i
\(199\) 14.9666 1.06096 0.530478 0.847699i \(-0.322012\pi\)
0.530478 + 0.847699i \(0.322012\pi\)
\(200\) −18.0000 + 18.0000i −1.27279 + 1.27279i
\(201\) 22.4499i 1.58350i
\(202\) −16.0000 + 16.0000i −1.12576 + 1.12576i
\(203\) 0 0
\(204\) −29.9333 −2.09575
\(205\) −14.9666 −1.04531
\(206\) 7.48331 + 7.48331i 0.521387 + 0.521387i
\(207\) 3.74166 3.00000i 0.260063 0.208514i
\(208\) 16.0000i 1.10940i
\(209\) 14.0000 0.968400
\(210\) 0 0
\(211\) −10.0000 −0.688428 −0.344214 0.938891i \(-0.611855\pi\)
−0.344214 + 0.938891i \(0.611855\pi\)
\(212\) 7.48331i 0.513956i
\(213\) 24.0000i 1.64445i
\(214\) −3.74166 + 3.74166i −0.255774 + 0.255774i
\(215\) 14.0000i 0.954792i
\(216\) −8.00000 + 8.00000i −0.544331 + 0.544331i
\(217\) 0 0
\(218\) −3.74166 3.74166i −0.253417 0.253417i
\(219\) −16.0000 −1.08118
\(220\) −28.0000 −1.88776
\(221\) 29.9333 2.01353
\(222\) 7.48331 + 7.48331i 0.502247 + 0.502247i
\(223\) 10.0000i 0.669650i −0.942280 0.334825i \(-0.891323\pi\)
0.942280 0.334825i \(-0.108677\pi\)
\(224\) 0 0
\(225\) 9.00000 0.600000
\(226\) 0 0
\(227\) 18.7083i 1.24171i −0.783924 0.620856i \(-0.786785\pi\)
0.783924 0.620856i \(-0.213215\pi\)
\(228\) −14.9666 −0.991189
\(229\) 11.2250 0.741767 0.370884 0.928679i \(-0.379055\pi\)
0.370884 + 0.928679i \(0.379055\pi\)
\(230\) 25.2250 + 2.77503i 1.66329 + 0.182980i
\(231\) 0 0
\(232\) 0 0
\(233\) −14.0000 −0.917170 −0.458585 0.888650i \(-0.651644\pi\)
−0.458585 + 0.888650i \(0.651644\pi\)
\(234\) −4.00000 + 4.00000i −0.261488 + 0.261488i
\(235\) 14.9666i 0.976315i
\(236\) 4.00000i 0.260378i
\(237\) 14.9666 0.972187
\(238\) 0 0
\(239\) 18.0000i 1.16432i 0.813073 + 0.582162i \(0.197793\pi\)
−0.813073 + 0.582162i \(0.802207\pi\)
\(240\) 29.9333 1.93218
\(241\) 22.4499i 1.44613i 0.690781 + 0.723064i \(0.257267\pi\)
−0.690781 + 0.723064i \(0.742733\pi\)
\(242\) −3.00000 3.00000i −0.192847 0.192847i
\(243\) 10.0000 0.641500
\(244\) 22.4499i 1.43721i
\(245\) −26.1916 −1.67332
\(246\) 8.00000 + 8.00000i 0.510061 + 0.510061i
\(247\) 14.9666 0.952304
\(248\) 4.00000 + 4.00000i 0.254000 + 0.254000i
\(249\) 22.4499i 1.42271i
\(250\) 14.9666 + 14.9666i 0.946573 + 0.946573i
\(251\) 18.7083i 1.18086i 0.807090 + 0.590428i \(0.201041\pi\)
−0.807090 + 0.590428i \(0.798959\pi\)
\(252\) 0 0
\(253\) 11.2250 + 14.0000i 0.705708 + 0.880172i
\(254\) −4.00000 + 4.00000i −0.250982 + 0.250982i
\(255\) 56.0000i 3.50686i
\(256\) 16.0000 1.00000
\(257\) 12.0000 0.748539 0.374270 0.927320i \(-0.377893\pi\)
0.374270 + 0.927320i \(0.377893\pi\)
\(258\) −7.48331 + 7.48331i −0.465891 + 0.465891i
\(259\) 0 0
\(260\) −29.9333 −1.85638
\(261\) 0 0
\(262\) −18.0000 18.0000i −1.11204 1.11204i
\(263\) −7.48331 −0.461441 −0.230720 0.973020i \(-0.574108\pi\)
−0.230720 + 0.973020i \(0.574108\pi\)
\(264\) 14.9666 + 14.9666i 0.921132 + 0.921132i
\(265\) −14.0000 −0.860013
\(266\) 0 0
\(267\) 14.9666i 0.915943i
\(268\) 22.4499 1.37135
\(269\) 16.0000i 0.975537i −0.872973 0.487769i \(-0.837811\pi\)
0.872973 0.487769i \(-0.162189\pi\)
\(270\) 14.9666 + 14.9666i 0.910840 + 0.910840i
\(271\) 4.00000i 0.242983i −0.992592 0.121491i \(-0.961232\pi\)
0.992592 0.121491i \(-0.0387677\pi\)
\(272\) 29.9333i 1.81497i
\(273\) 0 0
\(274\) 14.9666 14.9666i 0.904167 0.904167i
\(275\) 33.6749i 2.03067i
\(276\) −12.0000 14.9666i −0.722315 0.900885i
\(277\) 8.00000i 0.480673i 0.970690 + 0.240337i \(0.0772579\pi\)
−0.970690 + 0.240337i \(0.922742\pi\)
\(278\) 10.0000 + 10.0000i 0.599760 + 0.599760i
\(279\) 2.00000i 0.119737i
\(280\) 0 0
\(281\) 7.48331i 0.446417i −0.974771 0.223209i \(-0.928347\pi\)
0.974771 0.223209i \(-0.0716531\pi\)
\(282\) −8.00000 + 8.00000i −0.476393 + 0.476393i
\(283\) 3.74166i 0.222418i 0.993797 + 0.111209i \(0.0354724\pi\)
−0.993797 + 0.111209i \(0.964528\pi\)
\(284\) −24.0000 −1.42414
\(285\) 28.0000i 1.65858i
\(286\) −14.9666 14.9666i −0.884995 0.884995i
\(287\) 0 0
\(288\) −4.00000 4.00000i −0.235702 0.235702i
\(289\) −39.0000 −2.29412
\(290\) 0 0
\(291\) 14.9666i 0.877359i
\(292\) 16.0000i 0.936329i
\(293\) 3.74166 0.218590 0.109295 0.994009i \(-0.465141\pi\)
0.109295 + 0.994009i \(0.465141\pi\)
\(294\) 14.0000 + 14.0000i 0.816497 + 0.816497i
\(295\) −7.48331 −0.435695
\(296\) 7.48331 7.48331i 0.434959 0.434959i
\(297\) 14.9666i 0.868452i
\(298\) −11.2250 11.2250i −0.650245 0.650245i
\(299\) 12.0000 + 14.9666i 0.693978 + 0.865543i
\(300\) 36.0000i 2.07846i
\(301\) 0 0
\(302\) 6.00000 6.00000i 0.345261 0.345261i
\(303\) 32.0000i 1.83835i
\(304\) 14.9666i 0.858395i
\(305\) 42.0000 2.40491
\(306\) 7.48331 7.48331i 0.427793 0.427793i
\(307\) 6.00000 0.342438 0.171219 0.985233i \(-0.445229\pi\)
0.171219 + 0.985233i \(0.445229\pi\)
\(308\) 0 0
\(309\) −14.9666 −0.851422
\(310\) 7.48331 7.48331i 0.425024 0.425024i
\(311\) 22.0000i 1.24751i −0.781622 0.623753i \(-0.785607\pi\)
0.781622 0.623753i \(-0.214393\pi\)
\(312\) 16.0000 + 16.0000i 0.905822 + 0.905822i
\(313\) 29.9333i 1.69193i −0.533240 0.845964i \(-0.679026\pi\)
0.533240 0.845964i \(-0.320974\pi\)
\(314\) −11.2250 11.2250i −0.633462 0.633462i
\(315\) 0 0
\(316\) 14.9666i 0.841939i
\(317\) 12.0000i 0.673987i 0.941507 + 0.336994i \(0.109410\pi\)
−0.941507 + 0.336994i \(0.890590\pi\)
\(318\) 7.48331 + 7.48331i 0.419643 + 0.419643i
\(319\) 0 0
\(320\) 29.9333i 1.67332i
\(321\) 7.48331i 0.417678i
\(322\) 0 0
\(323\) −28.0000 −1.55796
\(324\) 22.0000i 1.22222i
\(325\) 36.0000i 1.99692i
\(326\) −6.00000 6.00000i −0.332309 0.332309i
\(327\) 7.48331 0.413828
\(328\) 8.00000 8.00000i 0.441726 0.441726i
\(329\) 0 0
\(330\) 28.0000 28.0000i 1.54135 1.54135i
\(331\) −26.0000 −1.42909 −0.714545 0.699590i \(-0.753366\pi\)
−0.714545 + 0.699590i \(0.753366\pi\)
\(332\) −22.4499 −1.23210
\(333\) −3.74166 −0.205042
\(334\) −20.0000 + 20.0000i −1.09435 + 1.09435i
\(335\) 42.0000i 2.29471i
\(336\) 0 0
\(337\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(338\) −3.00000 3.00000i −0.163178 0.163178i
\(339\) 0 0
\(340\) 56.0000 3.03703
\(341\) 7.48331 0.405244
\(342\) 3.74166 3.74166i 0.202326 0.202326i
\(343\) 0 0
\(344\) 7.48331 + 7.48331i 0.403473 + 0.403473i
\(345\) −28.0000 + 22.4499i −1.50747 + 1.20866i
\(346\) −12.0000 + 12.0000i −0.645124 + 0.645124i
\(347\) −22.0000 −1.18102 −0.590511 0.807030i \(-0.701074\pi\)
−0.590511 + 0.807030i \(0.701074\pi\)
\(348\) 0 0
\(349\) 20.0000i 1.07058i −0.844670 0.535288i \(-0.820203\pi\)
0.844670 0.535288i \(-0.179797\pi\)
\(350\) 0 0
\(351\) 16.0000i 0.854017i
\(352\) 14.9666 14.9666i 0.797724 0.797724i
\(353\) −2.00000 −0.106449 −0.0532246 0.998583i \(-0.516950\pi\)
−0.0532246 + 0.998583i \(0.516950\pi\)
\(354\) 4.00000 + 4.00000i 0.212598 + 0.212598i
\(355\) 44.8999i 2.38304i
\(356\) −14.9666 −0.793230
\(357\) 0 0
\(358\) 6.00000 + 6.00000i 0.317110 + 0.317110i
\(359\) −29.9333 −1.57982 −0.789908 0.613225i \(-0.789872\pi\)
−0.789908 + 0.613225i \(0.789872\pi\)
\(360\) −7.48331 + 7.48331i −0.394405 + 0.394405i
\(361\) 5.00000 0.263158
\(362\) −26.1916 26.1916i −1.37660 1.37660i
\(363\) 6.00000 0.314918
\(364\) 0 0
\(365\) 29.9333 1.56678
\(366\) −22.4499 22.4499i −1.17348 1.17348i
\(367\) 22.4499 1.17188 0.585939 0.810355i \(-0.300726\pi\)
0.585939 + 0.810355i \(0.300726\pi\)
\(368\) −14.9666 + 12.0000i −0.780189 + 0.625543i
\(369\) −4.00000 −0.208232
\(370\) −14.0000 14.0000i −0.727825 0.727825i
\(371\) 0 0
\(372\) −8.00000 −0.414781
\(373\) 26.1916 1.35615 0.678075 0.734993i \(-0.262815\pi\)
0.678075 + 0.734993i \(0.262815\pi\)
\(374\) 28.0000 + 28.0000i 1.44785 + 1.44785i
\(375\) −29.9333 −1.54575
\(376\) 8.00000 + 8.00000i 0.412568 + 0.412568i
\(377\) 0 0
\(378\) 0 0
\(379\) 18.7083i 0.960980i 0.877000 + 0.480490i \(0.159541\pi\)
−0.877000 + 0.480490i \(0.840459\pi\)
\(380\) 28.0000 1.43637
\(381\) 8.00000i 0.409852i
\(382\) 7.48331 + 7.48331i 0.382880 + 0.382880i
\(383\) −14.9666 −0.764759 −0.382380 0.924005i \(-0.624895\pi\)
−0.382380 + 0.924005i \(0.624895\pi\)
\(384\) −16.0000 + 16.0000i −0.816497 + 0.816497i
\(385\) 0 0
\(386\) 10.0000 + 10.0000i 0.508987 + 0.508987i
\(387\) 3.74166i 0.190199i
\(388\) 14.9666 0.759815
\(389\) 26.1916 1.32797 0.663983 0.747747i \(-0.268865\pi\)
0.663983 + 0.747747i \(0.268865\pi\)
\(390\) 29.9333 29.9333i 1.51573 1.51573i
\(391\) −22.4499 28.0000i −1.13534 1.41602i
\(392\) 14.0000 14.0000i 0.707107 0.707107i
\(393\) 36.0000 1.81596
\(394\) 12.0000 12.0000i 0.604551 0.604551i
\(395\) −28.0000 −1.40883
\(396\) −7.48331 −0.376051
\(397\) 12.0000i 0.602263i −0.953583 0.301131i \(-0.902636\pi\)
0.953583 0.301131i \(-0.0973643\pi\)
\(398\) 14.9666 + 14.9666i 0.750209 + 0.750209i
\(399\) 0 0
\(400\) −36.0000 −1.80000
\(401\) 7.48331i 0.373699i 0.982389 + 0.186849i \(0.0598277\pi\)
−0.982389 + 0.186849i \(0.940172\pi\)
\(402\) −22.4499 + 22.4499i −1.11970 + 1.11970i
\(403\) 8.00000 0.398508
\(404\) −32.0000 −1.59206
\(405\) −41.1582 −2.04517
\(406\) 0 0
\(407\) 14.0000i 0.693954i
\(408\) −29.9333 29.9333i −1.48192 1.48192i
\(409\) 30.0000 1.48340 0.741702 0.670729i \(-0.234019\pi\)
0.741702 + 0.670729i \(0.234019\pi\)
\(410\) −14.9666 14.9666i −0.739149 0.739149i
\(411\) 29.9333i 1.47650i
\(412\) 14.9666i 0.737353i
\(413\) 0 0
\(414\) 6.74166 + 0.741657i 0.331334 + 0.0364505i
\(415\) 42.0000i 2.06170i
\(416\) 16.0000 16.0000i 0.784465 0.784465i
\(417\) −20.0000 −0.979404
\(418\) 14.0000 + 14.0000i 0.684762 + 0.684762i
\(419\) 3.74166i 0.182792i −0.995815 0.0913960i \(-0.970867\pi\)
0.995815 0.0913960i \(-0.0291329\pi\)
\(420\) 0 0
\(421\) −11.2250 −0.547072 −0.273536 0.961862i \(-0.588193\pi\)
−0.273536 + 0.961862i \(0.588193\pi\)
\(422\) −10.0000 10.0000i −0.486792 0.486792i
\(423\) 4.00000i 0.194487i
\(424\) 7.48331 7.48331i 0.363422 0.363422i
\(425\) 67.3498i 3.26695i
\(426\) 24.0000 24.0000i 1.16280 1.16280i
\(427\) 0 0
\(428\) −7.48331 −0.361720
\(429\) 29.9333 1.44519
\(430\) 14.0000 14.0000i 0.675140 0.675140i
\(431\) −37.4166 −1.80229 −0.901146 0.433515i \(-0.857273\pi\)
−0.901146 + 0.433515i \(0.857273\pi\)
\(432\) −16.0000 −0.769800
\(433\) 7.48331i 0.359625i −0.983701 0.179813i \(-0.942451\pi\)
0.983701 0.179813i \(-0.0575491\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 7.48331i 0.358386i
\(437\) −11.2250 14.0000i −0.536963 0.669711i
\(438\) −16.0000 16.0000i −0.764510 0.764510i
\(439\) 4.00000i 0.190910i 0.995434 + 0.0954548i \(0.0304305\pi\)
−0.995434 + 0.0954548i \(0.969569\pi\)
\(440\) −28.0000 28.0000i −1.33485 1.33485i
\(441\) −7.00000 −0.333333
\(442\) 29.9333 + 29.9333i 1.42378 + 1.42378i
\(443\) −6.00000 −0.285069 −0.142534 0.989790i \(-0.545525\pi\)
−0.142534 + 0.989790i \(0.545525\pi\)
\(444\) 14.9666i 0.710285i
\(445\) 28.0000i 1.32733i
\(446\) 10.0000 10.0000i 0.473514 0.473514i
\(447\) 22.4499 1.06185
\(448\) 0 0
\(449\) 24.0000 1.13263 0.566315 0.824189i \(-0.308369\pi\)
0.566315 + 0.824189i \(0.308369\pi\)
\(450\) 9.00000 + 9.00000i 0.424264 + 0.424264i
\(451\) 14.9666i 0.704751i
\(452\) 0 0
\(453\) 12.0000i 0.563809i
\(454\) 18.7083 18.7083i 0.878023 0.878023i
\(455\) 0 0
\(456\) −14.9666 14.9666i −0.700877 0.700877i
\(457\) 14.9666i 0.700109i 0.936729 + 0.350055i \(0.113837\pi\)
−0.936729 + 0.350055i \(0.886163\pi\)
\(458\) 11.2250 + 11.2250i 0.524509 + 0.524509i
\(459\) 29.9333i 1.39716i
\(460\) 22.4499 + 28.0000i 1.04673 + 1.30551i
\(461\) 24.0000i 1.11779i 0.829238 + 0.558896i \(0.188775\pi\)
−0.829238 + 0.558896i \(0.811225\pi\)
\(462\) 0 0
\(463\) 4.00000i 0.185896i −0.995671 0.0929479i \(-0.970371\pi\)
0.995671 0.0929479i \(-0.0296290\pi\)
\(464\) 0 0
\(465\) 14.9666i 0.694061i
\(466\) −14.0000 14.0000i −0.648537 0.648537i
\(467\) 33.6749i 1.55829i −0.626844 0.779145i \(-0.715654\pi\)
0.626844 0.779145i \(-0.284346\pi\)
\(468\) −8.00000 −0.369800
\(469\) 0 0
\(470\) 14.9666 14.9666i 0.690359 0.690359i
\(471\) 22.4499 1.03444
\(472\) 4.00000 4.00000i 0.184115 0.184115i
\(473\) 14.0000 0.643721
\(474\) 14.9666 + 14.9666i 0.687440 + 0.687440i
\(475\) 33.6749i 1.54511i
\(476\) 0 0
\(477\) −3.74166 −0.171319
\(478\) −18.0000 + 18.0000i −0.823301 + 0.823301i
\(479\) 29.9333 1.36769 0.683843 0.729629i \(-0.260307\pi\)
0.683843 + 0.729629i \(0.260307\pi\)
\(480\) 29.9333 + 29.9333i 1.36626 + 1.36626i
\(481\) 14.9666i 0.682420i
\(482\) −22.4499 + 22.4499i −1.02257 + 1.02257i
\(483\) 0 0
\(484\) 6.00000i 0.272727i
\(485\) 28.0000i 1.27141i
\(486\) 10.0000 + 10.0000i 0.453609 + 0.453609i
\(487\) 28.0000i 1.26880i 0.773004 + 0.634401i \(0.218753\pi\)
−0.773004 + 0.634401i \(0.781247\pi\)
\(488\) −22.4499 + 22.4499i −1.01626 + 1.01626i
\(489\) 12.0000 0.542659
\(490\) −26.1916 26.1916i −1.18322 1.18322i
\(491\) 26.0000 1.17336 0.586682 0.809818i \(-0.300434\pi\)
0.586682 + 0.809818i \(0.300434\pi\)
\(492\) 16.0000i 0.721336i
\(493\) 0 0
\(494\) 14.9666 + 14.9666i 0.673380 + 0.673380i
\(495\) 14.0000i 0.629253i
\(496\) 8.00000i 0.359211i
\(497\) 0 0
\(498\) 22.4499 22.4499i 1.00601 1.00601i
\(499\) 2.00000 0.0895323 0.0447661 0.998997i \(-0.485746\pi\)
0.0447661 + 0.998997i \(0.485746\pi\)
\(500\) 29.9333i 1.33866i
\(501\) 40.0000i 1.78707i
\(502\) −18.7083 + 18.7083i −0.834992 + 0.834992i
\(503\) −29.9333 −1.33466 −0.667329 0.744763i \(-0.732563\pi\)
−0.667329 + 0.744763i \(0.732563\pi\)
\(504\) 0 0
\(505\) 59.8665i 2.66403i
\(506\) −2.77503 + 25.2250i −0.123365 + 1.12139i
\(507\) 6.00000 0.266469
\(508\) −8.00000 −0.354943
\(509\) 44.0000i 1.95027i 0.221621 + 0.975133i \(0.428865\pi\)
−0.221621 + 0.975133i \(0.571135\pi\)
\(510\) −56.0000 + 56.0000i −2.47972 + 2.47972i
\(511\) 0 0
\(512\) 16.0000 + 16.0000i 0.707107 + 0.707107i
\(513\) 14.9666i 0.660793i
\(514\) 12.0000 + 12.0000i 0.529297 + 0.529297i
\(515\) 28.0000 1.23383
\(516\) −14.9666 −0.658869
\(517\) 14.9666 0.658232
\(518\) 0 0
\(519\) 24.0000i 1.05348i
\(520\) −29.9333 29.9333i −1.31266 1.31266i
\(521\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(522\) 0 0
\(523\) 33.6749i 1.47250i 0.676709 + 0.736251i \(0.263406\pi\)
−0.676709 + 0.736251i \(0.736594\pi\)
\(524\) 36.0000i 1.57267i
\(525\) 0 0
\(526\) −7.48331 7.48331i −0.326288 0.326288i
\(527\) −14.9666 −0.651957
\(528\) 29.9333i 1.30268i
\(529\) 5.00000 22.4499i 0.217391 0.976085i
\(530\) −14.0000 14.0000i −0.608121 0.608121i
\(531\) −2.00000 −0.0867926
\(532\) 0 0
\(533\) 16.0000i 0.693037i
\(534\) 14.9666 14.9666i 0.647669 0.647669i
\(535\) 14.0000i 0.605273i
\(536\) 22.4499 + 22.4499i 0.969690 + 0.969690i
\(537\) −12.0000 −0.517838
\(538\) 16.0000 16.0000i 0.689809 0.689809i
\(539\) 26.1916i 1.12815i
\(540\) 29.9333i 1.28812i
\(541\) 16.0000i 0.687894i −0.938989 0.343947i \(-0.888236\pi\)
0.938989 0.343947i \(-0.111764\pi\)
\(542\) 4.00000 4.00000i 0.171815 0.171815i
\(543\) 52.3832 2.24798
\(544\) −29.9333 + 29.9333i −1.28338 + 1.28338i
\(545\) −14.0000 −0.599694
\(546\) 0 0
\(547\) −18.0000 −0.769624 −0.384812 0.922995i \(-0.625734\pi\)
−0.384812 + 0.922995i \(0.625734\pi\)
\(548\) 29.9333 1.27869
\(549\) 11.2250 0.479070
\(550\) −33.6749 + 33.6749i −1.43590 + 1.43590i
\(551\) 0 0
\(552\) 2.96663 26.9666i 0.126268 1.14778i
\(553\) 0 0
\(554\) −8.00000 + 8.00000i −0.339887 + 0.339887i
\(555\) 28.0000 1.18853
\(556\) 20.0000i 0.848189i
\(557\) −33.6749 −1.42685 −0.713426 0.700731i \(-0.752858\pi\)
−0.713426 + 0.700731i \(0.752858\pi\)
\(558\) 2.00000 2.00000i 0.0846668 0.0846668i
\(559\) 14.9666 0.633021
\(560\) 0 0
\(561\) −56.0000 −2.36432
\(562\) 7.48331 7.48331i 0.315665 0.315665i
\(563\) 18.7083i 0.788460i 0.919012 + 0.394230i \(0.128989\pi\)
−0.919012 + 0.394230i \(0.871011\pi\)
\(564\) −16.0000 −0.673722
\(565\) 0 0
\(566\) −3.74166 + 3.74166i −0.157274 + 0.157274i
\(567\) 0 0
\(568\) −24.0000 24.0000i −1.00702 1.00702i
\(569\) 14.9666i 0.627434i −0.949517 0.313717i \(-0.898426\pi\)
0.949517 0.313717i \(-0.101574\pi\)
\(570\) −28.0000 + 28.0000i −1.17279 + 1.17279i
\(571\) 11.2250i 0.469750i 0.972026 + 0.234875i \(0.0754682\pi\)
−0.972026 + 0.234875i \(0.924532\pi\)
\(572\) 29.9333i 1.25157i
\(573\) −14.9666 −0.625240
\(574\) 0 0
\(575\) 33.6749 27.0000i 1.40434 1.12598i
\(576\) 8.00000i 0.333333i
\(577\) −20.0000 −0.832611 −0.416305 0.909225i \(-0.636675\pi\)
−0.416305 + 0.909225i \(0.636675\pi\)
\(578\) −39.0000 39.0000i −1.62219 1.62219i
\(579\) −20.0000 −0.831172
\(580\) 0 0
\(581\) 0 0
\(582\) −14.9666 + 14.9666i −0.620387 + 0.620387i
\(583\) 14.0000i 0.579821i
\(584\) −16.0000 + 16.0000i −0.662085 + 0.662085i
\(585\) 14.9666i 0.618794i
\(586\) 3.74166 + 3.74166i 0.154566 + 0.154566i
\(587\) 46.0000 1.89862 0.949312 0.314337i \(-0.101782\pi\)
0.949312 + 0.314337i \(0.101782\pi\)
\(588\) 28.0000i 1.15470i
\(589\) −7.48331 −0.308345
\(590\) −7.48331 7.48331i −0.308083 0.308083i
\(591\) 24.0000i 0.987228i
\(592\) 14.9666 0.615125
\(593\) −12.0000 −0.492781 −0.246390 0.969171i \(-0.579245\pi\)
−0.246390 + 0.969171i \(0.579245\pi\)
\(594\) −14.9666 + 14.9666i −0.614088 + 0.614088i
\(595\) 0 0
\(596\) 22.4499i 0.919586i
\(597\) −29.9333 −1.22509
\(598\) −2.96663 + 26.9666i −0.121315 + 1.10275i
\(599\) 22.0000i 0.898896i 0.893307 + 0.449448i \(0.148379\pi\)
−0.893307 + 0.449448i \(0.851621\pi\)
\(600\) 36.0000 36.0000i 1.46969 1.46969i
\(601\) 8.00000 0.326327 0.163163 0.986599i \(-0.447830\pi\)
0.163163 + 0.986599i \(0.447830\pi\)
\(602\) 0 0
\(603\) 11.2250i 0.457116i
\(604\) 12.0000 0.488273
\(605\) −11.2250 −0.456360
\(606\) 32.0000 32.0000i 1.29991 1.29991i
\(607\) 38.0000i 1.54237i −0.636610 0.771186i \(-0.719664\pi\)
0.636610 0.771186i \(-0.280336\pi\)
\(608\) −14.9666 + 14.9666i −0.606977 + 0.606977i
\(609\) 0 0
\(610\) 42.0000 + 42.0000i 1.70053 + 1.70053i
\(611\) 16.0000 0.647291
\(612\) 14.9666 0.604990
\(613\) −11.2250 −0.453372 −0.226686 0.973968i \(-0.572789\pi\)
−0.226686 + 0.973968i \(0.572789\pi\)
\(614\) 6.00000 + 6.00000i 0.242140 + 0.242140i
\(615\) 29.9333 1.20703
\(616\) 0 0
\(617\) 22.4499i 0.903801i 0.892068 + 0.451900i \(0.149254\pi\)
−0.892068 + 0.451900i \(0.850746\pi\)
\(618\) −14.9666 14.9666i −0.602046 0.602046i
\(619\) 18.7083i 0.751950i −0.926630 0.375975i \(-0.877308\pi\)
0.926630 0.375975i \(-0.122692\pi\)
\(620\) 14.9666 0.601074
\(621\) 14.9666 12.0000i 0.600590 0.481543i
\(622\) 22.0000 22.0000i 0.882120 0.882120i
\(623\) 0 0
\(624\) 32.0000i 1.28103i
\(625\) 11.0000 0.440000
\(626\) 29.9333 29.9333i 1.19637 1.19637i
\(627\) −28.0000 −1.11821
\(628\) 22.4499i 0.895850i
\(629\) 28.0000i 1.11643i
\(630\) 0 0
\(631\) 22.4499 0.893718 0.446859 0.894604i \(-0.352543\pi\)
0.446859 + 0.894604i \(0.352543\pi\)
\(632\) 14.9666 14.9666i 0.595341 0.595341i
\(633\) 20.0000 0.794929
\(634\) −12.0000 + 12.0000i −0.476581 + 0.476581i
\(635\) 14.9666i 0.593933i
\(636\) 14.9666i 0.593465i
\(637\) 28.0000i 1.10940i
\(638\) 0 0
\(639\) 12.0000i 0.474713i
\(640\) 29.9333 29.9333i 1.18322 1.18322i
\(641\) 22.4499i 0.886719i −0.896344 0.443360i \(-0.853786\pi\)
0.896344 0.443360i \(-0.146214\pi\)
\(642\) 7.48331 7.48331i 0.295343 0.295343i
\(643\) 33.6749i 1.32801i −0.747729 0.664005i \(-0.768856\pi\)
0.747729 0.664005i \(-0.231144\pi\)
\(644\) 0 0
\(645\) 28.0000i 1.10250i
\(646\) −28.0000 28.0000i −1.10165 1.10165i
\(647\) 30.0000i 1.17942i 0.807614 + 0.589711i \(0.200758\pi\)
−0.807614 + 0.589711i \(0.799242\pi\)
\(648\) 22.0000 22.0000i 0.864242 0.864242i
\(649\) 7.48331i 0.293746i
\(650\) −36.0000 + 36.0000i −1.41204 + 1.41204i
\(651\) 0 0
\(652\) 12.0000i 0.469956i
\(653\) 16.0000i 0.626128i 0.949732 + 0.313064i \(0.101356\pi\)
−0.949732 + 0.313064i \(0.898644\pi\)
\(654\) 7.48331 + 7.48331i 0.292621 + 0.292621i
\(655\) −67.3498 −2.63158
\(656\) 16.0000 0.624695
\(657\) 8.00000 0.312110
\(658\) 0 0
\(659\) 3.74166i 0.145754i 0.997341 + 0.0728771i \(0.0232181\pi\)
−0.997341 + 0.0728771i \(0.976782\pi\)
\(660\) 56.0000 2.17980
\(661\) 18.7083 0.727668 0.363834 0.931464i \(-0.381468\pi\)
0.363834 + 0.931464i \(0.381468\pi\)
\(662\) −26.0000 26.0000i −1.01052 1.01052i
\(663\) −59.8665 −2.32502
\(664\) −22.4499 22.4499i −0.871227 0.871227i
\(665\) 0 0
\(666\) −3.74166 3.74166i −0.144986 0.144986i
\(667\) 0 0
\(668\) −40.0000 −1.54765
\(669\) 20.0000i 0.773245i
\(670\) 42.0000 42.0000i 1.62260 1.62260i
\(671\) 42.0000i 1.62139i
\(672\) 0 0
\(673\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(674\) 0 0
\(675\) 36.0000 1.38564
\(676\) 6.00000i 0.230769i
\(677\) −26.1916 −1.00663 −0.503313 0.864104i \(-0.667886\pi\)
−0.503313 + 0.864104i \(0.667886\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 56.0000 + 56.0000i 2.14750 + 2.14750i
\(681\) 37.4166i 1.43381i
\(682\) 7.48331 + 7.48331i 0.286551 + 0.286551i
\(683\) −14.0000 −0.535695 −0.267848 0.963461i \(-0.586312\pi\)
−0.267848 + 0.963461i \(0.586312\pi\)
\(684\) 7.48331 0.286132
\(685\) 56.0000i 2.13965i
\(686\) 0 0
\(687\) −22.4499 −0.856519
\(688\) 14.9666i 0.570597i
\(689\) 14.9666i 0.570183i
\(690\) −50.4499 5.55006i −1.92060 0.211287i
\(691\) −2.00000 −0.0760836 −0.0380418 0.999276i \(-0.512112\pi\)
−0.0380418 + 0.999276i \(0.512112\pi\)
\(692\) −24.0000 −0.912343
\(693\) 0 0
\(694\) −22.0000 22.0000i −0.835109 0.835109i
\(695\) 37.4166 1.41929
\(696\) 0 0
\(697\) 29.9333i 1.13380i
\(698\) 20.0000 20.0000i 0.757011 0.757011i
\(699\) 28.0000 1.05906
\(700\) 0 0
\(701\) 26.1916 0.989243 0.494622 0.869108i \(-0.335307\pi\)
0.494622 + 0.869108i \(0.335307\pi\)
\(702\) −16.0000 + 16.0000i −0.603881 + 0.603881i
\(703\) 14.0000i 0.528020i
\(704\) 29.9333 1.12815
\(705\) 29.9333i 1.12735i
\(706\) −2.00000 2.00000i −0.0752710 0.0752710i
\(707\) 0 0
\(708\) 8.00000i 0.300658i
\(709\) 18.7083 0.702604 0.351302 0.936262i \(-0.385739\pi\)
0.351302 + 0.936262i \(0.385739\pi\)
\(710\) −44.8999 + 44.8999i −1.68506 + 1.68506i
\(711\) −7.48331 −0.280646
\(712\) −14.9666 14.9666i −0.560898 0.560898i
\(713\) −6.00000 7.48331i −0.224702 0.280252i
\(714\) 0 0
\(715\) −56.0000 −2.09428
\(716\) 12.0000i 0.448461i
\(717\) 36.0000i 1.34444i
\(718\) −29.9333 29.9333i −1.11710 1.11710i
\(719\) 30.0000i 1.11881i −0.828894 0.559406i \(-0.811029\pi\)
0.828894 0.559406i \(-0.188971\pi\)
\(720\) −14.9666 −0.557773
\(721\) 0 0
\(722\) 5.00000 + 5.00000i 0.186081 + 0.186081i
\(723\) 44.8999i 1.66984i
\(724\) 52.3832i 1.94681i
\(725\) 0 0
\(726\) 6.00000 + 6.00000i 0.222681 + 0.222681i
\(727\) 14.9666 0.555082 0.277541 0.960714i \(-0.410481\pi\)
0.277541 + 0.960714i \(0.410481\pi\)
\(728\) 0 0
\(729\) 13.0000 0.481481
\(730\) 29.9333 + 29.9333i 1.10788 + 1.10788i
\(731\) −28.0000 −1.03562
\(732\) 44.8999i 1.65955i
\(733\) 11.2250 0.414604 0.207302 0.978277i \(-0.433532\pi\)
0.207302 + 0.978277i \(0.433532\pi\)
\(734\) 22.4499 + 22.4499i 0.828643 + 0.828643i
\(735\) 52.3832 1.93218
\(736\) −26.9666 2.96663i −0.994003 0.109351i
\(737\) 42.0000 1.54709
\(738\) −4.00000 4.00000i −0.147242 0.147242i
\(739\) 14.0000 0.514998 0.257499 0.966279i \(-0.417102\pi\)
0.257499 + 0.966279i \(0.417102\pi\)
\(740\) 28.0000i 1.02930i
\(741\) −29.9333 −1.09963
\(742\) 0 0
\(743\) 37.4166 1.37268 0.686340 0.727280i \(-0.259216\pi\)
0.686340 + 0.727280i \(0.259216\pi\)
\(744\) −8.00000 8.00000i −0.293294 0.293294i
\(745\) −42.0000 −1.53876
\(746\) 26.1916 + 26.1916i 0.958943 + 0.958943i
\(747\) 11.2250i 0.410700i
\(748\) 56.0000i 2.04756i
\(749\) 0 0
\(750\) −29.9333 29.9333i −1.09301 1.09301i
\(751\) −14.9666 −0.546140 −0.273070 0.961994i \(-0.588039\pi\)
−0.273070 + 0.961994i \(0.588039\pi\)
\(752\) 16.0000i 0.583460i
\(753\) 37.4166i 1.36354i
\(754\) 0 0
\(755\) 22.4499i 0.817037i
\(756\) 0 0
\(757\) 3.74166 0.135993 0.0679964 0.997686i \(-0.478339\pi\)
0.0679964 + 0.997686i \(0.478339\pi\)
\(758\) −18.7083 + 18.7083i −0.679516 + 0.679516i
\(759\) −22.4499 28.0000i −0.814881 1.01634i
\(760\) 28.0000 + 28.0000i 1.01567 + 1.01567i
\(761\) 18.0000 0.652499 0.326250 0.945284i \(-0.394215\pi\)
0.326250 + 0.945284i \(0.394215\pi\)
\(762\) 8.00000 8.00000i 0.289809 0.289809i
\(763\) 0 0
\(764\) 14.9666i 0.541474i
\(765\) 28.0000i 1.01234i
\(766\) −14.9666 14.9666i −0.540766 0.540766i
\(767\) 8.00000i 0.288863i
\(768\) −32.0000 −1.15470
\(769\) 7.48331i 0.269855i −0.990855 0.134928i \(-0.956920\pi\)
0.990855 0.134928i \(-0.0430802\pi\)
\(770\) 0 0
\(771\) −24.0000 −0.864339
\(772\) 20.0000i 0.719816i
\(773\) 26.1916 0.942046 0.471023 0.882121i \(-0.343885\pi\)
0.471023 + 0.882121i \(0.343885\pi\)
\(774\) 3.74166 3.74166i 0.134491 0.134491i
\(775\) 18.0000i 0.646579i
\(776\) 14.9666 + 14.9666i 0.537271 + 0.537271i
\(777\) 0 0
\(778\) 26.1916 + 26.1916i 0.939014 + 0.939014i
\(779\) 14.9666i 0.536235i
\(780\) 59.8665 2.14357
\(781\) −44.8999 −1.60664
\(782\) 5.55006 50.4499i 0.198470 1.80409i
\(783\) 0 0
\(784\) 28.0000 1.00000
\(785\) −42.0000 −1.49904
\(786\) 36.0000 + 36.0000i 1.28408 + 1.28408i
\(787\) 3.74166i 0.133376i 0.997774 + 0.0666878i \(0.0212432\pi\)
−0.997774 + 0.0666878i \(0.978757\pi\)
\(788\) 24.0000 0.854965
\(789\) 14.9666 0.532826
\(790\) −28.0000 28.0000i −0.996195 0.996195i
\(791\) 0 0
\(792\) −7.48331 7.48331i −0.265908 0.265908i
\(793\) 44.8999i 1.59444i
\(794\) 12.0000 12.0000i 0.425864 0.425864i
\(795\) 28.0000 0.993058
\(796\) 29.9333i 1.06096i
\(797\) −11.2250 −0.397609 −0.198804 0.980039i \(-0.563706\pi\)
−0.198804 + 0.980039i \(0.563706\pi\)
\(798\) 0 0
\(799\) −29.9333 −1.05896
\(800\) −36.0000 36.0000i −1.27279 1.27279i
\(801\) 7.48331i 0.264410i
\(802\) −7.48331 + 7.48331i −0.264245 + 0.264245i
\(803\) 29.9333i 1.05632i
\(804\) −44.8999 −1.58350
\(805\) 0 0
\(806\) 8.00000 + 8.00000i 0.281788 + 0.281788i
\(807\) 32.0000i 1.12645i
\(808\) −32.0000 32.0000i −1.12576 1.12576i
\(809\) 14.0000 0.492214 0.246107 0.969243i \(-0.420849\pi\)
0.246107 + 0.969243i \(0.420849\pi\)
\(810\) −41.1582 41.1582i −1.44615 1.44615i
\(811\) −6.00000 −0.210688 −0.105344 0.994436i \(-0.533594\pi\)
−0.105344 + 0.994436i \(0.533594\pi\)
\(812\) 0 0
\(813\) 8.00000i 0.280572i
\(814\) 14.0000 14.0000i 0.490700 0.490700i
\(815\) −22.4499 −0.786387
\(816\) 59.8665i 2.09575i
\(817\) −14.0000 −0.489798
\(818\) 30.0000 + 30.0000i 1.04893 + 1.04893i
\(819\) 0 0
\(820\) 29.9333i 1.04531i
\(821\) 44.0000i 1.53561i 0.640683 + 0.767805i \(0.278651\pi\)
−0.640683 + 0.767805i \(0.721349\pi\)
\(822\) −29.9333 + 29.9333i −1.04404 + 1.04404i
\(823\) 18.0000i 0.627441i 0.949515 + 0.313720i \(0.101575\pi\)
−0.949515 + 0.313720i \(0.898425\pi\)
\(824\) −14.9666 + 14.9666i −0.521387 + 0.521387i
\(825\) 67.3498i 2.34482i
\(826\) 0 0
\(827\) 18.7083i 0.650551i −0.945619 0.325275i \(-0.894543\pi\)
0.945619 0.325275i \(-0.105457\pi\)
\(828\) 6.00000 + 7.48331i 0.208514 + 0.260063i
\(829\) 8.00000i 0.277851i −0.990303 0.138926i \(-0.955635\pi\)
0.990303 0.138926i \(-0.0443649\pi\)
\(830\) −42.0000 + 42.0000i −1.45784 + 1.45784i
\(831\) 16.0000i 0.555034i
\(832\) 32.0000 1.10940
\(833\) 52.3832i 1.81497i
\(834\) −20.0000 20.0000i −0.692543 0.692543i
\(835\) 74.8331i 2.58971i
\(836\) 28.0000i 0.968400i
\(837\) 8.00000i 0.276520i
\(838\) 3.74166 3.74166i 0.129253 0.129253i
\(839\) −7.48331 −0.258353 −0.129176 0.991622i \(-0.541233\pi\)
−0.129176 + 0.991622i \(0.541233\pi\)
\(840\) 0 0
\(841\) 29.0000 1.00000
\(842\) −11.2250 11.2250i −0.386838 0.386838i
\(843\) 14.9666i 0.515478i
\(844\) 20.0000i 0.688428i
\(845\) −11.2250 −0.386151
\(846\) 4.00000 4.00000i 0.137523 0.137523i
\(847\) 0 0
\(848\) 14.9666 0.513956
\(849\) 7.48331i 0.256827i
\(850\) 67.3498 67.3498i 2.31008 2.31008i
\(851\) −14.0000 + 11.2250i −0.479914 + 0.384787i
\(852\) 48.0000 1.64445
\(853\) 20.0000i 0.684787i −0.939557 0.342393i \(-0.888762\pi\)
0.939557 0.342393i \(-0.111238\pi\)
\(854\) 0 0
\(855\) 14.0000i 0.478790i
\(856\) −7.48331 7.48331i −0.255774 0.255774i
\(857\) −30.0000 −1.02478 −0.512390 0.858753i \(-0.671240\pi\)
−0.512390 + 0.858753i \(0.671240\pi\)
\(858\) 29.9333 + 29.9333i 1.02190 + 1.02190i
\(859\) −18.0000 −0.614152 −0.307076 0.951685i \(-0.599351\pi\)
−0.307076 + 0.951685i \(0.599351\pi\)
\(860\) 28.0000 0.954792
\(861\) 0 0
\(862\) −37.4166 37.4166i −1.27441 1.27441i
\(863\) 42.0000i 1.42970i 0.699280 + 0.714848i \(0.253504\pi\)
−0.699280 + 0.714848i \(0.746496\pi\)
\(864\) −16.0000 16.0000i −0.544331 0.544331i
\(865\) 44.8999i 1.52664i
\(866\) 7.48331 7.48331i 0.254293 0.254293i
\(867\) 78.0000 2.64902
\(868\) 0 0
\(869\) 28.0000i 0.949835i
\(870\) 0 0
\(871\) 44.8999 1.52137
\(872\) 7.48331 7.48331i 0.253417 0.253417i
\(873\) 7.48331i 0.253272i
\(874\) 2.77503 25.2250i 0.0938667 0.853247i
\(875\) 0 0
\(876\) 32.0000i 1.08118i
\(877\) 20.0000i 0.675352i 0.941262 + 0.337676i \(0.109641\pi\)
−0.941262 + 0.337676i \(0.890359\pi\)
\(878\) −4.00000 + 4.00000i −0.134993 + 0.134993i
\(879\) −7.48331 −0.252406
\(880\) 56.0000i 1.88776i
\(881\) 29.9333i 1.00848i 0.863564 + 0.504239i \(0.168227\pi\)
−0.863564 + 0.504239i \(0.831773\pi\)
\(882\) −7.00000 7.00000i −0.235702 0.235702i
\(883\) 10.0000 0.336527 0.168263 0.985742i \(-0.446184\pi\)
0.168263 + 0.985742i \(0.446184\pi\)
\(884\) 59.8665i 2.01353i
\(885\) 14.9666 0.503098
\(886\) −6.00000 6.00000i −0.201574 0.201574i
\(887\) 12.0000i 0.402921i −0.979497 0.201460i \(-0.935431\pi\)
0.979497 0.201460i \(-0.0645687\pi\)
\(888\) −14.9666 + 14.9666i −0.502247 + 0.502247i
\(889\) 0 0
\(890\) −28.0000 + 28.0000i −0.938562 + 0.938562i
\(891\) 41.1582i 1.37885i
\(892\) 20.0000 0.669650
\(893\) −14.9666 −0.500839
\(894\) 22.4499 + 22.4499i 0.750838 + 0.750838i
\(895\) 22.4499 0.750419
\(896\) 0 0
\(897\) −24.0000 29.9333i −0.801337 0.999442i
\(898\) 24.0000 + 24.0000i 0.800890 + 0.800890i
\(899\) 0 0
\(900\) 18.0000i 0.600000i
\(901\) 28.0000i 0.932815i
\(902\) 14.9666 14.9666i 0.498334 0.498334i
\(903\) 0 0
\(904\) 0 0
\(905\) −98.0000 −3.25763
\(906\) −12.0000 + 12.0000i −0.398673 + 0.398673i
\(907\) 33.6749i 1.11816i −0.829115 0.559079i \(-0.811155\pi\)
0.829115 0.559079i \(-0.188845\pi\)
\(908\) 37.4166 1.24171
\(909\) 16.0000i 0.530687i
\(910\) 0 0
\(911\) −22.4499 −0.743800 −0.371900 0.928273i \(-0.621294\pi\)
−0.371900 + 0.928273i \(0.621294\pi\)
\(912\) 29.9333i 0.991189i
\(913\) −42.0000 −1.39000
\(914\) −14.9666 + 14.9666i −0.495052 + 0.495052i
\(915\) −84.0000 −2.77695
\(916\) 22.4499i 0.741767i
\(917\) 0 0
\(918\) 29.9333 29.9333i 0.987945 0.987945i
\(919\) −44.8999 −1.48111 −0.740555 0.671995i \(-0.765437\pi\)
−0.740555 + 0.671995i \(0.765437\pi\)
\(920\) −5.55006 + 50.4499i −0.182980 + 1.66329i
\(921\) −12.0000 −0.395413
\(922\) −24.0000 + 24.0000i −0.790398 + 0.790398i
\(923\) −48.0000 −1.57994
\(924\) 0 0
\(925\) −33.6749 −1.10722
\(926\) 4.00000 4.00000i 0.131448 0.131448i
\(927\) 7.48331 0.245784
\(928\) 0 0
\(929\) 32.0000 1.04989 0.524943 0.851137i \(-0.324087\pi\)
0.524943 + 0.851137i \(0.324087\pi\)
\(930\) −14.9666 + 14.9666i −0.490775 + 0.490775i
\(931\) 26.1916i 0.858395i
\(932\) 28.0000i 0.917170i
\(933\) 44.0000i 1.44050i
\(934\) 33.6749 33.6749i 1.10188 1.10188i
\(935\) 104.766 3.42623
\(936\) −8.00000 8.00000i −0.261488 0.261488i
\(937\) 22.4499i 0.733408i 0.930338 + 0.366704i \(0.119514\pi\)
−0.930338 + 0.366704i \(0.880486\pi\)
\(938\) 0 0
\(939\) 59.8665i 1.95367i
\(940\) 29.9333 0.976315
\(941\) 18.7083 0.609873 0.304936 0.952373i \(-0.401365\pi\)
0.304936 + 0.952373i \(0.401365\pi\)
\(942\) 22.4499 + 22.4499i 0.731459 + 0.731459i
\(943\) −14.9666 + 12.0000i −0.487381 + 0.390774i
\(944\) 8.00000 0.260378
\(945\) 0 0
\(946\) 14.0000 + 14.0000i 0.455179 + 0.455179i
\(947\) 26.0000 0.844886 0.422443 0.906389i \(-0.361173\pi\)
0.422443 + 0.906389i \(0.361173\pi\)
\(948\) 29.9333i 0.972187i
\(949\) 32.0000i 1.03876i
\(950\) 33.6749 33.6749i 1.09256 1.09256i
\(951\) 24.0000i 0.778253i
\(952\) 0 0
\(953\) 29.9333i 0.969633i 0.874616 + 0.484817i \(0.161114\pi\)
−0.874616 + 0.484817i \(0.838886\pi\)
\(954\) −3.74166 3.74166i −0.121141 0.121141i
\(955\) 28.0000 0.906059
\(956\) −36.0000 −1.16432
\(957\) 0 0
\(958\) 29.9333 + 29.9333i 0.967100 + 0.967100i
\(959\) 0 0
\(960\) 59.8665i 1.93218i
\(961\) 27.0000 0.870968
\(962\) 14.9666 14.9666i 0.482544 0.482544i
\(963\) 3.74166i 0.120573i
\(964\) −44.8999 −1.44613
\(965\) 37.4166 1.20448
\(966\) 0 0
\(967\) 54.0000i 1.73652i 0.496107 + 0.868261i \(0.334762\pi\)
−0.496107 + 0.868261i \(0.665238\pi\)
\(968\) 6.00000 6.00000i 0.192847 0.192847i
\(969\) 56.0000 1.79898
\(970\) 28.0000 28.0000i 0.899026 0.899026i
\(971\) 3.74166i 0.120075i −0.998196 0.0600377i \(-0.980878\pi\)
0.998196 0.0600377i \(-0.0191221\pi\)
\(972\) 20.0000i 0.641500i
\(973\) 0 0
\(974\) −28.0000 + 28.0000i −0.897178 + 0.897178i
\(975\) 72.0000i 2.30585i
\(976\) −44.8999 −1.43721
\(977\) 22.4499i 0.718237i 0.933292 + 0.359119i \(0.116923\pi\)
−0.933292 + 0.359119i \(0.883077\pi\)
\(978\) 12.0000 + 12.0000i 0.383718 + 0.383718i
\(979\) −28.0000 −0.894884
\(980\) 52.3832i 1.67332i
\(981\) −3.74166 −0.119462
\(982\) 26.0000 + 26.0000i 0.829693 + 0.829693i
\(983\) 59.8665 1.90945 0.954723 0.297497i \(-0.0961519\pi\)
0.954723 + 0.297497i \(0.0961519\pi\)
\(984\) −16.0000 + 16.0000i −0.510061 + 0.510061i
\(985\) 44.8999i 1.43063i
\(986\) 0 0
\(987\) 0 0
\(988\) 29.9333i 0.952304i
\(989\) −11.2250 14.0000i −0.356933 0.445174i
\(990\) −14.0000 + 14.0000i −0.444949 + 0.444949i
\(991\) 10.0000i 0.317660i −0.987306 0.158830i \(-0.949228\pi\)
0.987306 0.158830i \(-0.0507723\pi\)
\(992\) −8.00000 + 8.00000i −0.254000 + 0.254000i
\(993\) 52.0000 1.65017
\(994\) 0 0
\(995\) 56.0000 1.77532
\(996\) 44.8999 1.42271
\(997\) 8.00000i 0.253363i 0.991943 + 0.126681i \(0.0404325\pi\)
−0.991943 + 0.126681i \(0.959567\pi\)
\(998\) 2.00000 + 2.00000i 0.0633089 + 0.0633089i
\(999\) −14.9666 −0.473523
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 184.2.h.a.91.4 yes 4
4.3 odd 2 736.2.h.a.367.3 4
8.3 odd 2 inner 184.2.h.a.91.1 4
8.5 even 2 736.2.h.a.367.1 4
23.22 odd 2 inner 184.2.h.a.91.3 yes 4
92.91 even 2 736.2.h.a.367.2 4
184.45 odd 2 736.2.h.a.367.4 4
184.91 even 2 inner 184.2.h.a.91.2 yes 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
184.2.h.a.91.1 4 8.3 odd 2 inner
184.2.h.a.91.2 yes 4 184.91 even 2 inner
184.2.h.a.91.3 yes 4 23.22 odd 2 inner
184.2.h.a.91.4 yes 4 1.1 even 1 trivial
736.2.h.a.367.1 4 8.5 even 2
736.2.h.a.367.2 4 92.91 even 2
736.2.h.a.367.3 4 4.3 odd 2
736.2.h.a.367.4 4 184.45 odd 2