Properties

Label 184.2.b.a
Level $184$
Weight $2$
Character orbit 184.b
Analytic conductor $1.469$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [184,2,Mod(93,184)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(184, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("184.93");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 184 = 2^{3} \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 184.b (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.46924739719\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-2}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \sqrt{-2}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta q^{2} - 2 \beta q^{3} - 2 q^{4} - \beta q^{5} + 4 q^{6} - 4 q^{7} - 2 \beta q^{8} - 5 q^{9} + 2 q^{10} - \beta q^{11} + 4 \beta q^{12} - 4 \beta q^{14} - 4 q^{15} + 4 q^{16} + 6 q^{17} - 5 \beta q^{18} + \cdots + 5 \beta q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 4 q^{4} + 8 q^{6} - 8 q^{7} - 10 q^{9} + 4 q^{10} - 8 q^{15} + 8 q^{16} + 12 q^{17} + 4 q^{22} - 2 q^{23} - 16 q^{24} + 6 q^{25} + 16 q^{28} + 16 q^{31} - 8 q^{33} + 20 q^{36} + 12 q^{38} - 8 q^{40}+ \cdots + 4 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/184\mathbb{Z}\right)^\times\).

\(n\) \(47\) \(93\) \(97\)
\(\chi(n)\) \(1\) \(-1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
93.1
1.41421i
1.41421i
1.41421i 2.82843i −2.00000 1.41421i 4.00000 −4.00000 2.82843i −5.00000 2.00000
93.2 1.41421i 2.82843i −2.00000 1.41421i 4.00000 −4.00000 2.82843i −5.00000 2.00000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
8.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 184.2.b.a 2
4.b odd 2 1 736.2.b.a 2
8.b even 2 1 inner 184.2.b.a 2
8.d odd 2 1 736.2.b.a 2
16.e even 4 2 5888.2.a.h 2
16.f odd 4 2 5888.2.a.e 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
184.2.b.a 2 1.a even 1 1 trivial
184.2.b.a 2 8.b even 2 1 inner
736.2.b.a 2 4.b odd 2 1
736.2.b.a 2 8.d odd 2 1
5888.2.a.e 2 16.f odd 4 2
5888.2.a.h 2 16.e even 4 2

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{2} + 8 \) acting on \(S_{2}^{\mathrm{new}}(184, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} + 2 \) Copy content Toggle raw display
$3$ \( T^{2} + 8 \) Copy content Toggle raw display
$5$ \( T^{2} + 2 \) Copy content Toggle raw display
$7$ \( (T + 4)^{2} \) Copy content Toggle raw display
$11$ \( T^{2} + 2 \) Copy content Toggle raw display
$13$ \( T^{2} \) Copy content Toggle raw display
$17$ \( (T - 6)^{2} \) Copy content Toggle raw display
$19$ \( T^{2} + 18 \) Copy content Toggle raw display
$23$ \( (T + 1)^{2} \) Copy content Toggle raw display
$29$ \( T^{2} + 8 \) Copy content Toggle raw display
$31$ \( (T - 8)^{2} \) Copy content Toggle raw display
$37$ \( T^{2} + 18 \) Copy content Toggle raw display
$41$ \( (T + 12)^{2} \) Copy content Toggle raw display
$43$ \( T^{2} + 18 \) Copy content Toggle raw display
$47$ \( (T + 6)^{2} \) Copy content Toggle raw display
$53$ \( T^{2} + 98 \) Copy content Toggle raw display
$59$ \( T^{2} + 128 \) Copy content Toggle raw display
$61$ \( T^{2} + 162 \) Copy content Toggle raw display
$67$ \( T^{2} + 162 \) Copy content Toggle raw display
$71$ \( (T - 6)^{2} \) Copy content Toggle raw display
$73$ \( (T - 8)^{2} \) Copy content Toggle raw display
$79$ \( (T - 8)^{2} \) Copy content Toggle raw display
$83$ \( T^{2} + 50 \) Copy content Toggle raw display
$89$ \( (T - 6)^{2} \) Copy content Toggle raw display
$97$ \( (T - 2)^{2} \) Copy content Toggle raw display
show more
show less