Properties

Label 184.2.a
Level $184$
Weight $2$
Character orbit 184.a
Rep. character $\chi_{184}(1,\cdot)$
Character field $\Q$
Dimension $6$
Newform subspaces $5$
Sturm bound $48$
Trace bound $5$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 184 = 2^{3} \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 184.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 5 \)
Sturm bound: \(48\)
Trace bound: \(5\)
Distinguishing \(T_p\): \(3\), \(5\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(184))\).

Total New Old
Modular forms 28 6 22
Cusp forms 21 6 15
Eisenstein series 7 0 7

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)\(23\)FrickeDim
\(+\)\(+\)\(+\)\(1\)
\(+\)\(-\)\(-\)\(2\)
\(-\)\(+\)\(-\)\(2\)
\(-\)\(-\)\(+\)\(1\)
Plus space\(+\)\(2\)
Minus space\(-\)\(4\)

Trace form

\( 6 q - 2 q^{5} + 2 q^{9} + 2 q^{11} + 4 q^{15} - 4 q^{17} + 2 q^{19} - 4 q^{21} - 2 q^{25} + 12 q^{27} + 12 q^{29} - 12 q^{31} - 12 q^{33} - 18 q^{37} - 28 q^{39} + 4 q^{41} - 10 q^{43} + 18 q^{45} + 4 q^{47}+ \cdots + 14 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(184))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 2 23
184.2.a.a 184.a 1.a $1$ $1.469$ \(\Q\) None 184.2.a.a \(0\) \(-1\) \(-4\) \(2\) $-$ $-$ $\mathrm{SU}(2)$ \(q-q^{3}-4q^{5}+2q^{7}-2q^{9}-4q^{11}+\cdots\)
184.2.a.b 184.a 1.a $1$ $1.469$ \(\Q\) None 184.2.a.b \(0\) \(-1\) \(-2\) \(-4\) $+$ $+$ $\mathrm{SU}(2)$ \(q-q^{3}-2q^{5}-4q^{7}-2q^{9}-2q^{11}+\cdots\)
184.2.a.c 184.a 1.a $1$ $1.469$ \(\Q\) None 184.2.a.c \(0\) \(0\) \(0\) \(4\) $+$ $-$ $\mathrm{SU}(2)$ \(q+4q^{7}-3q^{9}+6q^{11}-2q^{13}+6q^{17}+\cdots\)
184.2.a.d 184.a 1.a $1$ $1.469$ \(\Q\) None 184.2.a.d \(0\) \(3\) \(0\) \(-2\) $+$ $-$ $\mathrm{SU}(2)$ \(q+3q^{3}-2q^{7}+6q^{9}-5q^{13}-6q^{17}+\cdots\)
184.2.a.e 184.a 1.a $2$ $1.469$ \(\Q(\sqrt{17}) \) None 184.2.a.e \(0\) \(-1\) \(4\) \(0\) $-$ $+$ $\mathrm{SU}(2)$ \(q-\beta q^{3}+2q^{5}+(1+\beta )q^{9}+2\beta q^{11}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(184))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_0(184)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(23))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(46))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(92))\)\(^{\oplus 2}\)