Properties

Label 1824.2.da
Level $1824$
Weight $2$
Character orbit 1824.da
Rep. character $\chi_{1824}(259,\cdot)$
Character field $\Q(\zeta_{24})$
Dimension $1280$
Sturm bound $640$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1824 = 2^{5} \cdot 3 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1824.da (of order \(24\) and degree \(8\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 608 \)
Character field: \(\Q(\zeta_{24})\)
Sturm bound: \(640\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(1824, [\chi])\).

Total New Old
Modular forms 2592 1280 1312
Cusp forms 2528 1280 1248
Eisenstein series 64 0 64

Trace form

\( 1280 q + 24 q^{10} - 16 q^{24} - 80 q^{26} + 80 q^{28} - 120 q^{34} - 96 q^{35} + 80 q^{38} - 120 q^{40} + 48 q^{51} + 96 q^{52} - 8 q^{54} - 64 q^{61} - 48 q^{62} - 48 q^{64} - 96 q^{66} - 208 q^{68} + 144 q^{70}+ \cdots + 168 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(1824, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(1824, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(1824, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(608, [\chi])\)\(^{\oplus 2}\)