Properties

Label 1824.2.bg
Level $1824$
Weight $2$
Character orbit 1824.bg
Rep. character $\chi_{1824}(559,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $80$
Newform subspaces $1$
Sturm bound $640$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1824 = 2^{5} \cdot 3 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1824.bg (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 152 \)
Character field: \(\Q(\zeta_{6})\)
Newform subspaces: \( 1 \)
Sturm bound: \(640\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(1824, [\chi])\).

Total New Old
Modular forms 672 80 592
Cusp forms 608 80 528
Eisenstein series 64 0 64

Trace form

\( 80 q + 40 q^{9} + 8 q^{19} + 40 q^{25} - 48 q^{35} - 64 q^{49} - 24 q^{51} + 8 q^{57} - 8 q^{73} - 40 q^{81} + 80 q^{83}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(1824, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
1824.2.bg.a 1824.bg 152.o $80$ $14.565$ None 456.2.y.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{6}]$

Decomposition of \(S_{2}^{\mathrm{old}}(1824, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(1824, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(152, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(456, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(608, [\chi])\)\(^{\oplus 2}\)