# Properties

 Label 1824.2.a.i.1.1 Level $1824$ Weight $2$ Character 1824.1 Self dual yes Analytic conductor $14.565$ Analytic rank $1$ Dimension $1$ CM no Inner twists $1$

# Related objects

Show commands: Magma / PariGP / SageMath

## Newspace parameters

comment: Compute space of new eigenforms

[N,k,chi] = [1824,2,Mod(1,1824)]

mf = mfinit([N,k,chi],0)

lf = mfeigenbasis(mf)

from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup(1824, base_ring=CyclotomicField(2))

chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))

N = Newforms(chi, 2, names="a")

//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code

chi := DirichletCharacter("1824.1");

S:= CuspForms(chi, 2);

N := Newforms(S);

 Level: $$N$$ $$=$$ $$1824 = 2^{5} \cdot 3 \cdot 19$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 1824.a (trivial)

## Newform invariants

comment: select newform

sage: f = N[0] # Warning: the index may be different

gp: f = lf[1] \\ Warning: the index may be different

 Self dual: yes Analytic conductor: $$14.5647133287$$ Analytic rank: $$1$$ Dimension: $$1$$ Coefficient field: $$\mathbb{Q}$$ Coefficient ring: $$\mathbb{Z}$$ Coefficient ring index: $$1$$ Twist minimal: yes Fricke sign: $$1$$ Sato-Tate group: $\mathrm{SU}(2)$

## Embedding invariants

 Embedding label 1.1 Character $$\chi$$ $$=$$ 1824.1

## $q$-expansion

comment: q-expansion

sage: f.q_expansion() # note that sage often uses an isomorphic number field

gp: mfcoefs(f, 20)

 $$f(q)$$ $$=$$ $$q+1.00000 q^{3} -1.00000 q^{5} +1.00000 q^{7} +1.00000 q^{9} +O(q^{10})$$ $$q+1.00000 q^{3} -1.00000 q^{5} +1.00000 q^{7} +1.00000 q^{9} -3.00000 q^{11} -1.00000 q^{15} -7.00000 q^{17} -1.00000 q^{19} +1.00000 q^{21} -8.00000 q^{23} -4.00000 q^{25} +1.00000 q^{27} +2.00000 q^{31} -3.00000 q^{33} -1.00000 q^{35} +4.00000 q^{37} -4.00000 q^{41} +1.00000 q^{43} -1.00000 q^{45} +3.00000 q^{47} -6.00000 q^{49} -7.00000 q^{51} +6.00000 q^{53} +3.00000 q^{55} -1.00000 q^{57} +6.00000 q^{59} -5.00000 q^{61} +1.00000 q^{63} +2.00000 q^{67} -8.00000 q^{69} +2.00000 q^{71} -11.0000 q^{73} -4.00000 q^{75} -3.00000 q^{77} +10.0000 q^{79} +1.00000 q^{81} -16.0000 q^{83} +7.00000 q^{85} -14.0000 q^{89} +2.00000 q^{93} +1.00000 q^{95} -8.00000 q^{97} -3.00000 q^{99} +O(q^{100})$$

## Coefficient data

For each $$n$$ we display the coefficients of the $$q$$-expansion $$a_n$$, the Satake parameters $$\alpha_p$$, and the Satake angles $$\theta_p = \textrm{Arg}(\alpha_p)$$.

Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000
$$n$$ $$a_n$$ $$a_n / n^{(k-1)/2}$$ $$\alpha_n$$ $$\theta_n$$
$$p$$ $$a_p$$ $$a_p / p^{(k-1)/2}$$ $$\alpha_p$$ $$\theta_p$$
$$2$$ 0 0
$$3$$ 1.00000 0.577350
$$4$$ 0 0
$$5$$ −1.00000 −0.447214 −0.223607 0.974679i $$-0.571783\pi$$
−0.223607 + 0.974679i $$0.571783\pi$$
$$6$$ 0 0
$$7$$ 1.00000 0.377964 0.188982 0.981981i $$-0.439481\pi$$
0.188982 + 0.981981i $$0.439481\pi$$
$$8$$ 0 0
$$9$$ 1.00000 0.333333
$$10$$ 0 0
$$11$$ −3.00000 −0.904534 −0.452267 0.891883i $$-0.649385\pi$$
−0.452267 + 0.891883i $$0.649385\pi$$
$$12$$ 0 0
$$13$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$14$$ 0 0
$$15$$ −1.00000 −0.258199
$$16$$ 0 0
$$17$$ −7.00000 −1.69775 −0.848875 0.528594i $$-0.822719\pi$$
−0.848875 + 0.528594i $$0.822719\pi$$
$$18$$ 0 0
$$19$$ −1.00000 −0.229416
$$20$$ 0 0
$$21$$ 1.00000 0.218218
$$22$$ 0 0
$$23$$ −8.00000 −1.66812 −0.834058 0.551677i $$-0.813988\pi$$
−0.834058 + 0.551677i $$0.813988\pi$$
$$24$$ 0 0
$$25$$ −4.00000 −0.800000
$$26$$ 0 0
$$27$$ 1.00000 0.192450
$$28$$ 0 0
$$29$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$30$$ 0 0
$$31$$ 2.00000 0.359211 0.179605 0.983739i $$-0.442518\pi$$
0.179605 + 0.983739i $$0.442518\pi$$
$$32$$ 0 0
$$33$$ −3.00000 −0.522233
$$34$$ 0 0
$$35$$ −1.00000 −0.169031
$$36$$ 0 0
$$37$$ 4.00000 0.657596 0.328798 0.944400i $$-0.393356\pi$$
0.328798 + 0.944400i $$0.393356\pi$$
$$38$$ 0 0
$$39$$ 0 0
$$40$$ 0 0
$$41$$ −4.00000 −0.624695 −0.312348 0.949968i $$-0.601115\pi$$
−0.312348 + 0.949968i $$0.601115\pi$$
$$42$$ 0 0
$$43$$ 1.00000 0.152499 0.0762493 0.997089i $$-0.475706\pi$$
0.0762493 + 0.997089i $$0.475706\pi$$
$$44$$ 0 0
$$45$$ −1.00000 −0.149071
$$46$$ 0 0
$$47$$ 3.00000 0.437595 0.218797 0.975770i $$-0.429787\pi$$
0.218797 + 0.975770i $$0.429787\pi$$
$$48$$ 0 0
$$49$$ −6.00000 −0.857143
$$50$$ 0 0
$$51$$ −7.00000 −0.980196
$$52$$ 0 0
$$53$$ 6.00000 0.824163 0.412082 0.911147i $$-0.364802\pi$$
0.412082 + 0.911147i $$0.364802\pi$$
$$54$$ 0 0
$$55$$ 3.00000 0.404520
$$56$$ 0 0
$$57$$ −1.00000 −0.132453
$$58$$ 0 0
$$59$$ 6.00000 0.781133 0.390567 0.920575i $$-0.372279\pi$$
0.390567 + 0.920575i $$0.372279\pi$$
$$60$$ 0 0
$$61$$ −5.00000 −0.640184 −0.320092 0.947386i $$-0.603714\pi$$
−0.320092 + 0.947386i $$0.603714\pi$$
$$62$$ 0 0
$$63$$ 1.00000 0.125988
$$64$$ 0 0
$$65$$ 0 0
$$66$$ 0 0
$$67$$ 2.00000 0.244339 0.122169 0.992509i $$-0.461015\pi$$
0.122169 + 0.992509i $$0.461015\pi$$
$$68$$ 0 0
$$69$$ −8.00000 −0.963087
$$70$$ 0 0
$$71$$ 2.00000 0.237356 0.118678 0.992933i $$-0.462134\pi$$
0.118678 + 0.992933i $$0.462134\pi$$
$$72$$ 0 0
$$73$$ −11.0000 −1.28745 −0.643726 0.765256i $$-0.722612\pi$$
−0.643726 + 0.765256i $$0.722612\pi$$
$$74$$ 0 0
$$75$$ −4.00000 −0.461880
$$76$$ 0 0
$$77$$ −3.00000 −0.341882
$$78$$ 0 0
$$79$$ 10.0000 1.12509 0.562544 0.826767i $$-0.309823\pi$$
0.562544 + 0.826767i $$0.309823\pi$$
$$80$$ 0 0
$$81$$ 1.00000 0.111111
$$82$$ 0 0
$$83$$ −16.0000 −1.75623 −0.878114 0.478451i $$-0.841198\pi$$
−0.878114 + 0.478451i $$0.841198\pi$$
$$84$$ 0 0
$$85$$ 7.00000 0.759257
$$86$$ 0 0
$$87$$ 0 0
$$88$$ 0 0
$$89$$ −14.0000 −1.48400 −0.741999 0.670402i $$-0.766122\pi$$
−0.741999 + 0.670402i $$0.766122\pi$$
$$90$$ 0 0
$$91$$ 0 0
$$92$$ 0 0
$$93$$ 2.00000 0.207390
$$94$$ 0 0
$$95$$ 1.00000 0.102598
$$96$$ 0 0
$$97$$ −8.00000 −0.812277 −0.406138 0.913812i $$-0.633125\pi$$
−0.406138 + 0.913812i $$0.633125\pi$$
$$98$$ 0 0
$$99$$ −3.00000 −0.301511
$$100$$ 0 0
$$101$$ −18.0000 −1.79107 −0.895533 0.444994i $$-0.853206\pi$$
−0.895533 + 0.444994i $$0.853206\pi$$
$$102$$ 0 0
$$103$$ 14.0000 1.37946 0.689730 0.724066i $$-0.257729\pi$$
0.689730 + 0.724066i $$0.257729\pi$$
$$104$$ 0 0
$$105$$ −1.00000 −0.0975900
$$106$$ 0 0
$$107$$ 14.0000 1.35343 0.676716 0.736245i $$-0.263403\pi$$
0.676716 + 0.736245i $$0.263403\pi$$
$$108$$ 0 0
$$109$$ −10.0000 −0.957826 −0.478913 0.877862i $$-0.658969\pi$$
−0.478913 + 0.877862i $$0.658969\pi$$
$$110$$ 0 0
$$111$$ 4.00000 0.379663
$$112$$ 0 0
$$113$$ 4.00000 0.376288 0.188144 0.982141i $$-0.439753\pi$$
0.188144 + 0.982141i $$0.439753\pi$$
$$114$$ 0 0
$$115$$ 8.00000 0.746004
$$116$$ 0 0
$$117$$ 0 0
$$118$$ 0 0
$$119$$ −7.00000 −0.641689
$$120$$ 0 0
$$121$$ −2.00000 −0.181818
$$122$$ 0 0
$$123$$ −4.00000 −0.360668
$$124$$ 0 0
$$125$$ 9.00000 0.804984
$$126$$ 0 0
$$127$$ −16.0000 −1.41977 −0.709885 0.704317i $$-0.751253\pi$$
−0.709885 + 0.704317i $$0.751253\pi$$
$$128$$ 0 0
$$129$$ 1.00000 0.0880451
$$130$$ 0 0
$$131$$ 3.00000 0.262111 0.131056 0.991375i $$-0.458163\pi$$
0.131056 + 0.991375i $$0.458163\pi$$
$$132$$ 0 0
$$133$$ −1.00000 −0.0867110
$$134$$ 0 0
$$135$$ −1.00000 −0.0860663
$$136$$ 0 0
$$137$$ 1.00000 0.0854358 0.0427179 0.999087i $$-0.486398\pi$$
0.0427179 + 0.999087i $$0.486398\pi$$
$$138$$ 0 0
$$139$$ 9.00000 0.763370 0.381685 0.924292i $$-0.375344\pi$$
0.381685 + 0.924292i $$0.375344\pi$$
$$140$$ 0 0
$$141$$ 3.00000 0.252646
$$142$$ 0 0
$$143$$ 0 0
$$144$$ 0 0
$$145$$ 0 0
$$146$$ 0 0
$$147$$ −6.00000 −0.494872
$$148$$ 0 0
$$149$$ 1.00000 0.0819232 0.0409616 0.999161i $$-0.486958\pi$$
0.0409616 + 0.999161i $$0.486958\pi$$
$$150$$ 0 0
$$151$$ 6.00000 0.488273 0.244137 0.969741i $$-0.421495\pi$$
0.244137 + 0.969741i $$0.421495\pi$$
$$152$$ 0 0
$$153$$ −7.00000 −0.565916
$$154$$ 0 0
$$155$$ −2.00000 −0.160644
$$156$$ 0 0
$$157$$ 2.00000 0.159617 0.0798087 0.996810i $$-0.474569\pi$$
0.0798087 + 0.996810i $$0.474569\pi$$
$$158$$ 0 0
$$159$$ 6.00000 0.475831
$$160$$ 0 0
$$161$$ −8.00000 −0.630488
$$162$$ 0 0
$$163$$ 4.00000 0.313304 0.156652 0.987654i $$-0.449930\pi$$
0.156652 + 0.987654i $$0.449930\pi$$
$$164$$ 0 0
$$165$$ 3.00000 0.233550
$$166$$ 0 0
$$167$$ −20.0000 −1.54765 −0.773823 0.633402i $$-0.781658\pi$$
−0.773823 + 0.633402i $$0.781658\pi$$
$$168$$ 0 0
$$169$$ −13.0000 −1.00000
$$170$$ 0 0
$$171$$ −1.00000 −0.0764719
$$172$$ 0 0
$$173$$ 26.0000 1.97674 0.988372 0.152057i $$-0.0485898\pi$$
0.988372 + 0.152057i $$0.0485898\pi$$
$$174$$ 0 0
$$175$$ −4.00000 −0.302372
$$176$$ 0 0
$$177$$ 6.00000 0.450988
$$178$$ 0 0
$$179$$ −16.0000 −1.19590 −0.597948 0.801535i $$-0.704017\pi$$
−0.597948 + 0.801535i $$0.704017\pi$$
$$180$$ 0 0
$$181$$ 14.0000 1.04061 0.520306 0.853980i $$-0.325818\pi$$
0.520306 + 0.853980i $$0.325818\pi$$
$$182$$ 0 0
$$183$$ −5.00000 −0.369611
$$184$$ 0 0
$$185$$ −4.00000 −0.294086
$$186$$ 0 0
$$187$$ 21.0000 1.53567
$$188$$ 0 0
$$189$$ 1.00000 0.0727393
$$190$$ 0 0
$$191$$ −7.00000 −0.506502 −0.253251 0.967401i $$-0.581500\pi$$
−0.253251 + 0.967401i $$0.581500\pi$$
$$192$$ 0 0
$$193$$ 10.0000 0.719816 0.359908 0.932988i $$-0.382808\pi$$
0.359908 + 0.932988i $$0.382808\pi$$
$$194$$ 0 0
$$195$$ 0 0
$$196$$ 0 0
$$197$$ 2.00000 0.142494 0.0712470 0.997459i $$-0.477302\pi$$
0.0712470 + 0.997459i $$0.477302\pi$$
$$198$$ 0 0
$$199$$ 17.0000 1.20510 0.602549 0.798082i $$-0.294152\pi$$
0.602549 + 0.798082i $$0.294152\pi$$
$$200$$ 0 0
$$201$$ 2.00000 0.141069
$$202$$ 0 0
$$203$$ 0 0
$$204$$ 0 0
$$205$$ 4.00000 0.279372
$$206$$ 0 0
$$207$$ −8.00000 −0.556038
$$208$$ 0 0
$$209$$ 3.00000 0.207514
$$210$$ 0 0
$$211$$ 10.0000 0.688428 0.344214 0.938891i $$-0.388145\pi$$
0.344214 + 0.938891i $$0.388145\pi$$
$$212$$ 0 0
$$213$$ 2.00000 0.137038
$$214$$ 0 0
$$215$$ −1.00000 −0.0681994
$$216$$ 0 0
$$217$$ 2.00000 0.135769
$$218$$ 0 0
$$219$$ −11.0000 −0.743311
$$220$$ 0 0
$$221$$ 0 0
$$222$$ 0 0
$$223$$ 8.00000 0.535720 0.267860 0.963458i $$-0.413684\pi$$
0.267860 + 0.963458i $$0.413684\pi$$
$$224$$ 0 0
$$225$$ −4.00000 −0.266667
$$226$$ 0 0
$$227$$ 20.0000 1.32745 0.663723 0.747978i $$-0.268975\pi$$
0.663723 + 0.747978i $$0.268975\pi$$
$$228$$ 0 0
$$229$$ −23.0000 −1.51988 −0.759941 0.649992i $$-0.774772\pi$$
−0.759941 + 0.649992i $$0.774772\pi$$
$$230$$ 0 0
$$231$$ −3.00000 −0.197386
$$232$$ 0 0
$$233$$ −17.0000 −1.11371 −0.556854 0.830611i $$-0.687992\pi$$
−0.556854 + 0.830611i $$0.687992\pi$$
$$234$$ 0 0
$$235$$ −3.00000 −0.195698
$$236$$ 0 0
$$237$$ 10.0000 0.649570
$$238$$ 0 0
$$239$$ 1.00000 0.0646846 0.0323423 0.999477i $$-0.489703\pi$$
0.0323423 + 0.999477i $$0.489703\pi$$
$$240$$ 0 0
$$241$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$242$$ 0 0
$$243$$ 1.00000 0.0641500
$$244$$ 0 0
$$245$$ 6.00000 0.383326
$$246$$ 0 0
$$247$$ 0 0
$$248$$ 0 0
$$249$$ −16.0000 −1.01396
$$250$$ 0 0
$$251$$ 11.0000 0.694314 0.347157 0.937807i $$-0.387147\pi$$
0.347157 + 0.937807i $$0.387147\pi$$
$$252$$ 0 0
$$253$$ 24.0000 1.50887
$$254$$ 0 0
$$255$$ 7.00000 0.438357
$$256$$ 0 0
$$257$$ 12.0000 0.748539 0.374270 0.927320i $$-0.377893\pi$$
0.374270 + 0.927320i $$0.377893\pi$$
$$258$$ 0 0
$$259$$ 4.00000 0.248548
$$260$$ 0 0
$$261$$ 0 0
$$262$$ 0 0
$$263$$ −9.00000 −0.554964 −0.277482 0.960731i $$-0.589500\pi$$
−0.277482 + 0.960731i $$0.589500\pi$$
$$264$$ 0 0
$$265$$ −6.00000 −0.368577
$$266$$ 0 0
$$267$$ −14.0000 −0.856786
$$268$$ 0 0
$$269$$ 10.0000 0.609711 0.304855 0.952399i $$-0.401392\pi$$
0.304855 + 0.952399i $$0.401392\pi$$
$$270$$ 0 0
$$271$$ 24.0000 1.45790 0.728948 0.684569i $$-0.240010\pi$$
0.728948 + 0.684569i $$0.240010\pi$$
$$272$$ 0 0
$$273$$ 0 0
$$274$$ 0 0
$$275$$ 12.0000 0.723627
$$276$$ 0 0
$$277$$ −11.0000 −0.660926 −0.330463 0.943819i $$-0.607205\pi$$
−0.330463 + 0.943819i $$0.607205\pi$$
$$278$$ 0 0
$$279$$ 2.00000 0.119737
$$280$$ 0 0
$$281$$ −10.0000 −0.596550 −0.298275 0.954480i $$-0.596411\pi$$
−0.298275 + 0.954480i $$0.596411\pi$$
$$282$$ 0 0
$$283$$ −19.0000 −1.12943 −0.564716 0.825285i $$-0.691014\pi$$
−0.564716 + 0.825285i $$0.691014\pi$$
$$284$$ 0 0
$$285$$ 1.00000 0.0592349
$$286$$ 0 0
$$287$$ −4.00000 −0.236113
$$288$$ 0 0
$$289$$ 32.0000 1.88235
$$290$$ 0 0
$$291$$ −8.00000 −0.468968
$$292$$ 0 0
$$293$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$294$$ 0 0
$$295$$ −6.00000 −0.349334
$$296$$ 0 0
$$297$$ −3.00000 −0.174078
$$298$$ 0 0
$$299$$ 0 0
$$300$$ 0 0
$$301$$ 1.00000 0.0576390
$$302$$ 0 0
$$303$$ −18.0000 −1.03407
$$304$$ 0 0
$$305$$ 5.00000 0.286299
$$306$$ 0 0
$$307$$ −18.0000 −1.02731 −0.513657 0.857996i $$-0.671710\pi$$
−0.513657 + 0.857996i $$0.671710\pi$$
$$308$$ 0 0
$$309$$ 14.0000 0.796432
$$310$$ 0 0
$$311$$ −21.0000 −1.19080 −0.595400 0.803429i $$-0.703007\pi$$
−0.595400 + 0.803429i $$0.703007\pi$$
$$312$$ 0 0
$$313$$ 22.0000 1.24351 0.621757 0.783210i $$-0.286419\pi$$
0.621757 + 0.783210i $$0.286419\pi$$
$$314$$ 0 0
$$315$$ −1.00000 −0.0563436
$$316$$ 0 0
$$317$$ −6.00000 −0.336994 −0.168497 0.985702i $$-0.553891\pi$$
−0.168497 + 0.985702i $$0.553891\pi$$
$$318$$ 0 0
$$319$$ 0 0
$$320$$ 0 0
$$321$$ 14.0000 0.781404
$$322$$ 0 0
$$323$$ 7.00000 0.389490
$$324$$ 0 0
$$325$$ 0 0
$$326$$ 0 0
$$327$$ −10.0000 −0.553001
$$328$$ 0 0
$$329$$ 3.00000 0.165395
$$330$$ 0 0
$$331$$ −6.00000 −0.329790 −0.164895 0.986311i $$-0.552728\pi$$
−0.164895 + 0.986311i $$0.552728\pi$$
$$332$$ 0 0
$$333$$ 4.00000 0.219199
$$334$$ 0 0
$$335$$ −2.00000 −0.109272
$$336$$ 0 0
$$337$$ −12.0000 −0.653682 −0.326841 0.945079i $$-0.605984\pi$$
−0.326841 + 0.945079i $$0.605984\pi$$
$$338$$ 0 0
$$339$$ 4.00000 0.217250
$$340$$ 0 0
$$341$$ −6.00000 −0.324918
$$342$$ 0 0
$$343$$ −13.0000 −0.701934
$$344$$ 0 0
$$345$$ 8.00000 0.430706
$$346$$ 0 0
$$347$$ 23.0000 1.23470 0.617352 0.786687i $$-0.288205\pi$$
0.617352 + 0.786687i $$0.288205\pi$$
$$348$$ 0 0
$$349$$ 29.0000 1.55233 0.776167 0.630527i $$-0.217161\pi$$
0.776167 + 0.630527i $$0.217161\pi$$
$$350$$ 0 0
$$351$$ 0 0
$$352$$ 0 0
$$353$$ 2.00000 0.106449 0.0532246 0.998583i $$-0.483050\pi$$
0.0532246 + 0.998583i $$0.483050\pi$$
$$354$$ 0 0
$$355$$ −2.00000 −0.106149
$$356$$ 0 0
$$357$$ −7.00000 −0.370479
$$358$$ 0 0
$$359$$ −15.0000 −0.791670 −0.395835 0.918322i $$-0.629545\pi$$
−0.395835 + 0.918322i $$0.629545\pi$$
$$360$$ 0 0
$$361$$ 1.00000 0.0526316
$$362$$ 0 0
$$363$$ −2.00000 −0.104973
$$364$$ 0 0
$$365$$ 11.0000 0.575766
$$366$$ 0 0
$$367$$ −4.00000 −0.208798 −0.104399 0.994535i $$-0.533292\pi$$
−0.104399 + 0.994535i $$0.533292\pi$$
$$368$$ 0 0
$$369$$ −4.00000 −0.208232
$$370$$ 0 0
$$371$$ 6.00000 0.311504
$$372$$ 0 0
$$373$$ 16.0000 0.828449 0.414224 0.910175i $$-0.364053\pi$$
0.414224 + 0.910175i $$0.364053\pi$$
$$374$$ 0 0
$$375$$ 9.00000 0.464758
$$376$$ 0 0
$$377$$ 0 0
$$378$$ 0 0
$$379$$ −6.00000 −0.308199 −0.154100 0.988055i $$-0.549248\pi$$
−0.154100 + 0.988055i $$0.549248\pi$$
$$380$$ 0 0
$$381$$ −16.0000 −0.819705
$$382$$ 0 0
$$383$$ −18.0000 −0.919757 −0.459879 0.887982i $$-0.652107\pi$$
−0.459879 + 0.887982i $$0.652107\pi$$
$$384$$ 0 0
$$385$$ 3.00000 0.152894
$$386$$ 0 0
$$387$$ 1.00000 0.0508329
$$388$$ 0 0
$$389$$ −13.0000 −0.659126 −0.329563 0.944134i $$-0.606901\pi$$
−0.329563 + 0.944134i $$0.606901\pi$$
$$390$$ 0 0
$$391$$ 56.0000 2.83204
$$392$$ 0 0
$$393$$ 3.00000 0.151330
$$394$$ 0 0
$$395$$ −10.0000 −0.503155
$$396$$ 0 0
$$397$$ 5.00000 0.250943 0.125471 0.992097i $$-0.459956\pi$$
0.125471 + 0.992097i $$0.459956\pi$$
$$398$$ 0 0
$$399$$ −1.00000 −0.0500626
$$400$$ 0 0
$$401$$ 18.0000 0.898877 0.449439 0.893311i $$-0.351624\pi$$
0.449439 + 0.893311i $$0.351624\pi$$
$$402$$ 0 0
$$403$$ 0 0
$$404$$ 0 0
$$405$$ −1.00000 −0.0496904
$$406$$ 0 0
$$407$$ −12.0000 −0.594818
$$408$$ 0 0
$$409$$ −26.0000 −1.28562 −0.642809 0.766027i $$-0.722231\pi$$
−0.642809 + 0.766027i $$0.722231\pi$$
$$410$$ 0 0
$$411$$ 1.00000 0.0493264
$$412$$ 0 0
$$413$$ 6.00000 0.295241
$$414$$ 0 0
$$415$$ 16.0000 0.785409
$$416$$ 0 0
$$417$$ 9.00000 0.440732
$$418$$ 0 0
$$419$$ −12.0000 −0.586238 −0.293119 0.956076i $$-0.594693\pi$$
−0.293119 + 0.956076i $$0.594693\pi$$
$$420$$ 0 0
$$421$$ 10.0000 0.487370 0.243685 0.969854i $$-0.421644\pi$$
0.243685 + 0.969854i $$0.421644\pi$$
$$422$$ 0 0
$$423$$ 3.00000 0.145865
$$424$$ 0 0
$$425$$ 28.0000 1.35820
$$426$$ 0 0
$$427$$ −5.00000 −0.241967
$$428$$ 0 0
$$429$$ 0 0
$$430$$ 0 0
$$431$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$432$$ 0 0
$$433$$ −28.0000 −1.34559 −0.672797 0.739827i $$-0.734907\pi$$
−0.672797 + 0.739827i $$0.734907\pi$$
$$434$$ 0 0
$$435$$ 0 0
$$436$$ 0 0
$$437$$ 8.00000 0.382692
$$438$$ 0 0
$$439$$ −20.0000 −0.954548 −0.477274 0.878755i $$-0.658375\pi$$
−0.477274 + 0.878755i $$0.658375\pi$$
$$440$$ 0 0
$$441$$ −6.00000 −0.285714
$$442$$ 0 0
$$443$$ −33.0000 −1.56788 −0.783939 0.620838i $$-0.786792\pi$$
−0.783939 + 0.620838i $$0.786792\pi$$
$$444$$ 0 0
$$445$$ 14.0000 0.663664
$$446$$ 0 0
$$447$$ 1.00000 0.0472984
$$448$$ 0 0
$$449$$ 12.0000 0.566315 0.283158 0.959073i $$-0.408618\pi$$
0.283158 + 0.959073i $$0.408618\pi$$
$$450$$ 0 0
$$451$$ 12.0000 0.565058
$$452$$ 0 0
$$453$$ 6.00000 0.281905
$$454$$ 0 0
$$455$$ 0 0
$$456$$ 0 0
$$457$$ 15.0000 0.701670 0.350835 0.936437i $$-0.385898\pi$$
0.350835 + 0.936437i $$0.385898\pi$$
$$458$$ 0 0
$$459$$ −7.00000 −0.326732
$$460$$ 0 0
$$461$$ −15.0000 −0.698620 −0.349310 0.937007i $$-0.613584\pi$$
−0.349310 + 0.937007i $$0.613584\pi$$
$$462$$ 0 0
$$463$$ 39.0000 1.81248 0.906242 0.422760i $$-0.138939\pi$$
0.906242 + 0.422760i $$0.138939\pi$$
$$464$$ 0 0
$$465$$ −2.00000 −0.0927478
$$466$$ 0 0
$$467$$ 7.00000 0.323921 0.161961 0.986797i $$-0.448218\pi$$
0.161961 + 0.986797i $$0.448218\pi$$
$$468$$ 0 0
$$469$$ 2.00000 0.0923514
$$470$$ 0 0
$$471$$ 2.00000 0.0921551
$$472$$ 0 0
$$473$$ −3.00000 −0.137940
$$474$$ 0 0
$$475$$ 4.00000 0.183533
$$476$$ 0 0
$$477$$ 6.00000 0.274721
$$478$$ 0 0
$$479$$ −24.0000 −1.09659 −0.548294 0.836286i $$-0.684723\pi$$
−0.548294 + 0.836286i $$0.684723\pi$$
$$480$$ 0 0
$$481$$ 0 0
$$482$$ 0 0
$$483$$ −8.00000 −0.364013
$$484$$ 0 0
$$485$$ 8.00000 0.363261
$$486$$ 0 0
$$487$$ 22.0000 0.996915 0.498458 0.866914i $$-0.333900\pi$$
0.498458 + 0.866914i $$0.333900\pi$$
$$488$$ 0 0
$$489$$ 4.00000 0.180886
$$490$$ 0 0
$$491$$ 36.0000 1.62466 0.812329 0.583200i $$-0.198200\pi$$
0.812329 + 0.583200i $$0.198200\pi$$
$$492$$ 0 0
$$493$$ 0 0
$$494$$ 0 0
$$495$$ 3.00000 0.134840
$$496$$ 0 0
$$497$$ 2.00000 0.0897123
$$498$$ 0 0
$$499$$ 7.00000 0.313363 0.156682 0.987649i $$-0.449920\pi$$
0.156682 + 0.987649i $$0.449920\pi$$
$$500$$ 0 0
$$501$$ −20.0000 −0.893534
$$502$$ 0 0
$$503$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$504$$ 0 0
$$505$$ 18.0000 0.800989
$$506$$ 0 0
$$507$$ −13.0000 −0.577350
$$508$$ 0 0
$$509$$ 40.0000 1.77297 0.886484 0.462758i $$-0.153140\pi$$
0.886484 + 0.462758i $$0.153140\pi$$
$$510$$ 0 0
$$511$$ −11.0000 −0.486611
$$512$$ 0 0
$$513$$ −1.00000 −0.0441511
$$514$$ 0 0
$$515$$ −14.0000 −0.616914
$$516$$ 0 0
$$517$$ −9.00000 −0.395820
$$518$$ 0 0
$$519$$ 26.0000 1.14127
$$520$$ 0 0
$$521$$ 18.0000 0.788594 0.394297 0.918983i $$-0.370988\pi$$
0.394297 + 0.918983i $$0.370988\pi$$
$$522$$ 0 0
$$523$$ 34.0000 1.48672 0.743358 0.668894i $$-0.233232\pi$$
0.743358 + 0.668894i $$0.233232\pi$$
$$524$$ 0 0
$$525$$ −4.00000 −0.174574
$$526$$ 0 0
$$527$$ −14.0000 −0.609850
$$528$$ 0 0
$$529$$ 41.0000 1.78261
$$530$$ 0 0
$$531$$ 6.00000 0.260378
$$532$$ 0 0
$$533$$ 0 0
$$534$$ 0 0
$$535$$ −14.0000 −0.605273
$$536$$ 0 0
$$537$$ −16.0000 −0.690451
$$538$$ 0 0
$$539$$ 18.0000 0.775315
$$540$$ 0 0
$$541$$ 7.00000 0.300954 0.150477 0.988614i $$-0.451919\pi$$
0.150477 + 0.988614i $$0.451919\pi$$
$$542$$ 0 0
$$543$$ 14.0000 0.600798
$$544$$ 0 0
$$545$$ 10.0000 0.428353
$$546$$ 0 0
$$547$$ −40.0000 −1.71028 −0.855138 0.518400i $$-0.826528\pi$$
−0.855138 + 0.518400i $$0.826528\pi$$
$$548$$ 0 0
$$549$$ −5.00000 −0.213395
$$550$$ 0 0
$$551$$ 0 0
$$552$$ 0 0
$$553$$ 10.0000 0.425243
$$554$$ 0 0
$$555$$ −4.00000 −0.169791
$$556$$ 0 0
$$557$$ 9.00000 0.381342 0.190671 0.981654i $$-0.438934\pi$$
0.190671 + 0.981654i $$0.438934\pi$$
$$558$$ 0 0
$$559$$ 0 0
$$560$$ 0 0
$$561$$ 21.0000 0.886621
$$562$$ 0 0
$$563$$ 32.0000 1.34864 0.674320 0.738440i $$-0.264437\pi$$
0.674320 + 0.738440i $$0.264437\pi$$
$$564$$ 0 0
$$565$$ −4.00000 −0.168281
$$566$$ 0 0
$$567$$ 1.00000 0.0419961
$$568$$ 0 0
$$569$$ 36.0000 1.50920 0.754599 0.656186i $$-0.227831\pi$$
0.754599 + 0.656186i $$0.227831\pi$$
$$570$$ 0 0
$$571$$ 16.0000 0.669579 0.334790 0.942293i $$-0.391335\pi$$
0.334790 + 0.942293i $$0.391335\pi$$
$$572$$ 0 0
$$573$$ −7.00000 −0.292429
$$574$$ 0 0
$$575$$ 32.0000 1.33449
$$576$$ 0 0
$$577$$ −9.00000 −0.374675 −0.187337 0.982296i $$-0.559986\pi$$
−0.187337 + 0.982296i $$0.559986\pi$$
$$578$$ 0 0
$$579$$ 10.0000 0.415586
$$580$$ 0 0
$$581$$ −16.0000 −0.663792
$$582$$ 0 0
$$583$$ −18.0000 −0.745484
$$584$$ 0 0
$$585$$ 0 0
$$586$$ 0 0
$$587$$ −21.0000 −0.866763 −0.433381 0.901211i $$-0.642680\pi$$
−0.433381 + 0.901211i $$0.642680\pi$$
$$588$$ 0 0
$$589$$ −2.00000 −0.0824086
$$590$$ 0 0
$$591$$ 2.00000 0.0822690
$$592$$ 0 0
$$593$$ 6.00000 0.246390 0.123195 0.992382i $$-0.460686\pi$$
0.123195 + 0.992382i $$0.460686\pi$$
$$594$$ 0 0
$$595$$ 7.00000 0.286972
$$596$$ 0 0
$$597$$ 17.0000 0.695764
$$598$$ 0 0
$$599$$ 6.00000 0.245153 0.122577 0.992459i $$-0.460884\pi$$
0.122577 + 0.992459i $$0.460884\pi$$
$$600$$ 0 0
$$601$$ −34.0000 −1.38689 −0.693444 0.720510i $$-0.743908\pi$$
−0.693444 + 0.720510i $$0.743908\pi$$
$$602$$ 0 0
$$603$$ 2.00000 0.0814463
$$604$$ 0 0
$$605$$ 2.00000 0.0813116
$$606$$ 0 0
$$607$$ 12.0000 0.487065 0.243532 0.969893i $$-0.421694\pi$$
0.243532 + 0.969893i $$0.421694\pi$$
$$608$$ 0 0
$$609$$ 0 0
$$610$$ 0 0
$$611$$ 0 0
$$612$$ 0 0
$$613$$ −27.0000 −1.09052 −0.545260 0.838267i $$-0.683569\pi$$
−0.545260 + 0.838267i $$0.683569\pi$$
$$614$$ 0 0
$$615$$ 4.00000 0.161296
$$616$$ 0 0
$$617$$ −39.0000 −1.57008 −0.785040 0.619445i $$-0.787358\pi$$
−0.785040 + 0.619445i $$0.787358\pi$$
$$618$$ 0 0
$$619$$ 4.00000 0.160774 0.0803868 0.996764i $$-0.474384\pi$$
0.0803868 + 0.996764i $$0.474384\pi$$
$$620$$ 0 0
$$621$$ −8.00000 −0.321029
$$622$$ 0 0
$$623$$ −14.0000 −0.560898
$$624$$ 0 0
$$625$$ 11.0000 0.440000
$$626$$ 0 0
$$627$$ 3.00000 0.119808
$$628$$ 0 0
$$629$$ −28.0000 −1.11643
$$630$$ 0 0
$$631$$ 17.0000 0.676759 0.338380 0.941010i $$-0.390121\pi$$
0.338380 + 0.941010i $$0.390121\pi$$
$$632$$ 0 0
$$633$$ 10.0000 0.397464
$$634$$ 0 0
$$635$$ 16.0000 0.634941
$$636$$ 0 0
$$637$$ 0 0
$$638$$ 0 0
$$639$$ 2.00000 0.0791188
$$640$$ 0 0
$$641$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$642$$ 0 0
$$643$$ −31.0000 −1.22252 −0.611260 0.791430i $$-0.709337\pi$$
−0.611260 + 0.791430i $$0.709337\pi$$
$$644$$ 0 0
$$645$$ −1.00000 −0.0393750
$$646$$ 0 0
$$647$$ −15.0000 −0.589711 −0.294855 0.955542i $$-0.595271\pi$$
−0.294855 + 0.955542i $$0.595271\pi$$
$$648$$ 0 0
$$649$$ −18.0000 −0.706562
$$650$$ 0 0
$$651$$ 2.00000 0.0783862
$$652$$ 0 0
$$653$$ −31.0000 −1.21312 −0.606562 0.795036i $$-0.707452\pi$$
−0.606562 + 0.795036i $$0.707452\pi$$
$$654$$ 0 0
$$655$$ −3.00000 −0.117220
$$656$$ 0 0
$$657$$ −11.0000 −0.429151
$$658$$ 0 0
$$659$$ −6.00000 −0.233727 −0.116863 0.993148i $$-0.537284\pi$$
−0.116863 + 0.993148i $$0.537284\pi$$
$$660$$ 0 0
$$661$$ −24.0000 −0.933492 −0.466746 0.884391i $$-0.654574\pi$$
−0.466746 + 0.884391i $$0.654574\pi$$
$$662$$ 0 0
$$663$$ 0 0
$$664$$ 0 0
$$665$$ 1.00000 0.0387783
$$666$$ 0 0
$$667$$ 0 0
$$668$$ 0 0
$$669$$ 8.00000 0.309298
$$670$$ 0 0
$$671$$ 15.0000 0.579069
$$672$$ 0 0
$$673$$ 34.0000 1.31060 0.655302 0.755367i $$-0.272541\pi$$
0.655302 + 0.755367i $$0.272541\pi$$
$$674$$ 0 0
$$675$$ −4.00000 −0.153960
$$676$$ 0 0
$$677$$ −28.0000 −1.07613 −0.538064 0.842904i $$-0.680844\pi$$
−0.538064 + 0.842904i $$0.680844\pi$$
$$678$$ 0 0
$$679$$ −8.00000 −0.307012
$$680$$ 0 0
$$681$$ 20.0000 0.766402
$$682$$ 0 0
$$683$$ 4.00000 0.153056 0.0765279 0.997067i $$-0.475617\pi$$
0.0765279 + 0.997067i $$0.475617\pi$$
$$684$$ 0 0
$$685$$ −1.00000 −0.0382080
$$686$$ 0 0
$$687$$ −23.0000 −0.877505
$$688$$ 0 0
$$689$$ 0 0
$$690$$ 0 0
$$691$$ −41.0000 −1.55971 −0.779857 0.625958i $$-0.784708\pi$$
−0.779857 + 0.625958i $$0.784708\pi$$
$$692$$ 0 0
$$693$$ −3.00000 −0.113961
$$694$$ 0 0
$$695$$ −9.00000 −0.341389
$$696$$ 0 0
$$697$$ 28.0000 1.06058
$$698$$ 0 0
$$699$$ −17.0000 −0.642999
$$700$$ 0 0
$$701$$ −42.0000 −1.58632 −0.793159 0.609015i $$-0.791565\pi$$
−0.793159 + 0.609015i $$0.791565\pi$$
$$702$$ 0 0
$$703$$ −4.00000 −0.150863
$$704$$ 0 0
$$705$$ −3.00000 −0.112987
$$706$$ 0 0
$$707$$ −18.0000 −0.676960
$$708$$ 0 0
$$709$$ −34.0000 −1.27690 −0.638448 0.769665i $$-0.720423\pi$$
−0.638448 + 0.769665i $$0.720423\pi$$
$$710$$ 0 0
$$711$$ 10.0000 0.375029
$$712$$ 0 0
$$713$$ −16.0000 −0.599205
$$714$$ 0 0
$$715$$ 0 0
$$716$$ 0 0
$$717$$ 1.00000 0.0373457
$$718$$ 0 0
$$719$$ 45.0000 1.67822 0.839108 0.543964i $$-0.183077\pi$$
0.839108 + 0.543964i $$0.183077\pi$$
$$720$$ 0 0
$$721$$ 14.0000 0.521387
$$722$$ 0 0
$$723$$ 0 0
$$724$$ 0 0
$$725$$ 0 0
$$726$$ 0 0
$$727$$ 7.00000 0.259616 0.129808 0.991539i $$-0.458564\pi$$
0.129808 + 0.991539i $$0.458564\pi$$
$$728$$ 0 0
$$729$$ 1.00000 0.0370370
$$730$$ 0 0
$$731$$ −7.00000 −0.258904
$$732$$ 0 0
$$733$$ −14.0000 −0.517102 −0.258551 0.965998i $$-0.583245\pi$$
−0.258551 + 0.965998i $$0.583245\pi$$
$$734$$ 0 0
$$735$$ 6.00000 0.221313
$$736$$ 0 0
$$737$$ −6.00000 −0.221013
$$738$$ 0 0
$$739$$ −3.00000 −0.110357 −0.0551784 0.998477i $$-0.517573\pi$$
−0.0551784 + 0.998477i $$0.517573\pi$$
$$740$$ 0 0
$$741$$ 0 0
$$742$$ 0 0
$$743$$ 10.0000 0.366864 0.183432 0.983032i $$-0.441279\pi$$
0.183432 + 0.983032i $$0.441279\pi$$
$$744$$ 0 0
$$745$$ −1.00000 −0.0366372
$$746$$ 0 0
$$747$$ −16.0000 −0.585409
$$748$$ 0 0
$$749$$ 14.0000 0.511549
$$750$$ 0 0
$$751$$ −44.0000 −1.60558 −0.802791 0.596260i $$-0.796653\pi$$
−0.802791 + 0.596260i $$0.796653\pi$$
$$752$$ 0 0
$$753$$ 11.0000 0.400862
$$754$$ 0 0
$$755$$ −6.00000 −0.218362
$$756$$ 0 0
$$757$$ −29.0000 −1.05402 −0.527011 0.849858i $$-0.676688\pi$$
−0.527011 + 0.849858i $$0.676688\pi$$
$$758$$ 0 0
$$759$$ 24.0000 0.871145
$$760$$ 0 0
$$761$$ −15.0000 −0.543750 −0.271875 0.962333i $$-0.587644\pi$$
−0.271875 + 0.962333i $$0.587644\pi$$
$$762$$ 0 0
$$763$$ −10.0000 −0.362024
$$764$$ 0 0
$$765$$ 7.00000 0.253086
$$766$$ 0 0
$$767$$ 0 0
$$768$$ 0 0
$$769$$ 27.0000 0.973645 0.486822 0.873501i $$-0.338156\pi$$
0.486822 + 0.873501i $$0.338156\pi$$
$$770$$ 0 0
$$771$$ 12.0000 0.432169
$$772$$ 0 0
$$773$$ 14.0000 0.503545 0.251773 0.967786i $$-0.418987\pi$$
0.251773 + 0.967786i $$0.418987\pi$$
$$774$$ 0 0
$$775$$ −8.00000 −0.287368
$$776$$ 0 0
$$777$$ 4.00000 0.143499
$$778$$ 0 0
$$779$$ 4.00000 0.143315
$$780$$ 0 0
$$781$$ −6.00000 −0.214697
$$782$$ 0 0
$$783$$ 0 0
$$784$$ 0 0
$$785$$ −2.00000 −0.0713831
$$786$$ 0 0
$$787$$ 20.0000 0.712923 0.356462 0.934310i $$-0.383983\pi$$
0.356462 + 0.934310i $$0.383983\pi$$
$$788$$ 0 0
$$789$$ −9.00000 −0.320408
$$790$$ 0 0
$$791$$ 4.00000 0.142224
$$792$$ 0 0
$$793$$ 0 0
$$794$$ 0 0
$$795$$ −6.00000 −0.212798
$$796$$ 0 0
$$797$$ 2.00000 0.0708436 0.0354218 0.999372i $$-0.488723\pi$$
0.0354218 + 0.999372i $$0.488723\pi$$
$$798$$ 0 0
$$799$$ −21.0000 −0.742927
$$800$$ 0 0
$$801$$ −14.0000 −0.494666
$$802$$ 0 0
$$803$$ 33.0000 1.16454
$$804$$ 0 0
$$805$$ 8.00000 0.281963
$$806$$ 0 0
$$807$$ 10.0000 0.352017
$$808$$ 0 0
$$809$$ −1.00000 −0.0351581 −0.0175791 0.999845i $$-0.505596\pi$$
−0.0175791 + 0.999845i $$0.505596\pi$$
$$810$$ 0 0
$$811$$ −28.0000 −0.983213 −0.491606 0.870817i $$-0.663590\pi$$
−0.491606 + 0.870817i $$0.663590\pi$$
$$812$$ 0 0
$$813$$ 24.0000 0.841717
$$814$$ 0 0
$$815$$ −4.00000 −0.140114
$$816$$ 0 0
$$817$$ −1.00000 −0.0349856
$$818$$ 0 0
$$819$$ 0 0
$$820$$ 0 0
$$821$$ −23.0000 −0.802706 −0.401353 0.915924i $$-0.631460\pi$$
−0.401353 + 0.915924i $$0.631460\pi$$
$$822$$ 0 0
$$823$$ 49.0000 1.70803 0.854016 0.520246i $$-0.174160\pi$$
0.854016 + 0.520246i $$0.174160\pi$$
$$824$$ 0 0
$$825$$ 12.0000 0.417786
$$826$$ 0 0
$$827$$ 54.0000 1.87776 0.938882 0.344239i $$-0.111863\pi$$
0.938882 + 0.344239i $$0.111863\pi$$
$$828$$ 0 0
$$829$$ 28.0000 0.972480 0.486240 0.873825i $$-0.338368\pi$$
0.486240 + 0.873825i $$0.338368\pi$$
$$830$$ 0 0
$$831$$ −11.0000 −0.381586
$$832$$ 0 0
$$833$$ 42.0000 1.45521
$$834$$ 0 0
$$835$$ 20.0000 0.692129
$$836$$ 0 0
$$837$$ 2.00000 0.0691301
$$838$$ 0 0
$$839$$ −30.0000 −1.03572 −0.517858 0.855467i $$-0.673270\pi$$
−0.517858 + 0.855467i $$0.673270\pi$$
$$840$$ 0 0
$$841$$ −29.0000 −1.00000
$$842$$ 0 0
$$843$$ −10.0000 −0.344418
$$844$$ 0 0
$$845$$ 13.0000 0.447214
$$846$$ 0 0
$$847$$ −2.00000 −0.0687208
$$848$$ 0 0
$$849$$ −19.0000 −0.652078
$$850$$ 0 0
$$851$$ −32.0000 −1.09695
$$852$$ 0 0
$$853$$ −46.0000 −1.57501 −0.787505 0.616308i $$-0.788628\pi$$
−0.787505 + 0.616308i $$0.788628\pi$$
$$854$$ 0 0
$$855$$ 1.00000 0.0341993
$$856$$ 0 0
$$857$$ −30.0000 −1.02478 −0.512390 0.858753i $$-0.671240\pi$$
−0.512390 + 0.858753i $$0.671240\pi$$
$$858$$ 0 0
$$859$$ −55.0000 −1.87658 −0.938288 0.345855i $$-0.887589\pi$$
−0.938288 + 0.345855i $$0.887589\pi$$
$$860$$ 0 0
$$861$$ −4.00000 −0.136320
$$862$$ 0 0
$$863$$ 48.0000 1.63394 0.816970 0.576681i $$-0.195652\pi$$
0.816970 + 0.576681i $$0.195652\pi$$
$$864$$ 0 0
$$865$$ −26.0000 −0.884027
$$866$$ 0 0
$$867$$ 32.0000 1.08678
$$868$$ 0 0
$$869$$ −30.0000 −1.01768
$$870$$ 0 0
$$871$$ 0 0
$$872$$ 0 0
$$873$$ −8.00000 −0.270759
$$874$$ 0 0
$$875$$ 9.00000 0.304256
$$876$$ 0 0
$$877$$ −22.0000 −0.742887 −0.371444 0.928456i $$-0.621137\pi$$
−0.371444 + 0.928456i $$0.621137\pi$$
$$878$$ 0 0
$$879$$ 0 0
$$880$$ 0 0
$$881$$ −35.0000 −1.17918 −0.589590 0.807703i $$-0.700711\pi$$
−0.589590 + 0.807703i $$0.700711\pi$$
$$882$$ 0 0
$$883$$ −3.00000 −0.100958 −0.0504790 0.998725i $$-0.516075\pi$$
−0.0504790 + 0.998725i $$0.516075\pi$$
$$884$$ 0 0
$$885$$ −6.00000 −0.201688
$$886$$ 0 0
$$887$$ −38.0000 −1.27592 −0.637958 0.770072i $$-0.720220\pi$$
−0.637958 + 0.770072i $$0.720220\pi$$
$$888$$ 0 0
$$889$$ −16.0000 −0.536623
$$890$$ 0 0
$$891$$ −3.00000 −0.100504
$$892$$ 0 0
$$893$$ −3.00000 −0.100391
$$894$$ 0 0
$$895$$ 16.0000 0.534821
$$896$$ 0 0
$$897$$ 0 0
$$898$$ 0 0
$$899$$ 0 0
$$900$$ 0 0
$$901$$ −42.0000 −1.39922
$$902$$ 0 0
$$903$$ 1.00000 0.0332779
$$904$$ 0 0
$$905$$ −14.0000 −0.465376
$$906$$ 0 0
$$907$$ −38.0000 −1.26177 −0.630885 0.775877i $$-0.717308\pi$$
−0.630885 + 0.775877i $$0.717308\pi$$
$$908$$ 0 0
$$909$$ −18.0000 −0.597022
$$910$$ 0 0
$$911$$ −58.0000 −1.92163 −0.960813 0.277198i $$-0.910594\pi$$
−0.960813 + 0.277198i $$0.910594\pi$$
$$912$$ 0 0
$$913$$ 48.0000 1.58857
$$914$$ 0 0
$$915$$ 5.00000 0.165295
$$916$$ 0 0
$$917$$ 3.00000 0.0990687
$$918$$ 0 0
$$919$$ −56.0000 −1.84727 −0.923635 0.383274i $$-0.874797\pi$$
−0.923635 + 0.383274i $$0.874797\pi$$
$$920$$ 0 0
$$921$$ −18.0000 −0.593120
$$922$$ 0 0
$$923$$ 0 0
$$924$$ 0 0
$$925$$ −16.0000 −0.526077
$$926$$ 0 0
$$927$$ 14.0000 0.459820
$$928$$ 0 0
$$929$$ 14.0000 0.459325 0.229663 0.973270i $$-0.426238\pi$$
0.229663 + 0.973270i $$0.426238\pi$$
$$930$$ 0 0
$$931$$ 6.00000 0.196642
$$932$$ 0 0
$$933$$ −21.0000 −0.687509
$$934$$ 0 0
$$935$$ −21.0000 −0.686773
$$936$$ 0 0
$$937$$ −35.0000 −1.14340 −0.571700 0.820463i $$-0.693716\pi$$
−0.571700 + 0.820463i $$0.693716\pi$$
$$938$$ 0 0
$$939$$ 22.0000 0.717943
$$940$$ 0 0
$$941$$ −14.0000 −0.456387 −0.228193 0.973616i $$-0.573282\pi$$
−0.228193 + 0.973616i $$0.573282\pi$$
$$942$$ 0 0
$$943$$ 32.0000 1.04206
$$944$$ 0 0
$$945$$ −1.00000 −0.0325300
$$946$$ 0 0
$$947$$ 12.0000 0.389948 0.194974 0.980808i $$-0.437538\pi$$
0.194974 + 0.980808i $$0.437538\pi$$
$$948$$ 0 0
$$949$$ 0 0
$$950$$ 0 0
$$951$$ −6.00000 −0.194563
$$952$$ 0 0
$$953$$ 18.0000 0.583077 0.291539 0.956559i $$-0.405833\pi$$
0.291539 + 0.956559i $$0.405833\pi$$
$$954$$ 0 0
$$955$$ 7.00000 0.226515
$$956$$ 0 0
$$957$$ 0 0
$$958$$ 0 0
$$959$$ 1.00000 0.0322917
$$960$$ 0 0
$$961$$ −27.0000 −0.870968
$$962$$ 0 0
$$963$$ 14.0000 0.451144
$$964$$ 0 0
$$965$$ −10.0000 −0.321911
$$966$$ 0 0
$$967$$ −8.00000 −0.257263 −0.128631 0.991692i $$-0.541058\pi$$
−0.128631 + 0.991692i $$0.541058\pi$$
$$968$$ 0 0
$$969$$ 7.00000 0.224872
$$970$$ 0 0
$$971$$ 36.0000 1.15529 0.577647 0.816286i $$-0.303971\pi$$
0.577647 + 0.816286i $$0.303971\pi$$
$$972$$ 0 0
$$973$$ 9.00000 0.288527
$$974$$ 0 0
$$975$$ 0 0
$$976$$ 0 0
$$977$$ 10.0000 0.319928 0.159964 0.987123i $$-0.448862\pi$$
0.159964 + 0.987123i $$0.448862\pi$$
$$978$$ 0 0
$$979$$ 42.0000 1.34233
$$980$$ 0 0
$$981$$ −10.0000 −0.319275
$$982$$ 0 0
$$983$$ −36.0000 −1.14822 −0.574111 0.818778i $$-0.694652\pi$$
−0.574111 + 0.818778i $$0.694652\pi$$
$$984$$ 0 0
$$985$$ −2.00000 −0.0637253
$$986$$ 0 0
$$987$$ 3.00000 0.0954911
$$988$$ 0 0
$$989$$ −8.00000 −0.254385
$$990$$ 0 0
$$991$$ −44.0000 −1.39771 −0.698853 0.715265i $$-0.746306\pi$$
−0.698853 + 0.715265i $$0.746306\pi$$
$$992$$ 0 0
$$993$$ −6.00000 −0.190404
$$994$$ 0 0
$$995$$ −17.0000 −0.538936
$$996$$ 0 0
$$997$$ −7.00000 −0.221692 −0.110846 0.993838i $$-0.535356\pi$$
−0.110846 + 0.993838i $$0.535356\pi$$
$$998$$ 0 0
$$999$$ 4.00000 0.126554
Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000

## Twists

By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1824.2.a.i.1.1 yes 1
3.2 odd 2 5472.2.a.r.1.1 1
4.3 odd 2 1824.2.a.b.1.1 1
8.3 odd 2 3648.2.a.bd.1.1 1
8.5 even 2 3648.2.a.m.1.1 1
12.11 even 2 5472.2.a.n.1.1 1

By twisted newform
Twist Min Dim Char Parity Ord Type
1824.2.a.b.1.1 1 4.3 odd 2
1824.2.a.i.1.1 yes 1 1.1 even 1 trivial
3648.2.a.m.1.1 1 8.5 even 2
3648.2.a.bd.1.1 1 8.3 odd 2
5472.2.a.n.1.1 1 12.11 even 2
5472.2.a.r.1.1 1 3.2 odd 2