Properties

Label 182.2.m
Level $182$
Weight $2$
Character orbit 182.m
Rep. character $\chi_{182}(43,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $16$
Newform subspaces $2$
Sturm bound $56$
Trace bound $1$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 182 = 2 \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 182.m (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 13 \)
Character field: \(\Q(\zeta_{6})\)
Newform subspaces: \( 2 \)
Sturm bound: \(56\)
Trace bound: \(1\)
Distinguishing \(T_p\): \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(182, [\chi])\).

Total New Old
Modular forms 64 16 48
Cusp forms 48 16 32
Eisenstein series 16 0 16

Trace form

\( 16q + 8q^{4} - 8q^{9} + O(q^{10}) \) \( 16q + 8q^{4} - 8q^{9} - 4q^{10} - 12q^{11} - 8q^{13} + 8q^{14} - 12q^{15} - 8q^{16} - 4q^{17} - 4q^{22} - 8q^{25} + 24q^{27} - 4q^{29} + 16q^{30} + 24q^{33} + 8q^{36} + 12q^{37} + 16q^{38} - 48q^{39} - 8q^{40} - 36q^{41} - 4q^{42} + 12q^{43} + 60q^{45} - 12q^{46} + 8q^{49} - 12q^{50} - 40q^{51} - 4q^{52} + 56q^{53} - 36q^{54} - 4q^{55} + 4q^{56} + 24q^{58} - 8q^{61} + 12q^{62} - 12q^{63} - 16q^{64} - 24q^{65} - 16q^{66} - 12q^{67} + 4q^{68} + 20q^{69} - 12q^{72} - 40q^{75} - 4q^{78} + 8q^{79} - 36q^{81} + 8q^{82} + 12q^{84} + 60q^{85} - 4q^{87} + 4q^{88} + 16q^{90} - 20q^{91} + 48q^{93} + 16q^{94} + 36q^{95} + 48q^{97} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(182, [\chi])\) into newform subspaces

Label Dim. \(A\) Field CM Traces $q$-expansion
\(a_2\) \(a_3\) \(a_5\) \(a_7\)
182.2.m.a \(4\) \(1.453\) \(\Q(\zeta_{12})\) None \(0\) \(2\) \(0\) \(0\) \(q+\zeta_{12}q^{2}+(1-\zeta_{12}-\zeta_{12}^{2}+2\zeta_{12}^{3})q^{3}+\cdots\)
182.2.m.b \(12\) \(1.453\) \(\mathbb{Q}[x]/(x^{12} - \cdots)\) None \(0\) \(-2\) \(0\) \(0\) \(q-\beta _{5}q^{2}+(\beta _{2}+\beta _{10})q^{3}+(1-\beta _{7})q^{4}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(182, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(182, [\chi]) \cong \) \(S_{2}^{\mathrm{new}}(13, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(91, [\chi])\)\(^{\oplus 2}\)