Defining parameters
Level: | \( N \) | \(=\) | \( 182 = 2 \cdot 7 \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 182.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 5 \) | ||
Sturm bound: | \(56\) | ||
Trace bound: | \(3\) | ||
Distinguishing \(T_p\): | \(3\), \(5\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(182))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 32 | 5 | 27 |
Cusp forms | 25 | 5 | 20 |
Eisenstein series | 7 | 0 | 7 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(2\) | \(7\) | \(13\) | Fricke | Dim. |
---|---|---|---|---|
\(+\) | \(+\) | \(-\) | \(-\) | \(1\) |
\(+\) | \(-\) | \(+\) | \(-\) | \(1\) |
\(-\) | \(+\) | \(+\) | \(-\) | \(2\) |
\(-\) | \(-\) | \(-\) | \(-\) | \(1\) |
Plus space | \(+\) | \(0\) | ||
Minus space | \(-\) | \(5\) |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(182))\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | A-L signs | $q$-expansion | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | 2 | 7 | 13 | |||||||
182.2.a.a | $1$ | $1.453$ | \(\Q\) | None | \(-1\) | \(1\) | \(4\) | \(-1\) | $+$ | $+$ | $-$ | \(q-q^{2}+q^{3}+q^{4}+4q^{5}-q^{6}-q^{7}+\cdots\) | |
182.2.a.b | $1$ | $1.453$ | \(\Q\) | None | \(-1\) | \(3\) | \(0\) | \(1\) | $+$ | $-$ | $+$ | \(q-q^{2}+3q^{3}+q^{4}-3q^{6}+q^{7}-q^{8}+\cdots\) | |
182.2.a.c | $1$ | $1.453$ | \(\Q\) | None | \(1\) | \(0\) | \(2\) | \(-1\) | $-$ | $+$ | $+$ | \(q+q^{2}+q^{4}+2q^{5}-q^{7}+q^{8}-3q^{9}+\cdots\) | |
182.2.a.d | $1$ | $1.453$ | \(\Q\) | None | \(1\) | \(1\) | \(0\) | \(1\) | $-$ | $-$ | $-$ | \(q+q^{2}+q^{3}+q^{4}+q^{6}+q^{7}+q^{8}+\cdots\) | |
182.2.a.e | $1$ | $1.453$ | \(\Q\) | None | \(1\) | \(3\) | \(-4\) | \(-1\) | $-$ | $+$ | $+$ | \(q+q^{2}+3q^{3}+q^{4}-4q^{5}+3q^{6}-q^{7}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(182))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(182)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_0(14))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(26))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(91))\)\(^{\oplus 2}\)