Properties

Label 1815.4.a.s.1.3
Level $1815$
Weight $4$
Character 1815.1
Self dual yes
Analytic conductor $107.088$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1815,4,Mod(1,1815)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1815, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1815.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1815 = 3 \cdot 5 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1815.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(107.088466660\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: 3.3.23612.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 20x + 26 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 165)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(4.26150\) of defining polynomial
Character \(\chi\) \(=\) 1815.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+5.26150 q^{2} -3.00000 q^{3} +19.6833 q^{4} -5.00000 q^{5} -15.7845 q^{6} +10.3207 q^{7} +61.4719 q^{8} +9.00000 q^{9} -26.3075 q^{10} -59.0500 q^{12} -63.9817 q^{13} +54.3024 q^{14} +15.0000 q^{15} +165.967 q^{16} -17.1461 q^{17} +47.3535 q^{18} -90.2104 q^{19} -98.4167 q^{20} -30.9621 q^{21} -212.605 q^{23} -184.416 q^{24} +25.0000 q^{25} -336.639 q^{26} -27.0000 q^{27} +203.146 q^{28} -57.5461 q^{29} +78.9224 q^{30} -141.704 q^{31} +381.462 q^{32} -90.2140 q^{34} -51.6035 q^{35} +177.150 q^{36} -257.963 q^{37} -474.642 q^{38} +191.945 q^{39} -307.359 q^{40} +225.914 q^{41} -162.907 q^{42} +347.445 q^{43} -45.0000 q^{45} -1118.62 q^{46} +404.364 q^{47} -497.902 q^{48} -236.483 q^{49} +131.537 q^{50} +51.4382 q^{51} -1259.37 q^{52} +259.568 q^{53} -142.060 q^{54} +634.433 q^{56} +270.631 q^{57} -302.779 q^{58} -853.067 q^{59} +295.250 q^{60} +203.699 q^{61} -745.573 q^{62} +92.8864 q^{63} +679.320 q^{64} +319.908 q^{65} +266.890 q^{67} -337.492 q^{68} +637.814 q^{69} -271.512 q^{70} +92.4460 q^{71} +553.247 q^{72} +242.026 q^{73} -1357.27 q^{74} -75.0000 q^{75} -1775.64 q^{76} +1009.92 q^{78} +1021.60 q^{79} -829.837 q^{80} +81.0000 q^{81} +1188.65 q^{82} -706.415 q^{83} -609.438 q^{84} +85.7303 q^{85} +1828.08 q^{86} +172.638 q^{87} -440.218 q^{89} -236.767 q^{90} -660.336 q^{91} -4184.77 q^{92} +425.111 q^{93} +2127.56 q^{94} +451.052 q^{95} -1144.38 q^{96} -197.761 q^{97} -1244.25 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + 4 q^{2} - 9 q^{3} + 22 q^{4} - 15 q^{5} - 12 q^{6} + 4 q^{7} + 48 q^{8} + 27 q^{9} - 20 q^{10} - 66 q^{12} - 56 q^{14} + 45 q^{15} + 50 q^{16} + 218 q^{17} + 36 q^{18} - 146 q^{19} - 110 q^{20} - 12 q^{21}+ \cdots - 572 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 5.26150 1.86022 0.930110 0.367281i \(-0.119711\pi\)
0.930110 + 0.367281i \(0.119711\pi\)
\(3\) −3.00000 −0.577350
\(4\) 19.6833 2.46042
\(5\) −5.00000 −0.447214
\(6\) −15.7845 −1.07400
\(7\) 10.3207 0.557266 0.278633 0.960398i \(-0.410119\pi\)
0.278633 + 0.960398i \(0.410119\pi\)
\(8\) 61.4719 2.71670
\(9\) 9.00000 0.333333
\(10\) −26.3075 −0.831916
\(11\) 0 0
\(12\) −59.0500 −1.42052
\(13\) −63.9817 −1.36502 −0.682512 0.730874i \(-0.739113\pi\)
−0.682512 + 0.730874i \(0.739113\pi\)
\(14\) 54.3024 1.03664
\(15\) 15.0000 0.258199
\(16\) 165.967 2.59324
\(17\) −17.1461 −0.244620 −0.122310 0.992492i \(-0.539030\pi\)
−0.122310 + 0.992492i \(0.539030\pi\)
\(18\) 47.3535 0.620073
\(19\) −90.2104 −1.08925 −0.544623 0.838681i \(-0.683327\pi\)
−0.544623 + 0.838681i \(0.683327\pi\)
\(20\) −98.4167 −1.10033
\(21\) −30.9621 −0.321738
\(22\) 0 0
\(23\) −212.605 −1.92744 −0.963721 0.266913i \(-0.913996\pi\)
−0.963721 + 0.266913i \(0.913996\pi\)
\(24\) −184.416 −1.56849
\(25\) 25.0000 0.200000
\(26\) −336.639 −2.53925
\(27\) −27.0000 −0.192450
\(28\) 203.146 1.37111
\(29\) −57.5461 −0.368484 −0.184242 0.982881i \(-0.558983\pi\)
−0.184242 + 0.982881i \(0.558983\pi\)
\(30\) 78.9224 0.480307
\(31\) −141.704 −0.820991 −0.410496 0.911863i \(-0.634644\pi\)
−0.410496 + 0.911863i \(0.634644\pi\)
\(32\) 381.462 2.10730
\(33\) 0 0
\(34\) −90.2140 −0.455046
\(35\) −51.6035 −0.249217
\(36\) 177.150 0.820139
\(37\) −257.963 −1.14619 −0.573093 0.819490i \(-0.694257\pi\)
−0.573093 + 0.819490i \(0.694257\pi\)
\(38\) −474.642 −2.02624
\(39\) 191.945 0.788097
\(40\) −307.359 −1.21494
\(41\) 225.914 0.860533 0.430266 0.902702i \(-0.358420\pi\)
0.430266 + 0.902702i \(0.358420\pi\)
\(42\) −162.907 −0.598503
\(43\) 347.445 1.23221 0.616103 0.787666i \(-0.288711\pi\)
0.616103 + 0.787666i \(0.288711\pi\)
\(44\) 0 0
\(45\) −45.0000 −0.149071
\(46\) −1118.62 −3.58547
\(47\) 404.364 1.25495 0.627473 0.778638i \(-0.284089\pi\)
0.627473 + 0.778638i \(0.284089\pi\)
\(48\) −497.902 −1.49721
\(49\) −236.483 −0.689455
\(50\) 131.537 0.372044
\(51\) 51.4382 0.141231
\(52\) −1259.37 −3.35853
\(53\) 259.568 0.672726 0.336363 0.941732i \(-0.390803\pi\)
0.336363 + 0.941732i \(0.390803\pi\)
\(54\) −142.060 −0.358000
\(55\) 0 0
\(56\) 634.433 1.51392
\(57\) 270.631 0.628877
\(58\) −302.779 −0.685462
\(59\) −853.067 −1.88237 −0.941185 0.337891i \(-0.890287\pi\)
−0.941185 + 0.337891i \(0.890287\pi\)
\(60\) 295.250 0.635277
\(61\) 203.699 0.427558 0.213779 0.976882i \(-0.431423\pi\)
0.213779 + 0.976882i \(0.431423\pi\)
\(62\) −745.573 −1.52722
\(63\) 92.8864 0.185755
\(64\) 679.320 1.32680
\(65\) 319.908 0.610458
\(66\) 0 0
\(67\) 266.890 0.486653 0.243327 0.969944i \(-0.421761\pi\)
0.243327 + 0.969944i \(0.421761\pi\)
\(68\) −337.492 −0.601866
\(69\) 637.814 1.11281
\(70\) −271.512 −0.463598
\(71\) 92.4460 0.154526 0.0772629 0.997011i \(-0.475382\pi\)
0.0772629 + 0.997011i \(0.475382\pi\)
\(72\) 553.247 0.905566
\(73\) 242.026 0.388040 0.194020 0.980998i \(-0.437847\pi\)
0.194020 + 0.980998i \(0.437847\pi\)
\(74\) −1357.27 −2.13216
\(75\) −75.0000 −0.115470
\(76\) −1775.64 −2.68000
\(77\) 0 0
\(78\) 1009.92 1.46603
\(79\) 1021.60 1.45492 0.727460 0.686150i \(-0.240701\pi\)
0.727460 + 0.686150i \(0.240701\pi\)
\(80\) −829.837 −1.15973
\(81\) 81.0000 0.111111
\(82\) 1188.65 1.60078
\(83\) −706.415 −0.934206 −0.467103 0.884203i \(-0.654702\pi\)
−0.467103 + 0.884203i \(0.654702\pi\)
\(84\) −609.438 −0.791609
\(85\) 85.7303 0.109397
\(86\) 1828.08 2.29217
\(87\) 172.638 0.212745
\(88\) 0 0
\(89\) −440.218 −0.524304 −0.262152 0.965027i \(-0.584432\pi\)
−0.262152 + 0.965027i \(0.584432\pi\)
\(90\) −236.767 −0.277305
\(91\) −660.336 −0.760682
\(92\) −4184.77 −4.74231
\(93\) 425.111 0.473999
\(94\) 2127.56 2.33448
\(95\) 451.052 0.487126
\(96\) −1144.38 −1.21665
\(97\) −197.761 −0.207006 −0.103503 0.994629i \(-0.533005\pi\)
−0.103503 + 0.994629i \(0.533005\pi\)
\(98\) −1244.25 −1.28254
\(99\) 0 0
\(100\) 492.084 0.492084
\(101\) −1400.62 −1.37987 −0.689937 0.723870i \(-0.742362\pi\)
−0.689937 + 0.723870i \(0.742362\pi\)
\(102\) 270.642 0.262721
\(103\) −1345.70 −1.28734 −0.643669 0.765304i \(-0.722589\pi\)
−0.643669 + 0.765304i \(0.722589\pi\)
\(104\) −3933.07 −3.70836
\(105\) 154.811 0.143885
\(106\) 1365.72 1.25142
\(107\) 889.178 0.803366 0.401683 0.915779i \(-0.368425\pi\)
0.401683 + 0.915779i \(0.368425\pi\)
\(108\) −531.450 −0.473508
\(109\) −1256.29 −1.10395 −0.551974 0.833861i \(-0.686125\pi\)
−0.551974 + 0.833861i \(0.686125\pi\)
\(110\) 0 0
\(111\) 773.890 0.661751
\(112\) 1712.90 1.44512
\(113\) −2394.01 −1.99301 −0.996504 0.0835448i \(-0.973376\pi\)
−0.996504 + 0.0835448i \(0.973376\pi\)
\(114\) 1423.93 1.16985
\(115\) 1063.02 0.861978
\(116\) −1132.70 −0.906626
\(117\) −575.835 −0.455008
\(118\) −4488.41 −3.50162
\(119\) −176.960 −0.136318
\(120\) 922.078 0.701449
\(121\) 0 0
\(122\) 1071.76 0.795352
\(123\) −677.742 −0.496829
\(124\) −2789.20 −2.01998
\(125\) −125.000 −0.0894427
\(126\) 488.721 0.345546
\(127\) −2065.57 −1.44322 −0.721612 0.692298i \(-0.756598\pi\)
−0.721612 + 0.692298i \(0.756598\pi\)
\(128\) 522.548 0.360837
\(129\) −1042.33 −0.711414
\(130\) 1683.20 1.13559
\(131\) −785.526 −0.523907 −0.261953 0.965081i \(-0.584367\pi\)
−0.261953 + 0.965081i \(0.584367\pi\)
\(132\) 0 0
\(133\) −931.035 −0.607000
\(134\) 1404.24 0.905282
\(135\) 135.000 0.0860663
\(136\) −1054.00 −0.664558
\(137\) 1276.24 0.795885 0.397942 0.917410i \(-0.369724\pi\)
0.397942 + 0.917410i \(0.369724\pi\)
\(138\) 3355.86 2.07007
\(139\) 2703.21 1.64952 0.824760 0.565482i \(-0.191310\pi\)
0.824760 + 0.565482i \(0.191310\pi\)
\(140\) −1015.73 −0.613178
\(141\) −1213.09 −0.724544
\(142\) 486.405 0.287452
\(143\) 0 0
\(144\) 1493.71 0.864413
\(145\) 287.731 0.164791
\(146\) 1273.42 0.721840
\(147\) 709.449 0.398057
\(148\) −5077.58 −2.82010
\(149\) 2400.99 1.32011 0.660056 0.751217i \(-0.270533\pi\)
0.660056 + 0.751217i \(0.270533\pi\)
\(150\) −394.612 −0.214800
\(151\) 2517.30 1.35665 0.678326 0.734761i \(-0.262706\pi\)
0.678326 + 0.734761i \(0.262706\pi\)
\(152\) −5545.40 −2.95916
\(153\) −154.315 −0.0815399
\(154\) 0 0
\(155\) 708.518 0.367158
\(156\) 3778.12 1.93905
\(157\) 1391.42 0.707310 0.353655 0.935376i \(-0.384939\pi\)
0.353655 + 0.935376i \(0.384939\pi\)
\(158\) 5375.13 2.70647
\(159\) −778.705 −0.388398
\(160\) −1907.31 −0.942412
\(161\) −2194.23 −1.07410
\(162\) 426.181 0.206691
\(163\) −2720.53 −1.30729 −0.653644 0.756802i \(-0.726761\pi\)
−0.653644 + 0.756802i \(0.726761\pi\)
\(164\) 4446.74 2.11727
\(165\) 0 0
\(166\) −3716.80 −1.73783
\(167\) −2950.25 −1.36705 −0.683525 0.729927i \(-0.739554\pi\)
−0.683525 + 0.729927i \(0.739554\pi\)
\(168\) −1903.30 −0.874064
\(169\) 1896.65 0.863292
\(170\) 451.070 0.203503
\(171\) −811.894 −0.363082
\(172\) 6838.88 3.03174
\(173\) −537.049 −0.236018 −0.118009 0.993013i \(-0.537651\pi\)
−0.118009 + 0.993013i \(0.537651\pi\)
\(174\) 908.336 0.395752
\(175\) 258.018 0.111453
\(176\) 0 0
\(177\) 2559.20 1.08679
\(178\) −2316.21 −0.975320
\(179\) 2891.25 1.20728 0.603638 0.797259i \(-0.293717\pi\)
0.603638 + 0.797259i \(0.293717\pi\)
\(180\) −885.751 −0.366778
\(181\) 435.209 0.178723 0.0893615 0.995999i \(-0.471517\pi\)
0.0893615 + 0.995999i \(0.471517\pi\)
\(182\) −3474.36 −1.41504
\(183\) −611.098 −0.246851
\(184\) −13069.2 −5.23628
\(185\) 1289.82 0.512590
\(186\) 2236.72 0.881743
\(187\) 0 0
\(188\) 7959.23 3.08769
\(189\) −278.659 −0.107246
\(190\) 2373.21 0.906161
\(191\) −3779.49 −1.43180 −0.715901 0.698202i \(-0.753984\pi\)
−0.715901 + 0.698202i \(0.753984\pi\)
\(192\) −2037.96 −0.766027
\(193\) −3751.91 −1.39932 −0.699660 0.714476i \(-0.746665\pi\)
−0.699660 + 0.714476i \(0.746665\pi\)
\(194\) −1040.52 −0.385076
\(195\) −959.725 −0.352448
\(196\) −4654.78 −1.69635
\(197\) 3920.73 1.41797 0.708986 0.705223i \(-0.249153\pi\)
0.708986 + 0.705223i \(0.249153\pi\)
\(198\) 0 0
\(199\) −597.084 −0.212694 −0.106347 0.994329i \(-0.533915\pi\)
−0.106347 + 0.994329i \(0.533915\pi\)
\(200\) 1536.80 0.543340
\(201\) −800.669 −0.280969
\(202\) −7369.37 −2.56687
\(203\) −593.917 −0.205344
\(204\) 1012.48 0.347488
\(205\) −1129.57 −0.384842
\(206\) −7080.40 −2.39473
\(207\) −1913.44 −0.642480
\(208\) −10618.9 −3.53984
\(209\) 0 0
\(210\) 814.536 0.267659
\(211\) 4384.55 1.43054 0.715272 0.698846i \(-0.246303\pi\)
0.715272 + 0.698846i \(0.246303\pi\)
\(212\) 5109.17 1.65519
\(213\) −277.338 −0.0892155
\(214\) 4678.41 1.49444
\(215\) −1737.22 −0.551059
\(216\) −1659.74 −0.522829
\(217\) −1462.48 −0.457510
\(218\) −6609.95 −2.05359
\(219\) −726.077 −0.224035
\(220\) 0 0
\(221\) 1097.03 0.333912
\(222\) 4071.82 1.23100
\(223\) −2333.03 −0.700587 −0.350294 0.936640i \(-0.613918\pi\)
−0.350294 + 0.936640i \(0.613918\pi\)
\(224\) 3936.95 1.17433
\(225\) 225.000 0.0666667
\(226\) −12596.1 −3.70743
\(227\) 2120.00 0.619864 0.309932 0.950759i \(-0.399694\pi\)
0.309932 + 0.950759i \(0.399694\pi\)
\(228\) 5326.93 1.54730
\(229\) 2347.12 0.677301 0.338651 0.940912i \(-0.390030\pi\)
0.338651 + 0.940912i \(0.390030\pi\)
\(230\) 5593.10 1.60347
\(231\) 0 0
\(232\) −3537.47 −1.00106
\(233\) 375.499 0.105578 0.0527891 0.998606i \(-0.483189\pi\)
0.0527891 + 0.998606i \(0.483189\pi\)
\(234\) −3029.75 −0.846415
\(235\) −2021.82 −0.561229
\(236\) −16791.2 −4.63142
\(237\) −3064.79 −0.839998
\(238\) −931.072 −0.253582
\(239\) 1428.15 0.386524 0.193262 0.981147i \(-0.438093\pi\)
0.193262 + 0.981147i \(0.438093\pi\)
\(240\) 2489.51 0.669572
\(241\) −190.819 −0.0510032 −0.0255016 0.999675i \(-0.508118\pi\)
−0.0255016 + 0.999675i \(0.508118\pi\)
\(242\) 0 0
\(243\) −243.000 −0.0641500
\(244\) 4009.49 1.05197
\(245\) 1182.41 0.308334
\(246\) −3565.94 −0.924211
\(247\) 5771.81 1.48685
\(248\) −8710.79 −2.23039
\(249\) 2119.24 0.539364
\(250\) −657.687 −0.166383
\(251\) −6294.80 −1.58297 −0.791483 0.611191i \(-0.790691\pi\)
−0.791483 + 0.611191i \(0.790691\pi\)
\(252\) 1828.31 0.457036
\(253\) 0 0
\(254\) −10868.0 −2.68471
\(255\) −257.191 −0.0631605
\(256\) −2685.18 −0.655561
\(257\) 4459.44 1.08238 0.541191 0.840900i \(-0.317974\pi\)
0.541191 + 0.840900i \(0.317974\pi\)
\(258\) −5484.24 −1.32339
\(259\) −2662.36 −0.638731
\(260\) 6296.87 1.50198
\(261\) −517.915 −0.122828
\(262\) −4133.04 −0.974581
\(263\) 4416.65 1.03552 0.517761 0.855525i \(-0.326766\pi\)
0.517761 + 0.855525i \(0.326766\pi\)
\(264\) 0 0
\(265\) −1297.84 −0.300852
\(266\) −4898.64 −1.12915
\(267\) 1320.65 0.302707
\(268\) 5253.28 1.19737
\(269\) 1914.86 0.434020 0.217010 0.976169i \(-0.430370\pi\)
0.217010 + 0.976169i \(0.430370\pi\)
\(270\) 710.302 0.160102
\(271\) −6088.34 −1.36472 −0.682362 0.731014i \(-0.739047\pi\)
−0.682362 + 0.731014i \(0.739047\pi\)
\(272\) −2845.69 −0.634357
\(273\) 1981.01 0.439180
\(274\) 6714.91 1.48052
\(275\) 0 0
\(276\) 12554.3 2.73798
\(277\) 832.321 0.180539 0.0902696 0.995917i \(-0.471227\pi\)
0.0902696 + 0.995917i \(0.471227\pi\)
\(278\) 14222.9 3.06847
\(279\) −1275.33 −0.273664
\(280\) −3172.17 −0.677047
\(281\) 2545.32 0.540360 0.270180 0.962810i \(-0.412917\pi\)
0.270180 + 0.962810i \(0.412917\pi\)
\(282\) −6382.67 −1.34781
\(283\) 5911.71 1.24175 0.620874 0.783911i \(-0.286778\pi\)
0.620874 + 0.783911i \(0.286778\pi\)
\(284\) 1819.65 0.380198
\(285\) −1353.16 −0.281242
\(286\) 0 0
\(287\) 2331.59 0.479545
\(288\) 3433.15 0.702433
\(289\) −4619.01 −0.940161
\(290\) 1513.89 0.306548
\(291\) 593.282 0.119515
\(292\) 4763.87 0.954742
\(293\) 6871.03 1.37000 0.685000 0.728543i \(-0.259802\pi\)
0.685000 + 0.728543i \(0.259802\pi\)
\(294\) 3732.76 0.740473
\(295\) 4265.34 0.841822
\(296\) −15857.5 −3.11384
\(297\) 0 0
\(298\) 12632.8 2.45570
\(299\) 13602.8 2.63100
\(300\) −1476.25 −0.284105
\(301\) 3585.88 0.686666
\(302\) 13244.7 2.52367
\(303\) 4201.87 0.796670
\(304\) −14972.0 −2.82468
\(305\) −1018.50 −0.191210
\(306\) −811.926 −0.151682
\(307\) −200.179 −0.0372144 −0.0186072 0.999827i \(-0.505923\pi\)
−0.0186072 + 0.999827i \(0.505923\pi\)
\(308\) 0 0
\(309\) 4037.10 0.743245
\(310\) 3727.87 0.682995
\(311\) 5734.93 1.04565 0.522827 0.852439i \(-0.324878\pi\)
0.522827 + 0.852439i \(0.324878\pi\)
\(312\) 11799.2 2.14102
\(313\) −3077.36 −0.555727 −0.277864 0.960621i \(-0.589626\pi\)
−0.277864 + 0.960621i \(0.589626\pi\)
\(314\) 7320.97 1.31575
\(315\) −464.432 −0.0830723
\(316\) 20108.5 3.57971
\(317\) 2142.38 0.379584 0.189792 0.981824i \(-0.439219\pi\)
0.189792 + 0.981824i \(0.439219\pi\)
\(318\) −4097.15 −0.722506
\(319\) 0 0
\(320\) −3396.60 −0.593362
\(321\) −2667.54 −0.463823
\(322\) −11544.9 −1.99806
\(323\) 1546.75 0.266451
\(324\) 1594.35 0.273380
\(325\) −1599.54 −0.273005
\(326\) −14314.0 −2.43184
\(327\) 3768.86 0.637365
\(328\) 13887.4 2.33781
\(329\) 4173.32 0.699339
\(330\) 0 0
\(331\) −1618.23 −0.268719 −0.134359 0.990933i \(-0.542898\pi\)
−0.134359 + 0.990933i \(0.542898\pi\)
\(332\) −13904.6 −2.29854
\(333\) −2321.67 −0.382062
\(334\) −15522.7 −2.54301
\(335\) −1334.45 −0.217638
\(336\) −5138.70 −0.834343
\(337\) −2406.47 −0.388988 −0.194494 0.980904i \(-0.562306\pi\)
−0.194494 + 0.980904i \(0.562306\pi\)
\(338\) 9979.23 1.60591
\(339\) 7182.04 1.15066
\(340\) 1687.46 0.269163
\(341\) 0 0
\(342\) −4271.78 −0.675413
\(343\) −5980.67 −0.941475
\(344\) 21358.1 3.34753
\(345\) −3189.07 −0.497663
\(346\) −2825.68 −0.439045
\(347\) 6612.89 1.02305 0.511525 0.859268i \(-0.329081\pi\)
0.511525 + 0.859268i \(0.329081\pi\)
\(348\) 3398.10 0.523441
\(349\) −349.871 −0.0536623 −0.0268311 0.999640i \(-0.508542\pi\)
−0.0268311 + 0.999640i \(0.508542\pi\)
\(350\) 1357.56 0.207327
\(351\) 1727.50 0.262699
\(352\) 0 0
\(353\) 1723.29 0.259835 0.129917 0.991525i \(-0.458529\pi\)
0.129917 + 0.991525i \(0.458529\pi\)
\(354\) 13465.2 2.02166
\(355\) −462.230 −0.0691060
\(356\) −8664.97 −1.29001
\(357\) 530.879 0.0787033
\(358\) 15212.3 2.24580
\(359\) −5875.74 −0.863816 −0.431908 0.901918i \(-0.642159\pi\)
−0.431908 + 0.901918i \(0.642159\pi\)
\(360\) −2766.24 −0.404982
\(361\) 1278.92 0.186458
\(362\) 2289.85 0.332464
\(363\) 0 0
\(364\) −12997.6 −1.87159
\(365\) −1210.13 −0.173537
\(366\) −3215.29 −0.459197
\(367\) −5368.28 −0.763548 −0.381774 0.924256i \(-0.624687\pi\)
−0.381774 + 0.924256i \(0.624687\pi\)
\(368\) −35285.5 −4.99832
\(369\) 2033.23 0.286844
\(370\) 6786.37 0.953531
\(371\) 2678.93 0.374887
\(372\) 8367.60 1.16624
\(373\) −10393.9 −1.44282 −0.721412 0.692506i \(-0.756507\pi\)
−0.721412 + 0.692506i \(0.756507\pi\)
\(374\) 0 0
\(375\) 375.000 0.0516398
\(376\) 24857.0 3.40931
\(377\) 3681.90 0.502990
\(378\) −1466.16 −0.199501
\(379\) 10918.9 1.47986 0.739928 0.672686i \(-0.234860\pi\)
0.739928 + 0.672686i \(0.234860\pi\)
\(380\) 8878.21 1.19853
\(381\) 6196.70 0.833246
\(382\) −19885.8 −2.66347
\(383\) −11663.6 −1.55609 −0.778044 0.628210i \(-0.783788\pi\)
−0.778044 + 0.628210i \(0.783788\pi\)
\(384\) −1567.64 −0.208329
\(385\) 0 0
\(386\) −19740.7 −2.60304
\(387\) 3127.00 0.410735
\(388\) −3892.59 −0.509321
\(389\) −5827.00 −0.759487 −0.379744 0.925092i \(-0.623988\pi\)
−0.379744 + 0.925092i \(0.623988\pi\)
\(390\) −5049.59 −0.655631
\(391\) 3645.34 0.471490
\(392\) −14537.1 −1.87304
\(393\) 2356.58 0.302478
\(394\) 20628.9 2.63774
\(395\) −5107.99 −0.650660
\(396\) 0 0
\(397\) 7366.99 0.931332 0.465666 0.884961i \(-0.345815\pi\)
0.465666 + 0.884961i \(0.345815\pi\)
\(398\) −3141.55 −0.395658
\(399\) 2793.11 0.350452
\(400\) 4149.18 0.518648
\(401\) 14604.2 1.81870 0.909349 0.416035i \(-0.136581\pi\)
0.909349 + 0.416035i \(0.136581\pi\)
\(402\) −4212.72 −0.522665
\(403\) 9066.43 1.12067
\(404\) −27569.0 −3.39507
\(405\) −405.000 −0.0496904
\(406\) −3124.89 −0.381985
\(407\) 0 0
\(408\) 3162.00 0.383683
\(409\) −12581.2 −1.52103 −0.760515 0.649320i \(-0.775054\pi\)
−0.760515 + 0.649320i \(0.775054\pi\)
\(410\) −5943.23 −0.715891
\(411\) −3828.71 −0.459504
\(412\) −26487.9 −3.16739
\(413\) −8804.26 −1.04898
\(414\) −10067.6 −1.19516
\(415\) 3532.07 0.417790
\(416\) −24406.6 −2.87651
\(417\) −8109.63 −0.952351
\(418\) 0 0
\(419\) −3776.01 −0.440263 −0.220131 0.975470i \(-0.570649\pi\)
−0.220131 + 0.975470i \(0.570649\pi\)
\(420\) 3047.19 0.354018
\(421\) 12683.4 1.46830 0.734148 0.678989i \(-0.237582\pi\)
0.734148 + 0.678989i \(0.237582\pi\)
\(422\) 23069.3 2.66113
\(423\) 3639.27 0.418316
\(424\) 15956.2 1.82759
\(425\) −428.652 −0.0489239
\(426\) −1459.21 −0.165960
\(427\) 2102.32 0.238263
\(428\) 17502.0 1.97662
\(429\) 0 0
\(430\) −9140.40 −1.02509
\(431\) −14152.6 −1.58168 −0.790841 0.612022i \(-0.790356\pi\)
−0.790841 + 0.612022i \(0.790356\pi\)
\(432\) −4481.12 −0.499069
\(433\) −10950.2 −1.21532 −0.607661 0.794197i \(-0.707892\pi\)
−0.607661 + 0.794197i \(0.707892\pi\)
\(434\) −7694.84 −0.851070
\(435\) −863.192 −0.0951423
\(436\) −24727.9 −2.71618
\(437\) 19179.2 2.09946
\(438\) −3820.25 −0.416755
\(439\) 11221.0 1.21993 0.609964 0.792429i \(-0.291184\pi\)
0.609964 + 0.792429i \(0.291184\pi\)
\(440\) 0 0
\(441\) −2128.35 −0.229818
\(442\) 5772.04 0.621149
\(443\) 9647.11 1.03465 0.517323 0.855790i \(-0.326929\pi\)
0.517323 + 0.855790i \(0.326929\pi\)
\(444\) 15232.7 1.62818
\(445\) 2201.09 0.234476
\(446\) −12275.2 −1.30325
\(447\) −7202.96 −0.762167
\(448\) 7011.07 0.739379
\(449\) 6482.03 0.681305 0.340652 0.940189i \(-0.389352\pi\)
0.340652 + 0.940189i \(0.389352\pi\)
\(450\) 1183.84 0.124015
\(451\) 0 0
\(452\) −47122.2 −4.90363
\(453\) −7551.89 −0.783264
\(454\) 11154.4 1.15308
\(455\) 3301.68 0.340187
\(456\) 16636.2 1.70847
\(457\) −11319.8 −1.15868 −0.579342 0.815085i \(-0.696690\pi\)
−0.579342 + 0.815085i \(0.696690\pi\)
\(458\) 12349.4 1.25993
\(459\) 462.944 0.0470771
\(460\) 20923.9 2.12083
\(461\) 8406.73 0.849329 0.424664 0.905351i \(-0.360392\pi\)
0.424664 + 0.905351i \(0.360392\pi\)
\(462\) 0 0
\(463\) 9758.56 0.979523 0.489761 0.871857i \(-0.337084\pi\)
0.489761 + 0.871857i \(0.337084\pi\)
\(464\) −9550.78 −0.955568
\(465\) −2125.55 −0.211979
\(466\) 1975.68 0.196399
\(467\) −16388.7 −1.62394 −0.811969 0.583701i \(-0.801604\pi\)
−0.811969 + 0.583701i \(0.801604\pi\)
\(468\) −11334.4 −1.11951
\(469\) 2754.49 0.271195
\(470\) −10637.8 −1.04401
\(471\) −4174.27 −0.408365
\(472\) −52439.6 −5.11384
\(473\) 0 0
\(474\) −16125.4 −1.56258
\(475\) −2255.26 −0.217849
\(476\) −3483.16 −0.335400
\(477\) 2336.11 0.224242
\(478\) 7514.20 0.719020
\(479\) −13829.0 −1.31913 −0.659567 0.751646i \(-0.729260\pi\)
−0.659567 + 0.751646i \(0.729260\pi\)
\(480\) 5721.92 0.544102
\(481\) 16504.9 1.56457
\(482\) −1004.00 −0.0948771
\(483\) 6582.69 0.620130
\(484\) 0 0
\(485\) 988.804 0.0925758
\(486\) −1278.54 −0.119333
\(487\) 13264.4 1.23423 0.617113 0.786875i \(-0.288302\pi\)
0.617113 + 0.786875i \(0.288302\pi\)
\(488\) 12521.8 1.16155
\(489\) 8161.58 0.754763
\(490\) 6221.27 0.573568
\(491\) 7468.22 0.686428 0.343214 0.939257i \(-0.388484\pi\)
0.343214 + 0.939257i \(0.388484\pi\)
\(492\) −13340.2 −1.22241
\(493\) 986.690 0.0901385
\(494\) 30368.4 2.76586
\(495\) 0 0
\(496\) −23518.2 −2.12903
\(497\) 954.109 0.0861119
\(498\) 11150.4 1.00334
\(499\) −5276.64 −0.473377 −0.236688 0.971586i \(-0.576062\pi\)
−0.236688 + 0.971586i \(0.576062\pi\)
\(500\) −2460.42 −0.220067
\(501\) 8850.76 0.789267
\(502\) −33120.1 −2.94466
\(503\) 10956.8 0.971253 0.485626 0.874166i \(-0.338592\pi\)
0.485626 + 0.874166i \(0.338592\pi\)
\(504\) 5709.90 0.504641
\(505\) 7003.12 0.617098
\(506\) 0 0
\(507\) −5689.96 −0.498422
\(508\) −40657.3 −3.55093
\(509\) 12734.4 1.10892 0.554462 0.832209i \(-0.312924\pi\)
0.554462 + 0.832209i \(0.312924\pi\)
\(510\) −1353.21 −0.117492
\(511\) 2497.87 0.216242
\(512\) −18308.4 −1.58032
\(513\) 2435.68 0.209626
\(514\) 23463.3 2.01347
\(515\) 6728.51 0.575715
\(516\) −20516.6 −1.75038
\(517\) 0 0
\(518\) −14008.0 −1.18818
\(519\) 1611.15 0.136265
\(520\) 19665.4 1.65843
\(521\) −5650.70 −0.475166 −0.237583 0.971367i \(-0.576355\pi\)
−0.237583 + 0.971367i \(0.576355\pi\)
\(522\) −2725.01 −0.228487
\(523\) −14103.2 −1.17914 −0.589572 0.807716i \(-0.700703\pi\)
−0.589572 + 0.807716i \(0.700703\pi\)
\(524\) −15461.8 −1.28903
\(525\) −774.053 −0.0643475
\(526\) 23238.2 1.92630
\(527\) 2429.66 0.200830
\(528\) 0 0
\(529\) 33033.8 2.71503
\(530\) −6828.59 −0.559651
\(531\) −7677.60 −0.627457
\(532\) −18325.9 −1.49347
\(533\) −14454.4 −1.17465
\(534\) 6948.62 0.563102
\(535\) −4445.89 −0.359276
\(536\) 16406.2 1.32209
\(537\) −8673.75 −0.697021
\(538\) 10075.0 0.807372
\(539\) 0 0
\(540\) 2657.25 0.211759
\(541\) 6391.90 0.507965 0.253983 0.967209i \(-0.418259\pi\)
0.253983 + 0.967209i \(0.418259\pi\)
\(542\) −32033.8 −2.53869
\(543\) −1305.63 −0.103186
\(544\) −6540.57 −0.515486
\(545\) 6281.43 0.493701
\(546\) 10423.1 0.816971
\(547\) −20786.7 −1.62482 −0.812409 0.583088i \(-0.801844\pi\)
−0.812409 + 0.583088i \(0.801844\pi\)
\(548\) 25120.6 1.95821
\(549\) 1833.29 0.142519
\(550\) 0 0
\(551\) 5191.26 0.401370
\(552\) 39207.6 3.02317
\(553\) 10543.6 0.810777
\(554\) 4379.26 0.335843
\(555\) −3869.45 −0.295944
\(556\) 53208.2 4.05851
\(557\) 15125.9 1.15064 0.575320 0.817928i \(-0.304877\pi\)
0.575320 + 0.817928i \(0.304877\pi\)
\(558\) −6710.16 −0.509075
\(559\) −22230.1 −1.68199
\(560\) −8564.50 −0.646279
\(561\) 0 0
\(562\) 13392.2 1.00519
\(563\) −8706.42 −0.651744 −0.325872 0.945414i \(-0.605658\pi\)
−0.325872 + 0.945414i \(0.605658\pi\)
\(564\) −23877.7 −1.78268
\(565\) 11970.1 0.891300
\(566\) 31104.4 2.30992
\(567\) 835.977 0.0619184
\(568\) 5682.83 0.419800
\(569\) −7067.76 −0.520731 −0.260366 0.965510i \(-0.583843\pi\)
−0.260366 + 0.965510i \(0.583843\pi\)
\(570\) −7119.63 −0.523172
\(571\) 3326.42 0.243794 0.121897 0.992543i \(-0.461102\pi\)
0.121897 + 0.992543i \(0.461102\pi\)
\(572\) 0 0
\(573\) 11338.5 0.826651
\(574\) 12267.7 0.892060
\(575\) −5315.12 −0.385488
\(576\) 6113.88 0.442266
\(577\) −3308.06 −0.238676 −0.119338 0.992854i \(-0.538077\pi\)
−0.119338 + 0.992854i \(0.538077\pi\)
\(578\) −24302.9 −1.74891
\(579\) 11255.7 0.807897
\(580\) 5663.50 0.405455
\(581\) −7290.70 −0.520601
\(582\) 3121.55 0.222324
\(583\) 0 0
\(584\) 14877.8 1.05419
\(585\) 2879.17 0.203486
\(586\) 36151.9 2.54850
\(587\) −5694.88 −0.400431 −0.200215 0.979752i \(-0.564164\pi\)
−0.200215 + 0.979752i \(0.564164\pi\)
\(588\) 13964.3 0.979387
\(589\) 12783.1 0.894262
\(590\) 22442.0 1.56597
\(591\) −11762.2 −0.818666
\(592\) −42813.5 −2.97234
\(593\) 3907.69 0.270606 0.135303 0.990804i \(-0.456799\pi\)
0.135303 + 0.990804i \(0.456799\pi\)
\(594\) 0 0
\(595\) 884.798 0.0609633
\(596\) 47259.5 3.24803
\(597\) 1791.25 0.122799
\(598\) 71571.1 4.89425
\(599\) 10727.2 0.731720 0.365860 0.930670i \(-0.380775\pi\)
0.365860 + 0.930670i \(0.380775\pi\)
\(600\) −4610.39 −0.313697
\(601\) −3348.98 −0.227301 −0.113650 0.993521i \(-0.536254\pi\)
−0.113650 + 0.993521i \(0.536254\pi\)
\(602\) 18867.1 1.27735
\(603\) 2402.01 0.162218
\(604\) 49548.8 3.33793
\(605\) 0 0
\(606\) 22108.1 1.48198
\(607\) 21539.9 1.44032 0.720162 0.693806i \(-0.244068\pi\)
0.720162 + 0.693806i \(0.244068\pi\)
\(608\) −34411.8 −2.29537
\(609\) 1781.75 0.118555
\(610\) −5358.82 −0.355692
\(611\) −25871.9 −1.71303
\(612\) −3037.43 −0.200622
\(613\) 9284.33 0.611730 0.305865 0.952075i \(-0.401054\pi\)
0.305865 + 0.952075i \(0.401054\pi\)
\(614\) −1053.24 −0.0692270
\(615\) 3388.71 0.222189
\(616\) 0 0
\(617\) −20711.3 −1.35139 −0.675695 0.737181i \(-0.736156\pi\)
−0.675695 + 0.737181i \(0.736156\pi\)
\(618\) 21241.2 1.38260
\(619\) −13282.9 −0.862496 −0.431248 0.902233i \(-0.641927\pi\)
−0.431248 + 0.902233i \(0.641927\pi\)
\(620\) 13946.0 0.903363
\(621\) 5740.33 0.370936
\(622\) 30174.3 1.94515
\(623\) −4543.36 −0.292177
\(624\) 31856.6 2.04373
\(625\) 625.000 0.0400000
\(626\) −16191.5 −1.03378
\(627\) 0 0
\(628\) 27387.9 1.74028
\(629\) 4423.06 0.280380
\(630\) −2443.61 −0.154533
\(631\) −14789.9 −0.933086 −0.466543 0.884498i \(-0.654501\pi\)
−0.466543 + 0.884498i \(0.654501\pi\)
\(632\) 62799.5 3.95258
\(633\) −13153.6 −0.825925
\(634\) 11272.1 0.706109
\(635\) 10327.8 0.645429
\(636\) −15327.5 −0.955622
\(637\) 15130.6 0.941123
\(638\) 0 0
\(639\) 832.014 0.0515086
\(640\) −2612.74 −0.161371
\(641\) −5808.52 −0.357914 −0.178957 0.983857i \(-0.557272\pi\)
−0.178957 + 0.983857i \(0.557272\pi\)
\(642\) −14035.2 −0.862813
\(643\) −18891.2 −1.15862 −0.579311 0.815106i \(-0.696678\pi\)
−0.579311 + 0.815106i \(0.696678\pi\)
\(644\) −43189.8 −2.64273
\(645\) 5211.67 0.318154
\(646\) 8138.24 0.495657
\(647\) −243.046 −0.0147684 −0.00738418 0.999973i \(-0.502350\pi\)
−0.00738418 + 0.999973i \(0.502350\pi\)
\(648\) 4979.22 0.301855
\(649\) 0 0
\(650\) −8415.98 −0.507849
\(651\) 4387.44 0.264144
\(652\) −53549.0 −3.21648
\(653\) −15920.4 −0.954081 −0.477041 0.878881i \(-0.658291\pi\)
−0.477041 + 0.878881i \(0.658291\pi\)
\(654\) 19829.8 1.18564
\(655\) 3927.63 0.234298
\(656\) 37494.4 2.23157
\(657\) 2178.23 0.129347
\(658\) 21957.9 1.30092
\(659\) 7476.38 0.441940 0.220970 0.975281i \(-0.429078\pi\)
0.220970 + 0.975281i \(0.429078\pi\)
\(660\) 0 0
\(661\) −14920.1 −0.877948 −0.438974 0.898500i \(-0.644658\pi\)
−0.438974 + 0.898500i \(0.644658\pi\)
\(662\) −8514.30 −0.499876
\(663\) −3291.10 −0.192784
\(664\) −43424.7 −2.53796
\(665\) 4655.18 0.271459
\(666\) −12215.5 −0.710720
\(667\) 12234.6 0.710232
\(668\) −58070.8 −3.36351
\(669\) 6999.08 0.404484
\(670\) −7021.20 −0.404854
\(671\) 0 0
\(672\) −11810.9 −0.677997
\(673\) −563.692 −0.0322864 −0.0161432 0.999870i \(-0.505139\pi\)
−0.0161432 + 0.999870i \(0.505139\pi\)
\(674\) −12661.6 −0.723602
\(675\) −675.000 −0.0384900
\(676\) 37332.5 2.12406
\(677\) −13280.2 −0.753914 −0.376957 0.926231i \(-0.623030\pi\)
−0.376957 + 0.926231i \(0.623030\pi\)
\(678\) 37788.3 2.14049
\(679\) −2041.03 −0.115357
\(680\) 5270.01 0.297199
\(681\) −6359.99 −0.357879
\(682\) 0 0
\(683\) 6856.80 0.384141 0.192070 0.981381i \(-0.438480\pi\)
0.192070 + 0.981381i \(0.438480\pi\)
\(684\) −15980.8 −0.893334
\(685\) −6381.18 −0.355930
\(686\) −31467.3 −1.75135
\(687\) −7041.36 −0.391040
\(688\) 57664.5 3.19541
\(689\) −16607.6 −0.918287
\(690\) −16779.3 −0.925763
\(691\) −28374.6 −1.56211 −0.781057 0.624460i \(-0.785319\pi\)
−0.781057 + 0.624460i \(0.785319\pi\)
\(692\) −10570.9 −0.580702
\(693\) 0 0
\(694\) 34793.7 1.90310
\(695\) −13516.1 −0.737688
\(696\) 10612.4 0.577963
\(697\) −3873.54 −0.210503
\(698\) −1840.84 −0.0998237
\(699\) −1126.50 −0.0609556
\(700\) 5078.65 0.274221
\(701\) −667.753 −0.0359781 −0.0179891 0.999838i \(-0.505726\pi\)
−0.0179891 + 0.999838i \(0.505726\pi\)
\(702\) 9089.26 0.488678
\(703\) 23271.0 1.24848
\(704\) 0 0
\(705\) 6065.45 0.324026
\(706\) 9067.10 0.483349
\(707\) −14455.4 −0.768956
\(708\) 50373.6 2.67395
\(709\) 23667.8 1.25368 0.626842 0.779147i \(-0.284347\pi\)
0.626842 + 0.779147i \(0.284347\pi\)
\(710\) −2432.02 −0.128552
\(711\) 9194.37 0.484973
\(712\) −27061.0 −1.42438
\(713\) 30126.9 1.58241
\(714\) 2793.22 0.146405
\(715\) 0 0
\(716\) 56909.5 2.97040
\(717\) −4284.45 −0.223160
\(718\) −30915.2 −1.60689
\(719\) 11835.5 0.613896 0.306948 0.951726i \(-0.400692\pi\)
0.306948 + 0.951726i \(0.400692\pi\)
\(720\) −7468.53 −0.386577
\(721\) −13888.6 −0.717390
\(722\) 6729.01 0.346853
\(723\) 572.458 0.0294467
\(724\) 8566.38 0.439733
\(725\) −1438.65 −0.0736969
\(726\) 0 0
\(727\) 15633.2 0.797530 0.398765 0.917053i \(-0.369439\pi\)
0.398765 + 0.917053i \(0.369439\pi\)
\(728\) −40592.1 −2.06654
\(729\) 729.000 0.0370370
\(730\) −6367.08 −0.322817
\(731\) −5957.31 −0.301422
\(732\) −12028.5 −0.607356
\(733\) 14870.7 0.749335 0.374668 0.927159i \(-0.377757\pi\)
0.374668 + 0.927159i \(0.377757\pi\)
\(734\) −28245.2 −1.42037
\(735\) −3547.24 −0.178016
\(736\) −81100.6 −4.06169
\(737\) 0 0
\(738\) 10697.8 0.533593
\(739\) −20850.3 −1.03788 −0.518939 0.854812i \(-0.673673\pi\)
−0.518939 + 0.854812i \(0.673673\pi\)
\(740\) 25387.9 1.26119
\(741\) −17315.4 −0.858432
\(742\) 14095.2 0.697372
\(743\) 29254.7 1.44448 0.722242 0.691641i \(-0.243112\pi\)
0.722242 + 0.691641i \(0.243112\pi\)
\(744\) 26132.4 1.28771
\(745\) −12004.9 −0.590372
\(746\) −54687.2 −2.68397
\(747\) −6357.73 −0.311402
\(748\) 0 0
\(749\) 9176.95 0.447688
\(750\) 1973.06 0.0960613
\(751\) 10936.8 0.531411 0.265705 0.964054i \(-0.414395\pi\)
0.265705 + 0.964054i \(0.414395\pi\)
\(752\) 67111.2 3.25438
\(753\) 18884.4 0.913926
\(754\) 19372.3 0.935672
\(755\) −12586.5 −0.606714
\(756\) −5484.94 −0.263870
\(757\) −8476.34 −0.406972 −0.203486 0.979078i \(-0.565227\pi\)
−0.203486 + 0.979078i \(0.565227\pi\)
\(758\) 57449.6 2.75286
\(759\) 0 0
\(760\) 27727.0 1.32337
\(761\) −913.964 −0.0435364 −0.0217682 0.999763i \(-0.506930\pi\)
−0.0217682 + 0.999763i \(0.506930\pi\)
\(762\) 32603.9 1.55002
\(763\) −12965.8 −0.615193
\(764\) −74393.0 −3.52283
\(765\) 771.573 0.0364657
\(766\) −61367.9 −2.89466
\(767\) 54580.6 2.56948
\(768\) 8055.53 0.378488
\(769\) −32215.2 −1.51067 −0.755337 0.655337i \(-0.772527\pi\)
−0.755337 + 0.655337i \(0.772527\pi\)
\(770\) 0 0
\(771\) −13378.3 −0.624914
\(772\) −73850.2 −3.44291
\(773\) 72.6900 0.00338225 0.00169112 0.999999i \(-0.499462\pi\)
0.00169112 + 0.999999i \(0.499462\pi\)
\(774\) 16452.7 0.764058
\(775\) −3542.59 −0.164198
\(776\) −12156.7 −0.562373
\(777\) 7987.09 0.368771
\(778\) −30658.7 −1.41281
\(779\) −20379.8 −0.937332
\(780\) −18890.6 −0.867169
\(781\) 0 0
\(782\) 19179.9 0.877075
\(783\) 1553.75 0.0709148
\(784\) −39248.5 −1.78792
\(785\) −6957.11 −0.316319
\(786\) 12399.1 0.562675
\(787\) −487.318 −0.0220724 −0.0110362 0.999939i \(-0.503513\pi\)
−0.0110362 + 0.999939i \(0.503513\pi\)
\(788\) 77173.1 3.48880
\(789\) −13249.9 −0.597859
\(790\) −26875.7 −1.21037
\(791\) −24707.9 −1.11064
\(792\) 0 0
\(793\) −13033.0 −0.583627
\(794\) 38761.4 1.73248
\(795\) 3893.52 0.173697
\(796\) −11752.6 −0.523317
\(797\) 31379.9 1.39465 0.697324 0.716756i \(-0.254374\pi\)
0.697324 + 0.716756i \(0.254374\pi\)
\(798\) 14695.9 0.651917
\(799\) −6933.25 −0.306985
\(800\) 9536.54 0.421460
\(801\) −3961.96 −0.174768
\(802\) 76839.8 3.38318
\(803\) 0 0
\(804\) −15759.8 −0.691302
\(805\) 10971.2 0.480351
\(806\) 47703.0 2.08470
\(807\) −5744.59 −0.250581
\(808\) −86099.0 −3.74870
\(809\) −1824.26 −0.0792802 −0.0396401 0.999214i \(-0.512621\pi\)
−0.0396401 + 0.999214i \(0.512621\pi\)
\(810\) −2130.91 −0.0924351
\(811\) 4364.52 0.188976 0.0944878 0.995526i \(-0.469879\pi\)
0.0944878 + 0.995526i \(0.469879\pi\)
\(812\) −11690.3 −0.505232
\(813\) 18265.0 0.787924
\(814\) 0 0
\(815\) 13602.6 0.584637
\(816\) 8537.06 0.366246
\(817\) −31343.1 −1.34218
\(818\) −66196.1 −2.82945
\(819\) −5943.02 −0.253561
\(820\) −22233.7 −0.946872
\(821\) −3306.16 −0.140543 −0.0702714 0.997528i \(-0.522387\pi\)
−0.0702714 + 0.997528i \(0.522387\pi\)
\(822\) −20144.7 −0.854779
\(823\) −19183.7 −0.812519 −0.406259 0.913758i \(-0.633167\pi\)
−0.406259 + 0.913758i \(0.633167\pi\)
\(824\) −82722.8 −3.49731
\(825\) 0 0
\(826\) −46323.6 −1.95134
\(827\) −20646.4 −0.868131 −0.434066 0.900881i \(-0.642921\pi\)
−0.434066 + 0.900881i \(0.642921\pi\)
\(828\) −37663.0 −1.58077
\(829\) 5345.44 0.223950 0.111975 0.993711i \(-0.464282\pi\)
0.111975 + 0.993711i \(0.464282\pi\)
\(830\) 18584.0 0.777181
\(831\) −2496.96 −0.104234
\(832\) −43464.0 −1.81111
\(833\) 4054.75 0.168654
\(834\) −42668.8 −1.77158
\(835\) 14751.3 0.611363
\(836\) 0 0
\(837\) 3826.00 0.158000
\(838\) −19867.5 −0.818985
\(839\) 29284.9 1.20504 0.602519 0.798105i \(-0.294164\pi\)
0.602519 + 0.798105i \(0.294164\pi\)
\(840\) 9516.50 0.390893
\(841\) −21077.4 −0.864219
\(842\) 66733.8 2.73135
\(843\) −7635.97 −0.311977
\(844\) 86302.6 3.51974
\(845\) −9483.26 −0.386076
\(846\) 19148.0 0.778159
\(847\) 0 0
\(848\) 43079.9 1.74454
\(849\) −17735.1 −0.716923
\(850\) −2255.35 −0.0910092
\(851\) 54844.2 2.20921
\(852\) −5458.94 −0.219507
\(853\) 8070.62 0.323954 0.161977 0.986795i \(-0.448213\pi\)
0.161977 + 0.986795i \(0.448213\pi\)
\(854\) 11061.4 0.443222
\(855\) 4059.47 0.162375
\(856\) 54659.5 2.18250
\(857\) 11344.2 0.452169 0.226085 0.974108i \(-0.427407\pi\)
0.226085 + 0.974108i \(0.427407\pi\)
\(858\) 0 0
\(859\) 25470.6 1.01170 0.505848 0.862623i \(-0.331180\pi\)
0.505848 + 0.862623i \(0.331180\pi\)
\(860\) −34194.4 −1.35584
\(861\) −6994.78 −0.276866
\(862\) −74463.6 −2.94228
\(863\) −14558.4 −0.574243 −0.287122 0.957894i \(-0.592698\pi\)
−0.287122 + 0.957894i \(0.592698\pi\)
\(864\) −10299.5 −0.405550
\(865\) 2685.24 0.105550
\(866\) −57614.6 −2.26077
\(867\) 13857.0 0.542802
\(868\) −28786.5 −1.12567
\(869\) 0 0
\(870\) −4541.68 −0.176986
\(871\) −17076.0 −0.664294
\(872\) −77226.3 −2.99910
\(873\) −1779.85 −0.0690019
\(874\) 100911. 3.90546
\(875\) −1290.09 −0.0498434
\(876\) −14291.6 −0.551220
\(877\) −185.528 −0.00714350 −0.00357175 0.999994i \(-0.501137\pi\)
−0.00357175 + 0.999994i \(0.501137\pi\)
\(878\) 59039.1 2.26933
\(879\) −20613.1 −0.790969
\(880\) 0 0
\(881\) 18950.1 0.724681 0.362340 0.932046i \(-0.381978\pi\)
0.362340 + 0.932046i \(0.381978\pi\)
\(882\) −11198.3 −0.427513
\(883\) 21258.3 0.810189 0.405095 0.914275i \(-0.367239\pi\)
0.405095 + 0.914275i \(0.367239\pi\)
\(884\) 21593.3 0.821563
\(885\) −12796.0 −0.486026
\(886\) 50758.2 1.92467
\(887\) −35707.4 −1.35168 −0.675839 0.737049i \(-0.736219\pi\)
−0.675839 + 0.737049i \(0.736219\pi\)
\(888\) 47572.5 1.79778
\(889\) −21318.1 −0.804259
\(890\) 11581.0 0.436177
\(891\) 0 0
\(892\) −45921.8 −1.72374
\(893\) −36477.8 −1.36695
\(894\) −37898.4 −1.41780
\(895\) −14456.3 −0.539910
\(896\) 5393.06 0.201082
\(897\) −40808.4 −1.51901
\(898\) 34105.2 1.26738
\(899\) 8154.49 0.302522
\(900\) 4428.75 0.164028
\(901\) −4450.58 −0.164562
\(902\) 0 0
\(903\) −10757.6 −0.396447
\(904\) −147165. −5.41440
\(905\) −2176.05 −0.0799274
\(906\) −39734.2 −1.45704
\(907\) −6542.52 −0.239516 −0.119758 0.992803i \(-0.538212\pi\)
−0.119758 + 0.992803i \(0.538212\pi\)
\(908\) 41728.6 1.52512
\(909\) −12605.6 −0.459958
\(910\) 17371.8 0.632823
\(911\) 31171.2 1.13364 0.566821 0.823841i \(-0.308173\pi\)
0.566821 + 0.823841i \(0.308173\pi\)
\(912\) 44915.9 1.63083
\(913\) 0 0
\(914\) −59559.2 −2.15541
\(915\) 3055.49 0.110395
\(916\) 46199.2 1.66644
\(917\) −8107.19 −0.291955
\(918\) 2435.78 0.0875737
\(919\) −12031.9 −0.431877 −0.215938 0.976407i \(-0.569281\pi\)
−0.215938 + 0.976407i \(0.569281\pi\)
\(920\) 65346.1 2.34174
\(921\) 600.537 0.0214857
\(922\) 44232.0 1.57994
\(923\) −5914.85 −0.210931
\(924\) 0 0
\(925\) −6449.08 −0.229237
\(926\) 51344.7 1.82213
\(927\) −12111.3 −0.429113
\(928\) −21951.6 −0.776506
\(929\) −12546.2 −0.443085 −0.221542 0.975151i \(-0.571109\pi\)
−0.221542 + 0.975151i \(0.571109\pi\)
\(930\) −11183.6 −0.394328
\(931\) 21333.2 0.750986
\(932\) 7391.07 0.259767
\(933\) −17204.8 −0.603708
\(934\) −86229.1 −3.02088
\(935\) 0 0
\(936\) −35397.7 −1.23612
\(937\) −17909.8 −0.624427 −0.312214 0.950012i \(-0.601070\pi\)
−0.312214 + 0.950012i \(0.601070\pi\)
\(938\) 14492.7 0.504483
\(939\) 9232.08 0.320849
\(940\) −39796.2 −1.38086
\(941\) −829.893 −0.0287500 −0.0143750 0.999897i \(-0.504576\pi\)
−0.0143750 + 0.999897i \(0.504576\pi\)
\(942\) −21962.9 −0.759650
\(943\) −48030.4 −1.65863
\(944\) −141581. −4.88144
\(945\) 1393.30 0.0479618
\(946\) 0 0
\(947\) −17654.9 −0.605814 −0.302907 0.953020i \(-0.597957\pi\)
−0.302907 + 0.953020i \(0.597957\pi\)
\(948\) −60325.4 −2.06675
\(949\) −15485.2 −0.529685
\(950\) −11866.0 −0.405248
\(951\) −6427.14 −0.219153
\(952\) −10878.0 −0.370335
\(953\) −30736.6 −1.04476 −0.522380 0.852713i \(-0.674956\pi\)
−0.522380 + 0.852713i \(0.674956\pi\)
\(954\) 12291.5 0.417139
\(955\) 18897.4 0.640321
\(956\) 28110.8 0.951012
\(957\) 0 0
\(958\) −72761.5 −2.45388
\(959\) 13171.7 0.443519
\(960\) 10189.8 0.342578
\(961\) −9711.08 −0.325974
\(962\) 86840.6 2.91045
\(963\) 8002.61 0.267789
\(964\) −3755.97 −0.125489
\(965\) 18759.6 0.625794
\(966\) 34634.8 1.15358
\(967\) −23645.2 −0.786327 −0.393163 0.919469i \(-0.628619\pi\)
−0.393163 + 0.919469i \(0.628619\pi\)
\(968\) 0 0
\(969\) −4640.26 −0.153836
\(970\) 5202.59 0.172211
\(971\) 27402.0 0.905635 0.452818 0.891603i \(-0.350419\pi\)
0.452818 + 0.891603i \(0.350419\pi\)
\(972\) −4783.05 −0.157836
\(973\) 27899.1 0.919222
\(974\) 69790.6 2.29593
\(975\) 4798.62 0.157619
\(976\) 33807.5 1.10876
\(977\) −49118.7 −1.60844 −0.804220 0.594332i \(-0.797416\pi\)
−0.804220 + 0.594332i \(0.797416\pi\)
\(978\) 42942.1 1.40403
\(979\) 0 0
\(980\) 23273.9 0.758630
\(981\) −11306.6 −0.367983
\(982\) 39294.0 1.27691
\(983\) 52630.5 1.70768 0.853842 0.520533i \(-0.174267\pi\)
0.853842 + 0.520533i \(0.174267\pi\)
\(984\) −41662.1 −1.34973
\(985\) −19603.7 −0.634136
\(986\) 5191.47 0.167677
\(987\) −12520.0 −0.403764
\(988\) 113609. 3.65827
\(989\) −73868.4 −2.37500
\(990\) 0 0
\(991\) 45472.7 1.45761 0.728803 0.684724i \(-0.240077\pi\)
0.728803 + 0.684724i \(0.240077\pi\)
\(992\) −54054.5 −1.73007
\(993\) 4854.68 0.155145
\(994\) 5020.04 0.160187
\(995\) 2985.42 0.0951197
\(996\) 41713.8 1.32706
\(997\) −55068.1 −1.74927 −0.874637 0.484779i \(-0.838900\pi\)
−0.874637 + 0.484779i \(0.838900\pi\)
\(998\) −27763.0 −0.880585
\(999\) 6965.01 0.220584
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1815.4.a.s.1.3 3
11.10 odd 2 165.4.a.d.1.1 3
33.32 even 2 495.4.a.l.1.3 3
55.32 even 4 825.4.c.l.199.1 6
55.43 even 4 825.4.c.l.199.6 6
55.54 odd 2 825.4.a.s.1.3 3
165.164 even 2 2475.4.a.s.1.1 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
165.4.a.d.1.1 3 11.10 odd 2
495.4.a.l.1.3 3 33.32 even 2
825.4.a.s.1.3 3 55.54 odd 2
825.4.c.l.199.1 6 55.32 even 4
825.4.c.l.199.6 6 55.43 even 4
1815.4.a.s.1.3 3 1.1 even 1 trivial
2475.4.a.s.1.1 3 165.164 even 2