Properties

Label 1815.4.a.r
Level $1815$
Weight $4$
Character orbit 1815.a
Self dual yes
Analytic conductor $107.088$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1815,4,Mod(1,1815)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1815.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1815, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 1815 = 3 \cdot 5 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1815.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,2,9,30,-15,6,-10] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(107.088466660\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.47528.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 26x - 22 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 165)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \beta_1 + 1) q^{2} + 3 q^{3} + (\beta_{2} + 10) q^{4} - 5 q^{5} + ( - 3 \beta_1 + 3) q^{6} + ( - 2 \beta_{2} + 2 \beta_1 - 4) q^{7} + (2 \beta_{2} - 9 \beta_1 - 3) q^{8} + 9 q^{9} + (5 \beta_1 - 5) q^{10}+ \cdots + (72 \beta_{2} - 45 \beta_1 + 1341) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + 2 q^{2} + 9 q^{3} + 30 q^{4} - 15 q^{5} + 6 q^{6} - 10 q^{7} - 18 q^{8} + 27 q^{9} - 10 q^{10} + 90 q^{12} - 114 q^{13} - 68 q^{14} - 45 q^{15} + 178 q^{16} + 104 q^{17} + 18 q^{18} + 58 q^{19} - 150 q^{20}+ \cdots + 3978 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{3} - x^{2} - 26x - 22 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - 2\nu - 17 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + 2\beta _1 + 17 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
5.97123
−0.906392
−4.06484
−4.97123 3.00000 16.7131 −5.00000 −14.9137 −5.48376 −43.3148 9.00000 24.8561
1.2 1.90639 3.00000 −4.36567 −5.00000 5.71918 22.9186 −23.5738 9.00000 −9.53196
1.3 5.06484 3.00000 17.6526 −5.00000 15.1945 −27.4348 48.8887 9.00000 −25.3242
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( -1 \)
\(5\) \( +1 \)
\(11\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1815.4.a.r 3
11.b odd 2 1 165.4.a.e 3
33.d even 2 1 495.4.a.k 3
55.d odd 2 1 825.4.a.r 3
55.e even 4 2 825.4.c.k 6
165.d even 2 1 2475.4.a.t 3
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
165.4.a.e 3 11.b odd 2 1
495.4.a.k 3 33.d even 2 1
825.4.a.r 3 55.d odd 2 1
825.4.c.k 6 55.e even 4 2
1815.4.a.r 3 1.a even 1 1 trivial
2475.4.a.t 3 165.d even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(1815))\):

\( T_{2}^{3} - 2T_{2}^{2} - 25T_{2} + 48 \) Copy content Toggle raw display
\( T_{7}^{3} + 10T_{7}^{2} - 604T_{7} - 3448 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{3} - 2 T^{2} + \cdots + 48 \) Copy content Toggle raw display
$3$ \( (T - 3)^{3} \) Copy content Toggle raw display
$5$ \( (T + 5)^{3} \) Copy content Toggle raw display
$7$ \( T^{3} + 10 T^{2} + \cdots - 3448 \) Copy content Toggle raw display
$11$ \( T^{3} \) Copy content Toggle raw display
$13$ \( T^{3} + 114 T^{2} + \cdots + 37216 \) Copy content Toggle raw display
$17$ \( T^{3} - 104 T^{2} + \cdots - 8448 \) Copy content Toggle raw display
$19$ \( T^{3} - 58 T^{2} + \cdots - 65520 \) Copy content Toggle raw display
$23$ \( T^{3} - 120 T^{2} + \cdots + 148224 \) Copy content Toggle raw display
$29$ \( T^{3} - 220 T^{2} + \cdots + 629760 \) Copy content Toggle raw display
$31$ \( T^{3} - 248 T^{2} + \cdots + 9589248 \) Copy content Toggle raw display
$37$ \( T^{3} - 838 T^{2} + \cdots - 18607336 \) Copy content Toggle raw display
$41$ \( T^{3} + 156 T^{2} + \cdots + 3013632 \) Copy content Toggle raw display
$43$ \( T^{3} + 122 T^{2} + \cdots - 1445400 \) Copy content Toggle raw display
$47$ \( T^{3} - 504 T^{2} + \cdots - 4372224 \) Copy content Toggle raw display
$53$ \( T^{3} - 282 T^{2} + \cdots - 3654264 \) Copy content Toggle raw display
$59$ \( T^{3} - 548 T^{2} + \cdots - 1206720 \) Copy content Toggle raw display
$61$ \( T^{3} + 414 T^{2} + \cdots - 342344792 \) Copy content Toggle raw display
$67$ \( T^{3} + 428 T^{2} + \cdots - 8135552 \) Copy content Toggle raw display
$71$ \( T^{3} + 912 T^{2} + \cdots - 2867712 \) Copy content Toggle raw display
$73$ \( T^{3} + 618 T^{2} + \cdots - 26458592 \) Copy content Toggle raw display
$79$ \( T^{3} - 542 T^{2} + \cdots + 88503440 \) Copy content Toggle raw display
$83$ \( T^{3} - 1091340 T + 434328048 \) Copy content Toggle raw display
$89$ \( T^{3} + \cdots + 1941629400 \) Copy content Toggle raw display
$97$ \( T^{3} - 2074 T^{2} + \cdots + 98075336 \) Copy content Toggle raw display
show more
show less