Properties

Label 1815.4.a.bb.1.6
Level $1815$
Weight $4$
Character 1815.1
Self dual yes
Analytic conductor $107.088$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1815,4,Mod(1,1815)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1815, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1815.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1815 = 3 \cdot 5 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1815.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(107.088466660\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: \(\mathbb{Q}[x]/(x^{6} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 44x^{4} + 495x^{2} - 1200 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{4}\cdot 5 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.6
Root \(5.26184\) of defining polynomial
Character \(\chi\) \(=\) 1815.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+5.26184 q^{2} +3.00000 q^{3} +19.6870 q^{4} +5.00000 q^{5} +15.7855 q^{6} -5.37309 q^{7} +61.4950 q^{8} +9.00000 q^{9} +O(q^{10})\) \(q+5.26184 q^{2} +3.00000 q^{3} +19.6870 q^{4} +5.00000 q^{5} +15.7855 q^{6} -5.37309 q^{7} +61.4950 q^{8} +9.00000 q^{9} +26.3092 q^{10} +59.0609 q^{12} +5.15059 q^{13} -28.2724 q^{14} +15.0000 q^{15} +166.081 q^{16} -107.538 q^{17} +47.3566 q^{18} +70.1491 q^{19} +98.4349 q^{20} -16.1193 q^{21} +104.545 q^{23} +184.485 q^{24} +25.0000 q^{25} +27.1016 q^{26} +27.0000 q^{27} -105.780 q^{28} +122.545 q^{29} +78.9276 q^{30} +252.244 q^{31} +381.933 q^{32} -565.849 q^{34} -26.8655 q^{35} +177.183 q^{36} +150.545 q^{37} +369.113 q^{38} +15.4518 q^{39} +307.475 q^{40} +17.3082 q^{41} -84.8171 q^{42} +459.004 q^{43} +45.0000 q^{45} +550.098 q^{46} +310.585 q^{47} +498.244 q^{48} -314.130 q^{49} +131.546 q^{50} -322.615 q^{51} +101.400 q^{52} -322.186 q^{53} +142.070 q^{54} -330.418 q^{56} +210.447 q^{57} +644.812 q^{58} +425.601 q^{59} +295.305 q^{60} -75.2233 q^{61} +1327.27 q^{62} -48.3578 q^{63} +681.020 q^{64} +25.7530 q^{65} -898.576 q^{67} -2117.10 q^{68} +313.634 q^{69} -141.362 q^{70} +1192.10 q^{71} +553.455 q^{72} -277.379 q^{73} +792.142 q^{74} +75.0000 q^{75} +1381.02 q^{76} +81.3048 q^{78} -1257.17 q^{79} +830.406 q^{80} +81.0000 q^{81} +91.0729 q^{82} +156.497 q^{83} -317.340 q^{84} -537.691 q^{85} +2415.21 q^{86} +367.635 q^{87} -96.0978 q^{89} +236.783 q^{90} -27.6746 q^{91} +2058.17 q^{92} +756.731 q^{93} +1634.25 q^{94} +350.746 q^{95} +1145.80 q^{96} -840.690 q^{97} -1652.90 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 18 q^{3} + 40 q^{4} + 30 q^{5} + 54 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 6 q + 18 q^{3} + 40 q^{4} + 30 q^{5} + 54 q^{9} + 120 q^{12} + 116 q^{14} + 90 q^{15} + 164 q^{16} + 200 q^{20} + 56 q^{23} + 150 q^{25} + 292 q^{26} + 162 q^{27} + 576 q^{31} - 92 q^{34} + 360 q^{36} + 332 q^{37} + 496 q^{38} + 348 q^{42} + 270 q^{45} + 96 q^{47} + 492 q^{48} + 454 q^{49} + 308 q^{53} - 652 q^{56} + 1784 q^{58} + 2080 q^{59} + 600 q^{60} + 1928 q^{64} - 1168 q^{67} + 168 q^{69} + 580 q^{70} + 1064 q^{71} + 450 q^{75} + 876 q^{78} + 820 q^{80} + 486 q^{81} + 24 q^{82} + 5412 q^{86} - 684 q^{89} + 2744 q^{91} + 1368 q^{92} + 1728 q^{93} + 2812 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 5.26184 1.86034 0.930171 0.367127i \(-0.119658\pi\)
0.930171 + 0.367127i \(0.119658\pi\)
\(3\) 3.00000 0.577350
\(4\) 19.6870 2.46087
\(5\) 5.00000 0.447214
\(6\) 15.7855 1.07407
\(7\) −5.37309 −0.290120 −0.145060 0.989423i \(-0.546337\pi\)
−0.145060 + 0.989423i \(0.546337\pi\)
\(8\) 61.4950 2.71772
\(9\) 9.00000 0.333333
\(10\) 26.3092 0.831970
\(11\) 0 0
\(12\) 59.0609 1.42079
\(13\) 5.15059 0.109886 0.0549430 0.998489i \(-0.482502\pi\)
0.0549430 + 0.998489i \(0.482502\pi\)
\(14\) −28.2724 −0.539722
\(15\) 15.0000 0.258199
\(16\) 166.081 2.59502
\(17\) −107.538 −1.53423 −0.767113 0.641512i \(-0.778308\pi\)
−0.767113 + 0.641512i \(0.778308\pi\)
\(18\) 47.3566 0.620114
\(19\) 70.1491 0.847016 0.423508 0.905892i \(-0.360799\pi\)
0.423508 + 0.905892i \(0.360799\pi\)
\(20\) 98.4349 1.10054
\(21\) −16.1193 −0.167501
\(22\) 0 0
\(23\) 104.545 0.947786 0.473893 0.880582i \(-0.342848\pi\)
0.473893 + 0.880582i \(0.342848\pi\)
\(24\) 184.485 1.56908
\(25\) 25.0000 0.200000
\(26\) 27.1016 0.204425
\(27\) 27.0000 0.192450
\(28\) −105.780 −0.713947
\(29\) 122.545 0.784691 0.392345 0.919818i \(-0.371664\pi\)
0.392345 + 0.919818i \(0.371664\pi\)
\(30\) 78.9276 0.480338
\(31\) 252.244 1.46143 0.730715 0.682683i \(-0.239187\pi\)
0.730715 + 0.682683i \(0.239187\pi\)
\(32\) 381.933 2.10990
\(33\) 0 0
\(34\) −565.849 −2.85419
\(35\) −26.8655 −0.129745
\(36\) 177.183 0.820291
\(37\) 150.545 0.668903 0.334451 0.942413i \(-0.391449\pi\)
0.334451 + 0.942413i \(0.391449\pi\)
\(38\) 369.113 1.57574
\(39\) 15.4518 0.0634427
\(40\) 307.475 1.21540
\(41\) 17.3082 0.0659289 0.0329645 0.999457i \(-0.489505\pi\)
0.0329645 + 0.999457i \(0.489505\pi\)
\(42\) −84.8171 −0.311608
\(43\) 459.004 1.62785 0.813924 0.580972i \(-0.197327\pi\)
0.813924 + 0.580972i \(0.197327\pi\)
\(44\) 0 0
\(45\) 45.0000 0.149071
\(46\) 550.098 1.76321
\(47\) 310.585 0.963904 0.481952 0.876198i \(-0.339928\pi\)
0.481952 + 0.876198i \(0.339928\pi\)
\(48\) 498.244 1.49823
\(49\) −314.130 −0.915831
\(50\) 131.546 0.372068
\(51\) −322.615 −0.885786
\(52\) 101.400 0.270415
\(53\) −322.186 −0.835013 −0.417507 0.908674i \(-0.637096\pi\)
−0.417507 + 0.908674i \(0.637096\pi\)
\(54\) 142.070 0.358023
\(55\) 0 0
\(56\) −330.418 −0.788464
\(57\) 210.447 0.489025
\(58\) 644.812 1.45979
\(59\) 425.601 0.939128 0.469564 0.882898i \(-0.344411\pi\)
0.469564 + 0.882898i \(0.344411\pi\)
\(60\) 295.305 0.635394
\(61\) −75.2233 −0.157891 −0.0789455 0.996879i \(-0.525155\pi\)
−0.0789455 + 0.996879i \(0.525155\pi\)
\(62\) 1327.27 2.71876
\(63\) −48.3578 −0.0967065
\(64\) 681.020 1.33012
\(65\) 25.7530 0.0491425
\(66\) 0 0
\(67\) −898.576 −1.63849 −0.819243 0.573447i \(-0.805606\pi\)
−0.819243 + 0.573447i \(0.805606\pi\)
\(68\) −2117.10 −3.77554
\(69\) 313.634 0.547204
\(70\) −141.362 −0.241371
\(71\) 1192.10 1.99263 0.996315 0.0857641i \(-0.0273331\pi\)
0.996315 + 0.0857641i \(0.0273331\pi\)
\(72\) 553.455 0.905907
\(73\) −277.379 −0.444722 −0.222361 0.974964i \(-0.571376\pi\)
−0.222361 + 0.974964i \(0.571376\pi\)
\(74\) 792.142 1.24439
\(75\) 75.0000 0.115470
\(76\) 1381.02 2.08440
\(77\) 0 0
\(78\) 81.3048 0.118025
\(79\) −1257.17 −1.79041 −0.895207 0.445651i \(-0.852972\pi\)
−0.895207 + 0.445651i \(0.852972\pi\)
\(80\) 830.406 1.16053
\(81\) 81.0000 0.111111
\(82\) 91.0729 0.122650
\(83\) 156.497 0.206961 0.103480 0.994632i \(-0.467002\pi\)
0.103480 + 0.994632i \(0.467002\pi\)
\(84\) −317.340 −0.412198
\(85\) −537.691 −0.686127
\(86\) 2415.21 3.02835
\(87\) 367.635 0.453042
\(88\) 0 0
\(89\) −96.0978 −0.114453 −0.0572267 0.998361i \(-0.518226\pi\)
−0.0572267 + 0.998361i \(0.518226\pi\)
\(90\) 236.783 0.277323
\(91\) −27.6746 −0.0318801
\(92\) 2058.17 2.33238
\(93\) 756.731 0.843757
\(94\) 1634.25 1.79319
\(95\) 350.746 0.378797
\(96\) 1145.80 1.21815
\(97\) −840.690 −0.879991 −0.439995 0.898000i \(-0.645020\pi\)
−0.439995 + 0.898000i \(0.645020\pi\)
\(98\) −1652.90 −1.70376
\(99\) 0 0
\(100\) 492.174 0.492174
\(101\) −1906.92 −1.87867 −0.939333 0.343008i \(-0.888554\pi\)
−0.939333 + 0.343008i \(0.888554\pi\)
\(102\) −1697.55 −1.64787
\(103\) 142.967 0.136767 0.0683834 0.997659i \(-0.478216\pi\)
0.0683834 + 0.997659i \(0.478216\pi\)
\(104\) 316.736 0.298639
\(105\) −80.5964 −0.0749086
\(106\) −1695.29 −1.55341
\(107\) −1908.21 −1.72405 −0.862027 0.506862i \(-0.830805\pi\)
−0.862027 + 0.506862i \(0.830805\pi\)
\(108\) 531.548 0.473595
\(109\) −672.607 −0.591046 −0.295523 0.955336i \(-0.595494\pi\)
−0.295523 + 0.955336i \(0.595494\pi\)
\(110\) 0 0
\(111\) 451.634 0.386191
\(112\) −892.369 −0.752866
\(113\) −1635.11 −1.36123 −0.680613 0.732644i \(-0.738286\pi\)
−0.680613 + 0.732644i \(0.738286\pi\)
\(114\) 1107.34 0.909754
\(115\) 522.724 0.423863
\(116\) 2412.54 1.93102
\(117\) 46.3553 0.0366286
\(118\) 2239.45 1.74710
\(119\) 577.813 0.445109
\(120\) 922.425 0.701713
\(121\) 0 0
\(122\) −395.813 −0.293731
\(123\) 51.9246 0.0380641
\(124\) 4965.92 3.59639
\(125\) 125.000 0.0894427
\(126\) −254.451 −0.179907
\(127\) 941.002 0.657484 0.328742 0.944420i \(-0.393375\pi\)
0.328742 + 0.944420i \(0.393375\pi\)
\(128\) 527.958 0.364573
\(129\) 1377.01 0.939838
\(130\) 135.508 0.0914218
\(131\) 1243.83 0.829574 0.414787 0.909919i \(-0.363856\pi\)
0.414787 + 0.909919i \(0.363856\pi\)
\(132\) 0 0
\(133\) −376.917 −0.245736
\(134\) −4728.16 −3.04814
\(135\) 135.000 0.0860663
\(136\) −6613.06 −4.16960
\(137\) −1127.14 −0.702904 −0.351452 0.936206i \(-0.614312\pi\)
−0.351452 + 0.936206i \(0.614312\pi\)
\(138\) 1650.29 1.01799
\(139\) −2537.94 −1.54867 −0.774335 0.632776i \(-0.781916\pi\)
−0.774335 + 0.632776i \(0.781916\pi\)
\(140\) −528.899 −0.319287
\(141\) 931.756 0.556510
\(142\) 6272.67 3.70697
\(143\) 0 0
\(144\) 1494.73 0.865006
\(145\) 612.725 0.350924
\(146\) −1459.52 −0.827335
\(147\) −942.390 −0.528755
\(148\) 2963.77 1.64608
\(149\) −2635.22 −1.44890 −0.724448 0.689329i \(-0.757905\pi\)
−0.724448 + 0.689329i \(0.757905\pi\)
\(150\) 394.638 0.214814
\(151\) 2665.26 1.43639 0.718197 0.695839i \(-0.244968\pi\)
0.718197 + 0.695839i \(0.244968\pi\)
\(152\) 4313.82 2.30195
\(153\) −967.844 −0.511409
\(154\) 0 0
\(155\) 1261.22 0.653571
\(156\) 304.199 0.156124
\(157\) 2341.32 1.19017 0.595087 0.803661i \(-0.297118\pi\)
0.595087 + 0.803661i \(0.297118\pi\)
\(158\) −6615.03 −3.33078
\(159\) −966.559 −0.482095
\(160\) 1909.66 0.943576
\(161\) −561.728 −0.274971
\(162\) 426.209 0.206705
\(163\) −3408.54 −1.63790 −0.818949 0.573866i \(-0.805443\pi\)
−0.818949 + 0.573866i \(0.805443\pi\)
\(164\) 340.746 0.162243
\(165\) 0 0
\(166\) 823.460 0.385017
\(167\) −769.717 −0.356662 −0.178331 0.983971i \(-0.557070\pi\)
−0.178331 + 0.983971i \(0.557070\pi\)
\(168\) −991.255 −0.455220
\(169\) −2170.47 −0.987925
\(170\) −2829.25 −1.27643
\(171\) 631.342 0.282339
\(172\) 9036.40 4.00592
\(173\) 2110.51 0.927508 0.463754 0.885964i \(-0.346502\pi\)
0.463754 + 0.885964i \(0.346502\pi\)
\(174\) 1934.44 0.842812
\(175\) −134.327 −0.0580239
\(176\) 0 0
\(177\) 1276.80 0.542206
\(178\) −505.651 −0.212922
\(179\) 1473.25 0.615173 0.307587 0.951520i \(-0.400479\pi\)
0.307587 + 0.951520i \(0.400479\pi\)
\(180\) 885.914 0.366845
\(181\) −2290.00 −0.940413 −0.470206 0.882557i \(-0.655821\pi\)
−0.470206 + 0.882557i \(0.655821\pi\)
\(182\) −145.619 −0.0593078
\(183\) −225.670 −0.0911584
\(184\) 6428.98 2.57582
\(185\) 752.724 0.299142
\(186\) 3981.80 1.56968
\(187\) 0 0
\(188\) 6114.48 2.37205
\(189\) −145.073 −0.0558335
\(190\) 1845.57 0.704692
\(191\) 3880.34 1.47001 0.735003 0.678063i \(-0.237180\pi\)
0.735003 + 0.678063i \(0.237180\pi\)
\(192\) 2043.06 0.767944
\(193\) −852.978 −0.318128 −0.159064 0.987268i \(-0.550848\pi\)
−0.159064 + 0.987268i \(0.550848\pi\)
\(194\) −4423.58 −1.63708
\(195\) 77.2589 0.0283724
\(196\) −6184.27 −2.25374
\(197\) 766.748 0.277302 0.138651 0.990341i \(-0.455723\pi\)
0.138651 + 0.990341i \(0.455723\pi\)
\(198\) 0 0
\(199\) 1242.15 0.442479 0.221240 0.975219i \(-0.428990\pi\)
0.221240 + 0.975219i \(0.428990\pi\)
\(200\) 1537.38 0.543544
\(201\) −2695.73 −0.945980
\(202\) −10033.9 −3.49496
\(203\) −658.445 −0.227654
\(204\) −6351.31 −2.17981
\(205\) 86.5409 0.0294843
\(206\) 752.271 0.254433
\(207\) 940.902 0.315929
\(208\) 855.416 0.285156
\(209\) 0 0
\(210\) −424.085 −0.139356
\(211\) 4347.95 1.41860 0.709301 0.704906i \(-0.249011\pi\)
0.709301 + 0.704906i \(0.249011\pi\)
\(212\) −6342.88 −2.05486
\(213\) 3576.31 1.15045
\(214\) −10040.7 −3.20733
\(215\) 2295.02 0.727996
\(216\) 1660.37 0.523026
\(217\) −1355.33 −0.423989
\(218\) −3539.15 −1.09955
\(219\) −832.136 −0.256760
\(220\) 0 0
\(221\) −553.886 −0.168590
\(222\) 2376.43 0.718447
\(223\) −1123.30 −0.337317 −0.168658 0.985675i \(-0.553943\pi\)
−0.168658 + 0.985675i \(0.553943\pi\)
\(224\) −2052.16 −0.612123
\(225\) 225.000 0.0666667
\(226\) −8603.70 −2.53234
\(227\) 435.002 0.127190 0.0635949 0.997976i \(-0.479743\pi\)
0.0635949 + 0.997976i \(0.479743\pi\)
\(228\) 4143.07 1.20343
\(229\) 4207.36 1.21411 0.607053 0.794661i \(-0.292351\pi\)
0.607053 + 0.794661i \(0.292351\pi\)
\(230\) 2750.49 0.788530
\(231\) 0 0
\(232\) 7535.91 2.13257
\(233\) −235.268 −0.0661499 −0.0330749 0.999453i \(-0.510530\pi\)
−0.0330749 + 0.999453i \(0.510530\pi\)
\(234\) 243.914 0.0681418
\(235\) 1552.93 0.431071
\(236\) 8378.80 2.31107
\(237\) −3771.51 −1.03370
\(238\) 3040.36 0.828055
\(239\) 647.975 0.175373 0.0876863 0.996148i \(-0.472053\pi\)
0.0876863 + 0.996148i \(0.472053\pi\)
\(240\) 2491.22 0.670031
\(241\) −2281.64 −0.609848 −0.304924 0.952377i \(-0.598631\pi\)
−0.304924 + 0.952377i \(0.598631\pi\)
\(242\) 0 0
\(243\) 243.000 0.0641500
\(244\) −1480.92 −0.388550
\(245\) −1570.65 −0.409572
\(246\) 273.219 0.0708122
\(247\) 361.309 0.0930752
\(248\) 15511.7 3.97176
\(249\) 469.490 0.119489
\(250\) 657.730 0.166394
\(251\) −4869.34 −1.22450 −0.612251 0.790664i \(-0.709736\pi\)
−0.612251 + 0.790664i \(0.709736\pi\)
\(252\) −952.019 −0.237982
\(253\) 0 0
\(254\) 4951.41 1.22314
\(255\) −1613.07 −0.396136
\(256\) −2670.13 −0.651887
\(257\) −1381.17 −0.335234 −0.167617 0.985852i \(-0.553607\pi\)
−0.167617 + 0.985852i \(0.553607\pi\)
\(258\) 7245.62 1.74842
\(259\) −808.890 −0.194062
\(260\) 506.998 0.120933
\(261\) 1102.91 0.261564
\(262\) 6544.85 1.54329
\(263\) −1121.05 −0.262841 −0.131420 0.991327i \(-0.541954\pi\)
−0.131420 + 0.991327i \(0.541954\pi\)
\(264\) 0 0
\(265\) −1610.93 −0.373429
\(266\) −1983.28 −0.457153
\(267\) −288.293 −0.0660797
\(268\) −17690.2 −4.03210
\(269\) −1161.36 −0.263232 −0.131616 0.991301i \(-0.542017\pi\)
−0.131616 + 0.991301i \(0.542017\pi\)
\(270\) 710.349 0.160113
\(271\) −3568.57 −0.799908 −0.399954 0.916535i \(-0.630974\pi\)
−0.399954 + 0.916535i \(0.630974\pi\)
\(272\) −17860.1 −3.98135
\(273\) −83.0238 −0.0184060
\(274\) −5930.81 −1.30764
\(275\) 0 0
\(276\) 6174.51 1.34660
\(277\) −8346.58 −1.81046 −0.905230 0.424922i \(-0.860302\pi\)
−0.905230 + 0.424922i \(0.860302\pi\)
\(278\) −13354.2 −2.88106
\(279\) 2270.19 0.487143
\(280\) −1652.09 −0.352612
\(281\) 1723.69 0.365931 0.182966 0.983119i \(-0.441430\pi\)
0.182966 + 0.983119i \(0.441430\pi\)
\(282\) 4902.75 1.03530
\(283\) 2086.76 0.438321 0.219160 0.975689i \(-0.429668\pi\)
0.219160 + 0.975689i \(0.429668\pi\)
\(284\) 23468.9 4.90361
\(285\) 1052.24 0.218699
\(286\) 0 0
\(287\) −92.9985 −0.0191273
\(288\) 3437.39 0.703300
\(289\) 6651.47 1.35385
\(290\) 3224.06 0.652839
\(291\) −2522.07 −0.508063
\(292\) −5460.75 −1.09440
\(293\) −3127.52 −0.623588 −0.311794 0.950150i \(-0.600930\pi\)
−0.311794 + 0.950150i \(0.600930\pi\)
\(294\) −4958.71 −0.983665
\(295\) 2128.01 0.419991
\(296\) 9257.75 1.81789
\(297\) 0 0
\(298\) −13866.1 −2.69544
\(299\) 538.467 0.104148
\(300\) 1476.52 0.284157
\(301\) −2466.27 −0.472271
\(302\) 14024.2 2.67219
\(303\) −5720.75 −1.08465
\(304\) 11650.4 2.19802
\(305\) −376.116 −0.0706110
\(306\) −5092.64 −0.951395
\(307\) 1397.12 0.259732 0.129866 0.991532i \(-0.458545\pi\)
0.129866 + 0.991532i \(0.458545\pi\)
\(308\) 0 0
\(309\) 428.902 0.0789623
\(310\) 6636.33 1.21587
\(311\) 5405.45 0.985579 0.492790 0.870148i \(-0.335977\pi\)
0.492790 + 0.870148i \(0.335977\pi\)
\(312\) 950.207 0.172419
\(313\) 6240.77 1.12699 0.563497 0.826118i \(-0.309456\pi\)
0.563497 + 0.826118i \(0.309456\pi\)
\(314\) 12319.6 2.21413
\(315\) −241.789 −0.0432485
\(316\) −24749.9 −4.40598
\(317\) −6919.66 −1.22601 −0.613007 0.790077i \(-0.710040\pi\)
−0.613007 + 0.790077i \(0.710040\pi\)
\(318\) −5085.88 −0.896862
\(319\) 0 0
\(320\) 3405.10 0.594847
\(321\) −5724.64 −0.995383
\(322\) −2955.72 −0.511541
\(323\) −7543.71 −1.29951
\(324\) 1594.64 0.273430
\(325\) 128.765 0.0219772
\(326\) −17935.2 −3.04705
\(327\) −2017.82 −0.341241
\(328\) 1064.37 0.179176
\(329\) −1668.80 −0.279648
\(330\) 0 0
\(331\) −3134.58 −0.520519 −0.260260 0.965539i \(-0.583808\pi\)
−0.260260 + 0.965539i \(0.583808\pi\)
\(332\) 3080.94 0.509303
\(333\) 1354.90 0.222968
\(334\) −4050.13 −0.663513
\(335\) −4492.88 −0.732753
\(336\) −2677.11 −0.434667
\(337\) −6484.89 −1.04823 −0.524117 0.851647i \(-0.675604\pi\)
−0.524117 + 0.851647i \(0.675604\pi\)
\(338\) −11420.7 −1.83788
\(339\) −4905.34 −0.785904
\(340\) −10585.5 −1.68847
\(341\) 0 0
\(342\) 3322.02 0.525247
\(343\) 3530.82 0.555820
\(344\) 28226.5 4.42404
\(345\) 1568.17 0.244717
\(346\) 11105.1 1.72548
\(347\) 2535.12 0.392198 0.196099 0.980584i \(-0.437173\pi\)
0.196099 + 0.980584i \(0.437173\pi\)
\(348\) 7237.62 1.11488
\(349\) 9319.24 1.42936 0.714681 0.699451i \(-0.246572\pi\)
0.714681 + 0.699451i \(0.246572\pi\)
\(350\) −706.809 −0.107944
\(351\) 139.066 0.0211476
\(352\) 0 0
\(353\) −3958.44 −0.596846 −0.298423 0.954434i \(-0.596461\pi\)
−0.298423 + 0.954434i \(0.596461\pi\)
\(354\) 6718.34 1.00869
\(355\) 5960.52 0.891132
\(356\) −1891.88 −0.281655
\(357\) 1733.44 0.256984
\(358\) 7752.02 1.14443
\(359\) −10876.2 −1.59896 −0.799480 0.600693i \(-0.794891\pi\)
−0.799480 + 0.600693i \(0.794891\pi\)
\(360\) 2767.28 0.405134
\(361\) −1938.10 −0.282564
\(362\) −12049.6 −1.74949
\(363\) 0 0
\(364\) −544.829 −0.0784528
\(365\) −1386.89 −0.198886
\(366\) −1187.44 −0.169586
\(367\) 4192.86 0.596364 0.298182 0.954509i \(-0.403620\pi\)
0.298182 + 0.954509i \(0.403620\pi\)
\(368\) 17362.9 2.45952
\(369\) 155.774 0.0219763
\(370\) 3960.71 0.556507
\(371\) 1731.14 0.242254
\(372\) 14897.7 2.07638
\(373\) −11108.9 −1.54209 −0.771044 0.636782i \(-0.780265\pi\)
−0.771044 + 0.636782i \(0.780265\pi\)
\(374\) 0 0
\(375\) 375.000 0.0516398
\(376\) 19099.4 2.61962
\(377\) 631.179 0.0862265
\(378\) −763.353 −0.103869
\(379\) −4716.38 −0.639219 −0.319610 0.947549i \(-0.603552\pi\)
−0.319610 + 0.947549i \(0.603552\pi\)
\(380\) 6905.12 0.932171
\(381\) 2823.01 0.379599
\(382\) 20417.7 2.73472
\(383\) 10117.1 1.34977 0.674883 0.737925i \(-0.264194\pi\)
0.674883 + 0.737925i \(0.264194\pi\)
\(384\) 1583.87 0.210486
\(385\) 0 0
\(386\) −4488.23 −0.591827
\(387\) 4131.04 0.542616
\(388\) −16550.6 −2.16554
\(389\) 11322.0 1.47571 0.737853 0.674961i \(-0.235840\pi\)
0.737853 + 0.674961i \(0.235840\pi\)
\(390\) 406.524 0.0527824
\(391\) −11242.6 −1.45412
\(392\) −19317.4 −2.48897
\(393\) 3731.50 0.478955
\(394\) 4034.51 0.515877
\(395\) −6285.85 −0.800697
\(396\) 0 0
\(397\) 5400.42 0.682718 0.341359 0.939933i \(-0.389113\pi\)
0.341359 + 0.939933i \(0.389113\pi\)
\(398\) 6535.97 0.823163
\(399\) −1130.75 −0.141876
\(400\) 4152.03 0.519004
\(401\) 13782.4 1.71637 0.858183 0.513344i \(-0.171594\pi\)
0.858183 + 0.513344i \(0.171594\pi\)
\(402\) −14184.5 −1.75985
\(403\) 1299.20 0.160591
\(404\) −37541.4 −4.62315
\(405\) 405.000 0.0496904
\(406\) −3464.64 −0.423515
\(407\) 0 0
\(408\) −19839.2 −2.40732
\(409\) 113.092 0.0136725 0.00683626 0.999977i \(-0.497824\pi\)
0.00683626 + 0.999977i \(0.497824\pi\)
\(410\) 455.365 0.0548509
\(411\) −3381.41 −0.405822
\(412\) 2814.59 0.336565
\(413\) −2286.79 −0.272459
\(414\) 4950.88 0.587735
\(415\) 782.483 0.0925556
\(416\) 1967.18 0.231848
\(417\) −7613.82 −0.894125
\(418\) 0 0
\(419\) 7352.48 0.857261 0.428630 0.903480i \(-0.358996\pi\)
0.428630 + 0.903480i \(0.358996\pi\)
\(420\) −1586.70 −0.184340
\(421\) 3306.97 0.382831 0.191416 0.981509i \(-0.438692\pi\)
0.191416 + 0.981509i \(0.438692\pi\)
\(422\) 22878.2 2.63908
\(423\) 2795.27 0.321301
\(424\) −19812.9 −2.26933
\(425\) −2688.46 −0.306845
\(426\) 18818.0 2.14022
\(427\) 404.181 0.0458073
\(428\) −37566.9 −4.24268
\(429\) 0 0
\(430\) 12076.0 1.35432
\(431\) −9959.87 −1.11311 −0.556555 0.830811i \(-0.687877\pi\)
−0.556555 + 0.830811i \(0.687877\pi\)
\(432\) 4484.19 0.499412
\(433\) 10913.1 1.21120 0.605598 0.795771i \(-0.292934\pi\)
0.605598 + 0.795771i \(0.292934\pi\)
\(434\) −7131.52 −0.788765
\(435\) 1838.18 0.202606
\(436\) −13241.6 −1.45449
\(437\) 7333.72 0.802790
\(438\) −4378.57 −0.477662
\(439\) 6589.60 0.716411 0.358205 0.933643i \(-0.383389\pi\)
0.358205 + 0.933643i \(0.383389\pi\)
\(440\) 0 0
\(441\) −2827.17 −0.305277
\(442\) −2914.46 −0.313635
\(443\) −2597.43 −0.278572 −0.139286 0.990252i \(-0.544481\pi\)
−0.139286 + 0.990252i \(0.544481\pi\)
\(444\) 8891.31 0.950367
\(445\) −480.489 −0.0511851
\(446\) −5910.62 −0.627524
\(447\) −7905.66 −0.836521
\(448\) −3659.18 −0.385893
\(449\) 6460.30 0.679021 0.339511 0.940602i \(-0.389739\pi\)
0.339511 + 0.940602i \(0.389739\pi\)
\(450\) 1183.91 0.124023
\(451\) 0 0
\(452\) −32190.4 −3.34980
\(453\) 7995.77 0.829303
\(454\) 2288.91 0.236617
\(455\) −138.373 −0.0142572
\(456\) 12941.5 1.32903
\(457\) −7676.12 −0.785720 −0.392860 0.919598i \(-0.628514\pi\)
−0.392860 + 0.919598i \(0.628514\pi\)
\(458\) 22138.5 2.25865
\(459\) −2903.53 −0.295262
\(460\) 10290.8 1.04307
\(461\) 7555.51 0.763330 0.381665 0.924301i \(-0.375351\pi\)
0.381665 + 0.924301i \(0.375351\pi\)
\(462\) 0 0
\(463\) 5480.50 0.550109 0.275055 0.961429i \(-0.411304\pi\)
0.275055 + 0.961429i \(0.411304\pi\)
\(464\) 20352.4 2.03629
\(465\) 3783.66 0.377339
\(466\) −1237.94 −0.123061
\(467\) −10339.7 −1.02455 −0.512275 0.858822i \(-0.671197\pi\)
−0.512275 + 0.858822i \(0.671197\pi\)
\(468\) 912.596 0.0901384
\(469\) 4828.13 0.475357
\(470\) 8171.25 0.801940
\(471\) 7023.95 0.687147
\(472\) 26172.3 2.55229
\(473\) 0 0
\(474\) −19845.1 −1.92303
\(475\) 1753.73 0.169403
\(476\) 11375.4 1.09536
\(477\) −2899.68 −0.278338
\(478\) 3409.54 0.326253
\(479\) 4320.65 0.412141 0.206070 0.978537i \(-0.433932\pi\)
0.206070 + 0.978537i \(0.433932\pi\)
\(480\) 5728.99 0.544774
\(481\) 775.394 0.0735030
\(482\) −12005.6 −1.13453
\(483\) −1685.18 −0.158755
\(484\) 0 0
\(485\) −4203.45 −0.393544
\(486\) 1278.63 0.119341
\(487\) −9426.09 −0.877078 −0.438539 0.898712i \(-0.644504\pi\)
−0.438539 + 0.898712i \(0.644504\pi\)
\(488\) −4625.86 −0.429104
\(489\) −10225.6 −0.945641
\(490\) −8264.51 −0.761944
\(491\) 569.771 0.0523694 0.0261847 0.999657i \(-0.491664\pi\)
0.0261847 + 0.999657i \(0.491664\pi\)
\(492\) 1022.24 0.0936708
\(493\) −13178.3 −1.20389
\(494\) 1901.15 0.173152
\(495\) 0 0
\(496\) 41892.9 3.79244
\(497\) −6405.29 −0.578101
\(498\) 2470.38 0.222290
\(499\) 17072.5 1.53161 0.765804 0.643074i \(-0.222341\pi\)
0.765804 + 0.643074i \(0.222341\pi\)
\(500\) 2460.87 0.220107
\(501\) −2309.15 −0.205919
\(502\) −25621.7 −2.27799
\(503\) 18622.7 1.65079 0.825395 0.564556i \(-0.190953\pi\)
0.825395 + 0.564556i \(0.190953\pi\)
\(504\) −2973.76 −0.262821
\(505\) −9534.58 −0.840165
\(506\) 0 0
\(507\) −6511.41 −0.570379
\(508\) 18525.5 1.61798
\(509\) 16294.6 1.41895 0.709473 0.704733i \(-0.248933\pi\)
0.709473 + 0.704733i \(0.248933\pi\)
\(510\) −8487.74 −0.736948
\(511\) 1490.38 0.129023
\(512\) −18273.5 −1.57731
\(513\) 1894.03 0.163008
\(514\) −7267.50 −0.623649
\(515\) 714.836 0.0611640
\(516\) 27109.2 2.31282
\(517\) 0 0
\(518\) −4256.25 −0.361021
\(519\) 6331.52 0.535497
\(520\) 1583.68 0.133556
\(521\) −20991.0 −1.76513 −0.882565 0.470189i \(-0.844186\pi\)
−0.882565 + 0.470189i \(0.844186\pi\)
\(522\) 5803.31 0.486598
\(523\) 11326.3 0.946966 0.473483 0.880803i \(-0.342997\pi\)
0.473483 + 0.880803i \(0.342997\pi\)
\(524\) 24487.3 2.04147
\(525\) −402.982 −0.0335001
\(526\) −5898.80 −0.488973
\(527\) −27125.8 −2.24216
\(528\) 0 0
\(529\) −1237.41 −0.101702
\(530\) −8476.47 −0.694706
\(531\) 3830.41 0.313043
\(532\) −7420.36 −0.604725
\(533\) 89.1474 0.00724466
\(534\) −1516.95 −0.122931
\(535\) −9541.06 −0.771021
\(536\) −55257.9 −4.45295
\(537\) 4419.76 0.355171
\(538\) −6110.90 −0.489702
\(539\) 0 0
\(540\) 2657.74 0.211798
\(541\) 23994.8 1.90687 0.953433 0.301603i \(-0.0975218\pi\)
0.953433 + 0.301603i \(0.0975218\pi\)
\(542\) −18777.2 −1.48810
\(543\) −6870.01 −0.542948
\(544\) −41072.4 −3.23707
\(545\) −3363.03 −0.264324
\(546\) −436.858 −0.0342414
\(547\) 14347.6 1.12150 0.560748 0.827986i \(-0.310513\pi\)
0.560748 + 0.827986i \(0.310513\pi\)
\(548\) −22189.9 −1.72976
\(549\) −677.009 −0.0526303
\(550\) 0 0
\(551\) 8596.42 0.664646
\(552\) 19286.9 1.48715
\(553\) 6754.89 0.519434
\(554\) −43918.4 −3.36807
\(555\) 2258.17 0.172710
\(556\) −49964.3 −3.81108
\(557\) −19041.9 −1.44853 −0.724265 0.689521i \(-0.757821\pi\)
−0.724265 + 0.689521i \(0.757821\pi\)
\(558\) 11945.4 0.906253
\(559\) 2364.14 0.178878
\(560\) −4461.85 −0.336692
\(561\) 0 0
\(562\) 9069.77 0.680757
\(563\) −15082.0 −1.12900 −0.564502 0.825432i \(-0.690932\pi\)
−0.564502 + 0.825432i \(0.690932\pi\)
\(564\) 18343.4 1.36950
\(565\) −8175.56 −0.608758
\(566\) 10980.2 0.815426
\(567\) −435.220 −0.0322355
\(568\) 73308.5 5.41541
\(569\) −13321.8 −0.981513 −0.490756 0.871297i \(-0.663280\pi\)
−0.490756 + 0.871297i \(0.663280\pi\)
\(570\) 5536.70 0.406854
\(571\) −24112.7 −1.76722 −0.883611 0.468223i \(-0.844895\pi\)
−0.883611 + 0.468223i \(0.844895\pi\)
\(572\) 0 0
\(573\) 11641.0 0.848709
\(574\) −489.343 −0.0355833
\(575\) 2613.62 0.189557
\(576\) 6129.18 0.443372
\(577\) −4355.07 −0.314218 −0.157109 0.987581i \(-0.550217\pi\)
−0.157109 + 0.987581i \(0.550217\pi\)
\(578\) 34999.0 2.51863
\(579\) −2558.93 −0.183671
\(580\) 12062.7 0.863580
\(581\) −840.870 −0.0600433
\(582\) −13270.7 −0.945171
\(583\) 0 0
\(584\) −17057.4 −1.20863
\(585\) 231.777 0.0163808
\(586\) −16456.5 −1.16009
\(587\) 14765.2 1.03820 0.519101 0.854713i \(-0.326267\pi\)
0.519101 + 0.854713i \(0.326267\pi\)
\(588\) −18552.8 −1.30120
\(589\) 17694.7 1.23785
\(590\) 11197.2 0.781327
\(591\) 2300.24 0.160100
\(592\) 25002.6 1.73581
\(593\) −2990.56 −0.207095 −0.103548 0.994625i \(-0.533019\pi\)
−0.103548 + 0.994625i \(0.533019\pi\)
\(594\) 0 0
\(595\) 2889.06 0.199059
\(596\) −51879.5 −3.56555
\(597\) 3726.44 0.255466
\(598\) 2833.33 0.193752
\(599\) −1019.09 −0.0695138 −0.0347569 0.999396i \(-0.511066\pi\)
−0.0347569 + 0.999396i \(0.511066\pi\)
\(600\) 4612.13 0.313815
\(601\) −18514.0 −1.25658 −0.628289 0.777980i \(-0.716244\pi\)
−0.628289 + 0.777980i \(0.716244\pi\)
\(602\) −12977.1 −0.878585
\(603\) −8087.18 −0.546162
\(604\) 52470.9 3.53478
\(605\) 0 0
\(606\) −30101.7 −2.01782
\(607\) −15129.0 −1.01164 −0.505821 0.862638i \(-0.668810\pi\)
−0.505821 + 0.862638i \(0.668810\pi\)
\(608\) 26792.2 1.78712
\(609\) −1975.34 −0.131436
\(610\) −1979.06 −0.131361
\(611\) 1599.70 0.105920
\(612\) −19053.9 −1.25851
\(613\) 10775.7 0.709992 0.354996 0.934868i \(-0.384482\pi\)
0.354996 + 0.934868i \(0.384482\pi\)
\(614\) 7351.42 0.483191
\(615\) 259.623 0.0170228
\(616\) 0 0
\(617\) 13290.2 0.867170 0.433585 0.901113i \(-0.357248\pi\)
0.433585 + 0.901113i \(0.357248\pi\)
\(618\) 2256.81 0.146897
\(619\) −21299.7 −1.38305 −0.691526 0.722352i \(-0.743061\pi\)
−0.691526 + 0.722352i \(0.743061\pi\)
\(620\) 24829.6 1.60835
\(621\) 2822.71 0.182401
\(622\) 28442.6 1.83351
\(623\) 516.342 0.0332052
\(624\) 2566.25 0.164635
\(625\) 625.000 0.0400000
\(626\) 32837.9 2.09659
\(627\) 0 0
\(628\) 46093.4 2.92887
\(629\) −16189.3 −1.02625
\(630\) −1272.26 −0.0804570
\(631\) 13486.2 0.850834 0.425417 0.904997i \(-0.360127\pi\)
0.425417 + 0.904997i \(0.360127\pi\)
\(632\) −77309.7 −4.86584
\(633\) 13043.8 0.819030
\(634\) −36410.1 −2.28081
\(635\) 4705.01 0.294036
\(636\) −19028.6 −1.18637
\(637\) −1617.95 −0.100637
\(638\) 0 0
\(639\) 10728.9 0.664210
\(640\) 2639.79 0.163042
\(641\) 3234.75 0.199321 0.0996605 0.995021i \(-0.468224\pi\)
0.0996605 + 0.995021i \(0.468224\pi\)
\(642\) −30122.1 −1.85175
\(643\) −19623.4 −1.20353 −0.601766 0.798672i \(-0.705536\pi\)
−0.601766 + 0.798672i \(0.705536\pi\)
\(644\) −11058.7 −0.676669
\(645\) 6885.06 0.420308
\(646\) −39693.8 −2.41754
\(647\) −14293.8 −0.868541 −0.434271 0.900782i \(-0.642994\pi\)
−0.434271 + 0.900782i \(0.642994\pi\)
\(648\) 4981.10 0.301969
\(649\) 0 0
\(650\) 677.540 0.0408851
\(651\) −4065.98 −0.244790
\(652\) −67103.9 −4.03066
\(653\) −3963.73 −0.237539 −0.118769 0.992922i \(-0.537895\pi\)
−0.118769 + 0.992922i \(0.537895\pi\)
\(654\) −10617.5 −0.634825
\(655\) 6219.16 0.370997
\(656\) 2874.56 0.171087
\(657\) −2496.41 −0.148241
\(658\) −8780.97 −0.520240
\(659\) −1516.65 −0.0896515 −0.0448258 0.998995i \(-0.514273\pi\)
−0.0448258 + 0.998995i \(0.514273\pi\)
\(660\) 0 0
\(661\) 106.966 0.00629425 0.00314713 0.999995i \(-0.498998\pi\)
0.00314713 + 0.999995i \(0.498998\pi\)
\(662\) −16493.6 −0.968344
\(663\) −1661.66 −0.0973354
\(664\) 9623.76 0.562461
\(665\) −1884.59 −0.109896
\(666\) 7129.28 0.414796
\(667\) 12811.4 0.743719
\(668\) −15153.4 −0.877699
\(669\) −3369.90 −0.194750
\(670\) −23640.8 −1.36317
\(671\) 0 0
\(672\) −6156.48 −0.353410
\(673\) 15728.1 0.900852 0.450426 0.892814i \(-0.351272\pi\)
0.450426 + 0.892814i \(0.351272\pi\)
\(674\) −34122.5 −1.95007
\(675\) 675.000 0.0384900
\(676\) −42730.0 −2.43116
\(677\) −316.806 −0.0179850 −0.00899249 0.999960i \(-0.502862\pi\)
−0.00899249 + 0.999960i \(0.502862\pi\)
\(678\) −25811.1 −1.46205
\(679\) 4517.10 0.255303
\(680\) −33065.3 −1.86470
\(681\) 1305.01 0.0734331
\(682\) 0 0
\(683\) −11621.2 −0.651057 −0.325528 0.945532i \(-0.605542\pi\)
−0.325528 + 0.945532i \(0.605542\pi\)
\(684\) 12429.2 0.694799
\(685\) −5635.68 −0.314348
\(686\) 18578.6 1.03402
\(687\) 12622.1 0.700965
\(688\) 76231.9 4.22429
\(689\) −1659.45 −0.0917562
\(690\) 8251.46 0.455258
\(691\) 22281.8 1.22669 0.613344 0.789816i \(-0.289824\pi\)
0.613344 + 0.789816i \(0.289824\pi\)
\(692\) 41549.5 2.28248
\(693\) 0 0
\(694\) 13339.4 0.729622
\(695\) −12689.7 −0.692586
\(696\) 22607.7 1.23124
\(697\) −1861.29 −0.101150
\(698\) 49036.3 2.65910
\(699\) −705.804 −0.0381917
\(700\) −2644.50 −0.142789
\(701\) 31634.6 1.70445 0.852227 0.523172i \(-0.175251\pi\)
0.852227 + 0.523172i \(0.175251\pi\)
\(702\) 731.743 0.0393417
\(703\) 10560.6 0.566571
\(704\) 0 0
\(705\) 4658.78 0.248879
\(706\) −20828.7 −1.11034
\(707\) 10246.0 0.545038
\(708\) 25136.4 1.33430
\(709\) −7245.11 −0.383774 −0.191887 0.981417i \(-0.561461\pi\)
−0.191887 + 0.981417i \(0.561461\pi\)
\(710\) 31363.3 1.65781
\(711\) −11314.5 −0.596804
\(712\) −5909.54 −0.311052
\(713\) 26370.7 1.38512
\(714\) 9121.08 0.478078
\(715\) 0 0
\(716\) 29003.9 1.51386
\(717\) 1943.93 0.101251
\(718\) −57229.1 −2.97461
\(719\) −33452.4 −1.73514 −0.867569 0.497317i \(-0.834319\pi\)
−0.867569 + 0.497317i \(0.834319\pi\)
\(720\) 7473.65 0.386842
\(721\) −768.176 −0.0396787
\(722\) −10198.0 −0.525665
\(723\) −6844.92 −0.352096
\(724\) −45083.3 −2.31424
\(725\) 3063.63 0.156938
\(726\) 0 0
\(727\) 7395.29 0.377271 0.188636 0.982047i \(-0.439594\pi\)
0.188636 + 0.982047i \(0.439594\pi\)
\(728\) −1701.85 −0.0866411
\(729\) 729.000 0.0370370
\(730\) −7297.61 −0.369996
\(731\) −49360.5 −2.49749
\(732\) −4442.76 −0.224329
\(733\) 666.961 0.0336082 0.0168041 0.999859i \(-0.494651\pi\)
0.0168041 + 0.999859i \(0.494651\pi\)
\(734\) 22062.2 1.10944
\(735\) −4711.95 −0.236466
\(736\) 39929.0 1.99973
\(737\) 0 0
\(738\) 819.656 0.0408834
\(739\) −25530.9 −1.27087 −0.635433 0.772156i \(-0.719178\pi\)
−0.635433 + 0.772156i \(0.719178\pi\)
\(740\) 14818.8 0.736151
\(741\) 1083.93 0.0537370
\(742\) 9108.97 0.450675
\(743\) 11909.0 0.588019 0.294009 0.955803i \(-0.405010\pi\)
0.294009 + 0.955803i \(0.405010\pi\)
\(744\) 46535.2 2.29309
\(745\) −13176.1 −0.647966
\(746\) −58453.4 −2.86881
\(747\) 1408.47 0.0689869
\(748\) 0 0
\(749\) 10253.0 0.500182
\(750\) 1973.19 0.0960676
\(751\) −16437.5 −0.798685 −0.399343 0.916802i \(-0.630762\pi\)
−0.399343 + 0.916802i \(0.630762\pi\)
\(752\) 51582.4 2.50135
\(753\) −14608.0 −0.706966
\(754\) 3321.17 0.160411
\(755\) 13326.3 0.642375
\(756\) −2856.06 −0.137399
\(757\) 38642.1 1.85531 0.927657 0.373434i \(-0.121820\pi\)
0.927657 + 0.373434i \(0.121820\pi\)
\(758\) −24816.8 −1.18917
\(759\) 0 0
\(760\) 21569.1 1.02946
\(761\) −32325.7 −1.53982 −0.769912 0.638150i \(-0.779700\pi\)
−0.769912 + 0.638150i \(0.779700\pi\)
\(762\) 14854.2 0.706183
\(763\) 3613.98 0.171474
\(764\) 76392.1 3.61750
\(765\) −4839.22 −0.228709
\(766\) 53234.6 2.51102
\(767\) 2192.10 0.103197
\(768\) −8010.39 −0.376367
\(769\) −29461.5 −1.38155 −0.690773 0.723072i \(-0.742730\pi\)
−0.690773 + 0.723072i \(0.742730\pi\)
\(770\) 0 0
\(771\) −4143.51 −0.193547
\(772\) −16792.6 −0.782872
\(773\) 28275.2 1.31564 0.657820 0.753175i \(-0.271479\pi\)
0.657820 + 0.753175i \(0.271479\pi\)
\(774\) 21736.9 1.00945
\(775\) 6306.09 0.292286
\(776\) −51698.2 −2.39157
\(777\) −2426.67 −0.112042
\(778\) 59574.8 2.74532
\(779\) 1214.15 0.0558428
\(780\) 1520.99 0.0698209
\(781\) 0 0
\(782\) −59156.5 −2.70516
\(783\) 3308.72 0.151014
\(784\) −52171.1 −2.37660
\(785\) 11706.6 0.532262
\(786\) 19634.6 0.891019
\(787\) −27311.6 −1.23705 −0.618523 0.785767i \(-0.712269\pi\)
−0.618523 + 0.785767i \(0.712269\pi\)
\(788\) 15094.9 0.682405
\(789\) −3363.16 −0.151751
\(790\) −33075.1 −1.48957
\(791\) 8785.61 0.394918
\(792\) 0 0
\(793\) −387.444 −0.0173500
\(794\) 28416.1 1.27009
\(795\) −4832.80 −0.215600
\(796\) 24454.1 1.08888
\(797\) −35217.6 −1.56521 −0.782605 0.622518i \(-0.786110\pi\)
−0.782605 + 0.622518i \(0.786110\pi\)
\(798\) −5949.84 −0.263937
\(799\) −33399.8 −1.47885
\(800\) 9548.32 0.421980
\(801\) −864.880 −0.0381511
\(802\) 72521.1 3.19303
\(803\) 0 0
\(804\) −53070.7 −2.32794
\(805\) −2808.64 −0.122971
\(806\) 6836.21 0.298753
\(807\) −3484.08 −0.151977
\(808\) −117266. −5.10569
\(809\) 26775.1 1.16361 0.581806 0.813327i \(-0.302346\pi\)
0.581806 + 0.813327i \(0.302346\pi\)
\(810\) 2131.05 0.0924411
\(811\) −22851.7 −0.989434 −0.494717 0.869054i \(-0.664728\pi\)
−0.494717 + 0.869054i \(0.664728\pi\)
\(812\) −12962.8 −0.560228
\(813\) −10705.7 −0.461827
\(814\) 0 0
\(815\) −17042.7 −0.732491
\(816\) −53580.2 −2.29863
\(817\) 32198.7 1.37881
\(818\) 595.074 0.0254356
\(819\) −249.071 −0.0106267
\(820\) 1703.73 0.0725571
\(821\) −11277.7 −0.479408 −0.239704 0.970846i \(-0.577050\pi\)
−0.239704 + 0.970846i \(0.577050\pi\)
\(822\) −17792.4 −0.754967
\(823\) 3325.42 0.140847 0.0704234 0.997517i \(-0.477565\pi\)
0.0704234 + 0.997517i \(0.477565\pi\)
\(824\) 8791.77 0.371694
\(825\) 0 0
\(826\) −12032.7 −0.506868
\(827\) −9271.96 −0.389864 −0.194932 0.980817i \(-0.562449\pi\)
−0.194932 + 0.980817i \(0.562449\pi\)
\(828\) 18523.5 0.777460
\(829\) 7773.46 0.325674 0.162837 0.986653i \(-0.447936\pi\)
0.162837 + 0.986653i \(0.447936\pi\)
\(830\) 4117.30 0.172185
\(831\) −25039.7 −1.04527
\(832\) 3507.66 0.146161
\(833\) 33781.0 1.40509
\(834\) −40062.7 −1.66338
\(835\) −3848.59 −0.159504
\(836\) 0 0
\(837\) 6810.58 0.281252
\(838\) 38687.6 1.59480
\(839\) 8879.30 0.365372 0.182686 0.983171i \(-0.441521\pi\)
0.182686 + 0.983171i \(0.441521\pi\)
\(840\) −4956.27 −0.203581
\(841\) −9371.72 −0.384260
\(842\) 17400.8 0.712197
\(843\) 5171.07 0.211270
\(844\) 85597.9 3.49100
\(845\) −10852.4 −0.441814
\(846\) 14708.3 0.597731
\(847\) 0 0
\(848\) −53509.1 −2.16687
\(849\) 6260.27 0.253065
\(850\) −14146.2 −0.570837
\(851\) 15738.7 0.633976
\(852\) 70406.8 2.83110
\(853\) −20374.6 −0.817835 −0.408917 0.912571i \(-0.634094\pi\)
−0.408917 + 0.912571i \(0.634094\pi\)
\(854\) 2126.74 0.0852172
\(855\) 3156.71 0.126266
\(856\) −117346. −4.68550
\(857\) 47483.4 1.89265 0.946326 0.323213i \(-0.104763\pi\)
0.946326 + 0.323213i \(0.104763\pi\)
\(858\) 0 0
\(859\) −10722.1 −0.425882 −0.212941 0.977065i \(-0.568304\pi\)
−0.212941 + 0.977065i \(0.568304\pi\)
\(860\) 45182.0 1.79150
\(861\) −278.995 −0.0110431
\(862\) −52407.3 −2.07076
\(863\) 18040.1 0.711578 0.355789 0.934566i \(-0.384212\pi\)
0.355789 + 0.934566i \(0.384212\pi\)
\(864\) 10312.2 0.406050
\(865\) 10552.5 0.414794
\(866\) 57422.8 2.25324
\(867\) 19954.4 0.781647
\(868\) −26682.3 −1.04338
\(869\) 0 0
\(870\) 9672.19 0.376917
\(871\) −4628.20 −0.180047
\(872\) −41362.0 −1.60630
\(873\) −7566.21 −0.293330
\(874\) 38588.9 1.49346
\(875\) −671.636 −0.0259491
\(876\) −16382.2 −0.631855
\(877\) 26506.3 1.02059 0.510294 0.860000i \(-0.329537\pi\)
0.510294 + 0.860000i \(0.329537\pi\)
\(878\) 34673.4 1.33277
\(879\) −9382.55 −0.360029
\(880\) 0 0
\(881\) 14870.8 0.568685 0.284342 0.958723i \(-0.408225\pi\)
0.284342 + 0.958723i \(0.408225\pi\)
\(882\) −14876.1 −0.567919
\(883\) 42210.9 1.60873 0.804366 0.594134i \(-0.202505\pi\)
0.804366 + 0.594134i \(0.202505\pi\)
\(884\) −10904.3 −0.414878
\(885\) 6384.02 0.242482
\(886\) −13667.3 −0.518240
\(887\) 20743.2 0.785220 0.392610 0.919705i \(-0.371572\pi\)
0.392610 + 0.919705i \(0.371572\pi\)
\(888\) 27773.2 1.04956
\(889\) −5056.09 −0.190749
\(890\) −2528.26 −0.0952218
\(891\) 0 0
\(892\) −22114.3 −0.830093
\(893\) 21787.3 0.816443
\(894\) −41598.3 −1.55622
\(895\) 7366.26 0.275114
\(896\) −2836.76 −0.105770
\(897\) 1615.40 0.0601301
\(898\) 33993.1 1.26321
\(899\) 30911.2 1.14677
\(900\) 4429.57 0.164058
\(901\) 34647.4 1.28110
\(902\) 0 0
\(903\) −7398.81 −0.272666
\(904\) −100551. −3.69943
\(905\) −11450.0 −0.420565
\(906\) 42072.5 1.54279
\(907\) 34322.7 1.25652 0.628261 0.778002i \(-0.283767\pi\)
0.628261 + 0.778002i \(0.283767\pi\)
\(908\) 8563.87 0.312998
\(909\) −17162.2 −0.626222
\(910\) −728.097 −0.0265233
\(911\) 46372.6 1.68649 0.843245 0.537529i \(-0.180642\pi\)
0.843245 + 0.537529i \(0.180642\pi\)
\(912\) 34951.3 1.26903
\(913\) 0 0
\(914\) −40390.5 −1.46171
\(915\) −1128.35 −0.0407673
\(916\) 82830.3 2.98776
\(917\) −6683.23 −0.240676
\(918\) −15277.9 −0.549288
\(919\) −15809.4 −0.567469 −0.283734 0.958903i \(-0.591573\pi\)
−0.283734 + 0.958903i \(0.591573\pi\)
\(920\) 32144.9 1.15194
\(921\) 4191.36 0.149957
\(922\) 39755.9 1.42005
\(923\) 6140.05 0.218962
\(924\) 0 0
\(925\) 3763.62 0.133781
\(926\) 28837.5 1.02339
\(927\) 1286.70 0.0455889
\(928\) 46804.0 1.65562
\(929\) 37806.1 1.33517 0.667587 0.744532i \(-0.267327\pi\)
0.667587 + 0.744532i \(0.267327\pi\)
\(930\) 19909.0 0.701980
\(931\) −22035.9 −0.775723
\(932\) −4631.72 −0.162786
\(933\) 16216.4 0.569025
\(934\) −54405.9 −1.90601
\(935\) 0 0
\(936\) 2850.62 0.0995464
\(937\) 2703.76 0.0942669 0.0471334 0.998889i \(-0.484991\pi\)
0.0471334 + 0.998889i \(0.484991\pi\)
\(938\) 25404.9 0.884326
\(939\) 18722.3 0.650670
\(940\) 30572.4 1.06081
\(941\) −42365.9 −1.46768 −0.733841 0.679322i \(-0.762274\pi\)
−0.733841 + 0.679322i \(0.762274\pi\)
\(942\) 36958.9 1.27833
\(943\) 1809.48 0.0624865
\(944\) 70684.3 2.43705
\(945\) −725.367 −0.0249695
\(946\) 0 0
\(947\) −7085.97 −0.243150 −0.121575 0.992582i \(-0.538794\pi\)
−0.121575 + 0.992582i \(0.538794\pi\)
\(948\) −74249.6 −2.54379
\(949\) −1428.66 −0.0488687
\(950\) 9227.84 0.315148
\(951\) −20759.0 −0.707840
\(952\) 35532.6 1.20968
\(953\) −26409.0 −0.897662 −0.448831 0.893617i \(-0.648160\pi\)
−0.448831 + 0.893617i \(0.648160\pi\)
\(954\) −15257.6 −0.517803
\(955\) 19401.7 0.657407
\(956\) 12756.7 0.431569
\(957\) 0 0
\(958\) 22734.6 0.766723
\(959\) 6056.21 0.203926
\(960\) 10215.3 0.343435
\(961\) 33835.9 1.13578
\(962\) 4080.00 0.136741
\(963\) −17173.9 −0.574685
\(964\) −44918.6 −1.50076
\(965\) −4264.89 −0.142271
\(966\) −8867.17 −0.295338
\(967\) −31278.1 −1.04016 −0.520081 0.854117i \(-0.674098\pi\)
−0.520081 + 0.854117i \(0.674098\pi\)
\(968\) 0 0
\(969\) −22631.1 −0.750275
\(970\) −22117.9 −0.732126
\(971\) −10461.4 −0.345750 −0.172875 0.984944i \(-0.555306\pi\)
−0.172875 + 0.984944i \(0.555306\pi\)
\(972\) 4783.93 0.157865
\(973\) 13636.6 0.449300
\(974\) −49598.6 −1.63167
\(975\) 386.294 0.0126885
\(976\) −12493.2 −0.409730
\(977\) −38539.6 −1.26202 −0.631008 0.775776i \(-0.717359\pi\)
−0.631008 + 0.775776i \(0.717359\pi\)
\(978\) −53805.6 −1.75922
\(979\) 0 0
\(980\) −30921.3 −1.00790
\(981\) −6053.46 −0.197015
\(982\) 2998.04 0.0974250
\(983\) 48220.9 1.56461 0.782304 0.622897i \(-0.214045\pi\)
0.782304 + 0.622897i \(0.214045\pi\)
\(984\) 3193.10 0.103448
\(985\) 3833.74 0.124013
\(986\) −69342.0 −2.23965
\(987\) −5006.41 −0.161455
\(988\) 7113.09 0.229046
\(989\) 47986.4 1.54285
\(990\) 0 0
\(991\) 19959.7 0.639798 0.319899 0.947452i \(-0.396351\pi\)
0.319899 + 0.947452i \(0.396351\pi\)
\(992\) 96340.1 3.08347
\(993\) −9403.73 −0.300522
\(994\) −33703.6 −1.07547
\(995\) 6210.73 0.197883
\(996\) 9242.83 0.294046
\(997\) 59491.3 1.88978 0.944889 0.327392i \(-0.106170\pi\)
0.944889 + 0.327392i \(0.106170\pi\)
\(998\) 89833.0 2.84931
\(999\) 4064.71 0.128730
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1815.4.a.bb.1.6 yes 6
11.10 odd 2 inner 1815.4.a.bb.1.1 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1815.4.a.bb.1.1 6 11.10 odd 2 inner
1815.4.a.bb.1.6 yes 6 1.1 even 1 trivial