Properties

Label 1815.4.a.bb.1.2
Level $1815$
Weight $4$
Character 1815.1
Self dual yes
Analytic conductor $107.088$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1815,4,Mod(1,1815)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1815, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1815.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1815 = 3 \cdot 5 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1815.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(107.088466660\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: \(\mathbb{Q}[x]/(x^{6} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 44x^{4} + 495x^{2} - 1200 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{4}\cdot 5 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-3.60164\) of defining polynomial
Character \(\chi\) \(=\) 1815.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-3.60164 q^{2} +3.00000 q^{3} +4.97180 q^{4} +5.00000 q^{5} -10.8049 q^{6} -31.6129 q^{7} +10.9065 q^{8} +9.00000 q^{9} +O(q^{10})\) \(q-3.60164 q^{2} +3.00000 q^{3} +4.97180 q^{4} +5.00000 q^{5} -10.8049 q^{6} -31.6129 q^{7} +10.9065 q^{8} +9.00000 q^{9} -18.0082 q^{10} +14.9154 q^{12} -38.8162 q^{13} +113.858 q^{14} +15.0000 q^{15} -79.0556 q^{16} -138.261 q^{17} -32.4148 q^{18} -12.5997 q^{19} +24.8590 q^{20} -94.8387 q^{21} -179.716 q^{23} +32.7194 q^{24} +25.0000 q^{25} +139.802 q^{26} +27.0000 q^{27} -157.173 q^{28} -119.045 q^{29} -54.0246 q^{30} +75.6616 q^{31} +197.478 q^{32} +497.968 q^{34} -158.064 q^{35} +44.7462 q^{36} -133.716 q^{37} +45.3797 q^{38} -116.449 q^{39} +54.5324 q^{40} -47.0124 q^{41} +341.575 q^{42} +74.0172 q^{43} +45.0000 q^{45} +647.274 q^{46} -375.658 q^{47} -237.167 q^{48} +656.375 q^{49} -90.0410 q^{50} -414.784 q^{51} -192.986 q^{52} -76.7013 q^{53} -97.2443 q^{54} -344.785 q^{56} -37.7992 q^{57} +428.758 q^{58} +866.360 q^{59} +74.5770 q^{60} -442.580 q^{61} -272.506 q^{62} -284.516 q^{63} -78.7994 q^{64} -194.081 q^{65} -633.006 q^{67} -687.409 q^{68} -539.149 q^{69} +569.291 q^{70} -484.728 q^{71} +98.1583 q^{72} +436.143 q^{73} +481.598 q^{74} +75.0000 q^{75} -62.6434 q^{76} +419.405 q^{78} +472.439 q^{79} -395.278 q^{80} +81.0000 q^{81} +169.322 q^{82} -249.160 q^{83} -471.519 q^{84} -691.307 q^{85} -266.583 q^{86} -357.136 q^{87} +236.982 q^{89} -162.074 q^{90} +1227.09 q^{91} -893.515 q^{92} +226.985 q^{93} +1352.99 q^{94} -62.9986 q^{95} +592.434 q^{96} +1522.39 q^{97} -2364.03 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 18 q^{3} + 40 q^{4} + 30 q^{5} + 54 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 6 q + 18 q^{3} + 40 q^{4} + 30 q^{5} + 54 q^{9} + 120 q^{12} + 116 q^{14} + 90 q^{15} + 164 q^{16} + 200 q^{20} + 56 q^{23} + 150 q^{25} + 292 q^{26} + 162 q^{27} + 576 q^{31} - 92 q^{34} + 360 q^{36} + 332 q^{37} + 496 q^{38} + 348 q^{42} + 270 q^{45} + 96 q^{47} + 492 q^{48} + 454 q^{49} + 308 q^{53} - 652 q^{56} + 1784 q^{58} + 2080 q^{59} + 600 q^{60} + 1928 q^{64} - 1168 q^{67} + 168 q^{69} + 580 q^{70} + 1064 q^{71} + 450 q^{75} + 876 q^{78} + 820 q^{80} + 486 q^{81} + 24 q^{82} + 5412 q^{86} - 684 q^{89} + 2744 q^{91} + 1368 q^{92} + 1728 q^{93} + 2812 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −3.60164 −1.27337 −0.636686 0.771123i \(-0.719695\pi\)
−0.636686 + 0.771123i \(0.719695\pi\)
\(3\) 3.00000 0.577350
\(4\) 4.97180 0.621475
\(5\) 5.00000 0.447214
\(6\) −10.8049 −0.735181
\(7\) −31.6129 −1.70694 −0.853468 0.521146i \(-0.825505\pi\)
−0.853468 + 0.521146i \(0.825505\pi\)
\(8\) 10.9065 0.482003
\(9\) 9.00000 0.333333
\(10\) −18.0082 −0.569469
\(11\) 0 0
\(12\) 14.9154 0.358809
\(13\) −38.8162 −0.828128 −0.414064 0.910248i \(-0.635891\pi\)
−0.414064 + 0.910248i \(0.635891\pi\)
\(14\) 113.858 2.17356
\(15\) 15.0000 0.258199
\(16\) −79.0556 −1.23524
\(17\) −138.261 −1.97255 −0.986274 0.165115i \(-0.947201\pi\)
−0.986274 + 0.165115i \(0.947201\pi\)
\(18\) −32.4148 −0.424457
\(19\) −12.5997 −0.152136 −0.0760678 0.997103i \(-0.524237\pi\)
−0.0760678 + 0.997103i \(0.524237\pi\)
\(20\) 24.8590 0.277932
\(21\) −94.8387 −0.985500
\(22\) 0 0
\(23\) −179.716 −1.62928 −0.814641 0.579966i \(-0.803066\pi\)
−0.814641 + 0.579966i \(0.803066\pi\)
\(24\) 32.7194 0.278284
\(25\) 25.0000 0.200000
\(26\) 139.802 1.05452
\(27\) 27.0000 0.192450
\(28\) −157.173 −1.06082
\(29\) −119.045 −0.762280 −0.381140 0.924517i \(-0.624468\pi\)
−0.381140 + 0.924517i \(0.624468\pi\)
\(30\) −54.0246 −0.328783
\(31\) 75.6616 0.438362 0.219181 0.975684i \(-0.429661\pi\)
0.219181 + 0.975684i \(0.429661\pi\)
\(32\) 197.478 1.09092
\(33\) 0 0
\(34\) 497.968 2.51179
\(35\) −158.064 −0.763365
\(36\) 44.7462 0.207158
\(37\) −133.716 −0.594131 −0.297066 0.954857i \(-0.596008\pi\)
−0.297066 + 0.954857i \(0.596008\pi\)
\(38\) 45.3797 0.193725
\(39\) −116.449 −0.478120
\(40\) 54.5324 0.215558
\(41\) −47.0124 −0.179076 −0.0895378 0.995983i \(-0.528539\pi\)
−0.0895378 + 0.995983i \(0.528539\pi\)
\(42\) 341.575 1.25491
\(43\) 74.0172 0.262501 0.131250 0.991349i \(-0.458101\pi\)
0.131250 + 0.991349i \(0.458101\pi\)
\(44\) 0 0
\(45\) 45.0000 0.149071
\(46\) 647.274 2.07468
\(47\) −375.658 −1.16586 −0.582930 0.812522i \(-0.698094\pi\)
−0.582930 + 0.812522i \(0.698094\pi\)
\(48\) −237.167 −0.713168
\(49\) 656.375 1.91363
\(50\) −90.0410 −0.254674
\(51\) −414.784 −1.13885
\(52\) −192.986 −0.514661
\(53\) −76.7013 −0.198788 −0.0993938 0.995048i \(-0.531690\pi\)
−0.0993938 + 0.995048i \(0.531690\pi\)
\(54\) −97.2443 −0.245060
\(55\) 0 0
\(56\) −344.785 −0.822747
\(57\) −37.7992 −0.0878355
\(58\) 428.758 0.970666
\(59\) 866.360 1.91170 0.955851 0.293851i \(-0.0949370\pi\)
0.955851 + 0.293851i \(0.0949370\pi\)
\(60\) 74.5770 0.160464
\(61\) −442.580 −0.928961 −0.464481 0.885583i \(-0.653759\pi\)
−0.464481 + 0.885583i \(0.653759\pi\)
\(62\) −272.506 −0.558198
\(63\) −284.516 −0.568979
\(64\) −78.7994 −0.153905
\(65\) −194.081 −0.370350
\(66\) 0 0
\(67\) −633.006 −1.15424 −0.577120 0.816660i \(-0.695823\pi\)
−0.577120 + 0.816660i \(0.695823\pi\)
\(68\) −687.409 −1.22589
\(69\) −539.149 −0.940666
\(70\) 569.291 0.972047
\(71\) −484.728 −0.810235 −0.405117 0.914265i \(-0.632769\pi\)
−0.405117 + 0.914265i \(0.632769\pi\)
\(72\) 98.1583 0.160668
\(73\) 436.143 0.699270 0.349635 0.936886i \(-0.386306\pi\)
0.349635 + 0.936886i \(0.386306\pi\)
\(74\) 481.598 0.756550
\(75\) 75.0000 0.115470
\(76\) −62.6434 −0.0945485
\(77\) 0 0
\(78\) 419.405 0.608825
\(79\) 472.439 0.672830 0.336415 0.941714i \(-0.390786\pi\)
0.336415 + 0.941714i \(0.390786\pi\)
\(80\) −395.278 −0.552418
\(81\) 81.0000 0.111111
\(82\) 169.322 0.228030
\(83\) −249.160 −0.329504 −0.164752 0.986335i \(-0.552682\pi\)
−0.164752 + 0.986335i \(0.552682\pi\)
\(84\) −471.519 −0.612464
\(85\) −691.307 −0.882151
\(86\) −266.583 −0.334261
\(87\) −357.136 −0.440103
\(88\) 0 0
\(89\) 236.982 0.282247 0.141124 0.989992i \(-0.454928\pi\)
0.141124 + 0.989992i \(0.454928\pi\)
\(90\) −162.074 −0.189823
\(91\) 1227.09 1.41356
\(92\) −893.515 −1.01256
\(93\) 226.985 0.253089
\(94\) 1352.99 1.48457
\(95\) −62.9986 −0.0680371
\(96\) 592.434 0.629844
\(97\) 1522.39 1.59356 0.796778 0.604272i \(-0.206536\pi\)
0.796778 + 0.604272i \(0.206536\pi\)
\(98\) −2364.03 −2.43676
\(99\) 0 0
\(100\) 124.295 0.124295
\(101\) 1551.66 1.52867 0.764335 0.644819i \(-0.223067\pi\)
0.764335 + 0.644819i \(0.223067\pi\)
\(102\) 1493.90 1.45018
\(103\) −1454.92 −1.39182 −0.695911 0.718128i \(-0.744999\pi\)
−0.695911 + 0.718128i \(0.744999\pi\)
\(104\) −423.347 −0.399160
\(105\) −474.193 −0.440729
\(106\) 276.251 0.253130
\(107\) −179.206 −0.161912 −0.0809558 0.996718i \(-0.525797\pi\)
−0.0809558 + 0.996718i \(0.525797\pi\)
\(108\) 134.239 0.119603
\(109\) −2011.72 −1.76777 −0.883887 0.467700i \(-0.845083\pi\)
−0.883887 + 0.467700i \(0.845083\pi\)
\(110\) 0 0
\(111\) −401.149 −0.343022
\(112\) 2499.18 2.10848
\(113\) 2041.59 1.69962 0.849808 0.527092i \(-0.176718\pi\)
0.849808 + 0.527092i \(0.176718\pi\)
\(114\) 136.139 0.111847
\(115\) −898.582 −0.728637
\(116\) −591.869 −0.473739
\(117\) −349.346 −0.276043
\(118\) −3120.32 −2.43431
\(119\) 4370.84 3.36701
\(120\) 163.597 0.124453
\(121\) 0 0
\(122\) 1594.02 1.18291
\(123\) −141.037 −0.103389
\(124\) 376.175 0.272431
\(125\) 125.000 0.0894427
\(126\) 1024.72 0.724521
\(127\) 804.825 0.562336 0.281168 0.959659i \(-0.409278\pi\)
0.281168 + 0.959659i \(0.409278\pi\)
\(128\) −1296.02 −0.894943
\(129\) 222.052 0.151555
\(130\) 699.009 0.471594
\(131\) −1699.61 −1.13356 −0.566778 0.823871i \(-0.691810\pi\)
−0.566778 + 0.823871i \(0.691810\pi\)
\(132\) 0 0
\(133\) 398.314 0.259686
\(134\) 2279.86 1.46978
\(135\) 135.000 0.0860663
\(136\) −1507.94 −0.950774
\(137\) 1187.12 0.740311 0.370156 0.928970i \(-0.379304\pi\)
0.370156 + 0.928970i \(0.379304\pi\)
\(138\) 1941.82 1.19782
\(139\) 2687.64 1.64002 0.820010 0.572350i \(-0.193968\pi\)
0.820010 + 0.572350i \(0.193968\pi\)
\(140\) −785.865 −0.474412
\(141\) −1126.98 −0.673110
\(142\) 1745.82 1.03173
\(143\) 0 0
\(144\) −711.500 −0.411748
\(145\) −595.226 −0.340902
\(146\) −1570.83 −0.890430
\(147\) 1969.12 1.10483
\(148\) −664.812 −0.369238
\(149\) −2893.54 −1.59092 −0.795462 0.606004i \(-0.792772\pi\)
−0.795462 + 0.606004i \(0.792772\pi\)
\(150\) −270.123 −0.147036
\(151\) −25.1251 −0.0135408 −0.00677038 0.999977i \(-0.502155\pi\)
−0.00677038 + 0.999977i \(0.502155\pi\)
\(152\) −137.419 −0.0733297
\(153\) −1244.35 −0.657516
\(154\) 0 0
\(155\) 378.308 0.196042
\(156\) −578.959 −0.297140
\(157\) −1109.99 −0.564246 −0.282123 0.959378i \(-0.591039\pi\)
−0.282123 + 0.959378i \(0.591039\pi\)
\(158\) −1701.55 −0.856762
\(159\) −230.104 −0.114770
\(160\) 987.390 0.487875
\(161\) 5681.36 2.78108
\(162\) −291.733 −0.141486
\(163\) −3513.43 −1.68830 −0.844151 0.536105i \(-0.819895\pi\)
−0.844151 + 0.536105i \(0.819895\pi\)
\(164\) −233.736 −0.111291
\(165\) 0 0
\(166\) 897.384 0.419581
\(167\) 3213.84 1.48919 0.744594 0.667517i \(-0.232643\pi\)
0.744594 + 0.667517i \(0.232643\pi\)
\(168\) −1034.36 −0.475013
\(169\) −690.305 −0.314203
\(170\) 2489.84 1.12331
\(171\) −113.398 −0.0507118
\(172\) 367.999 0.163138
\(173\) −2783.27 −1.22317 −0.611583 0.791180i \(-0.709467\pi\)
−0.611583 + 0.791180i \(0.709467\pi\)
\(174\) 1286.27 0.560414
\(175\) −790.322 −0.341387
\(176\) 0 0
\(177\) 2599.08 1.10372
\(178\) −853.523 −0.359406
\(179\) 1532.11 0.639751 0.319876 0.947460i \(-0.396359\pi\)
0.319876 + 0.947460i \(0.396359\pi\)
\(180\) 223.731 0.0926441
\(181\) −23.1715 −0.00951561 −0.00475780 0.999989i \(-0.501514\pi\)
−0.00475780 + 0.999989i \(0.501514\pi\)
\(182\) −4419.54 −1.79999
\(183\) −1327.74 −0.536336
\(184\) −1960.07 −0.785318
\(185\) −668.582 −0.265703
\(186\) −817.518 −0.322276
\(187\) 0 0
\(188\) −1867.70 −0.724553
\(189\) −853.548 −0.328500
\(190\) 226.898 0.0866365
\(191\) −4258.34 −1.61321 −0.806604 0.591092i \(-0.798697\pi\)
−0.806604 + 0.591092i \(0.798697\pi\)
\(192\) −236.398 −0.0888572
\(193\) 122.310 0.0456169 0.0228085 0.999740i \(-0.492739\pi\)
0.0228085 + 0.999740i \(0.492739\pi\)
\(194\) −5483.09 −2.02919
\(195\) −582.243 −0.213822
\(196\) 3263.37 1.18927
\(197\) −1512.84 −0.547134 −0.273567 0.961853i \(-0.588203\pi\)
−0.273567 + 0.961853i \(0.588203\pi\)
\(198\) 0 0
\(199\) 1398.64 0.498227 0.249114 0.968474i \(-0.419861\pi\)
0.249114 + 0.968474i \(0.419861\pi\)
\(200\) 272.662 0.0964005
\(201\) −1899.02 −0.666400
\(202\) −5588.51 −1.94657
\(203\) 3763.36 1.30116
\(204\) −2062.23 −0.707768
\(205\) −235.062 −0.0800851
\(206\) 5240.10 1.77231
\(207\) −1617.45 −0.543094
\(208\) 3068.64 1.02294
\(209\) 0 0
\(210\) 1707.87 0.561212
\(211\) −609.235 −0.198775 −0.0993873 0.995049i \(-0.531688\pi\)
−0.0993873 + 0.995049i \(0.531688\pi\)
\(212\) −381.344 −0.123542
\(213\) −1454.19 −0.467789
\(214\) 645.437 0.206174
\(215\) 370.086 0.117394
\(216\) 294.475 0.0927614
\(217\) −2391.88 −0.748256
\(218\) 7245.47 2.25103
\(219\) 1308.43 0.403723
\(220\) 0 0
\(221\) 5366.78 1.63352
\(222\) 1444.79 0.436794
\(223\) −2983.97 −0.896060 −0.448030 0.894019i \(-0.647874\pi\)
−0.448030 + 0.894019i \(0.647874\pi\)
\(224\) −6242.85 −1.86213
\(225\) 225.000 0.0666667
\(226\) −7353.07 −2.16424
\(227\) 762.600 0.222976 0.111488 0.993766i \(-0.464438\pi\)
0.111488 + 0.993766i \(0.464438\pi\)
\(228\) −187.930 −0.0545876
\(229\) −4537.22 −1.30929 −0.654646 0.755935i \(-0.727182\pi\)
−0.654646 + 0.755935i \(0.727182\pi\)
\(230\) 3236.37 0.927825
\(231\) 0 0
\(232\) −1298.36 −0.367421
\(233\) −399.725 −0.112390 −0.0561950 0.998420i \(-0.517897\pi\)
−0.0561950 + 0.998420i \(0.517897\pi\)
\(234\) 1258.22 0.351505
\(235\) −1878.29 −0.521388
\(236\) 4307.37 1.18808
\(237\) 1417.32 0.388458
\(238\) −15742.2 −4.28746
\(239\) 3303.30 0.894029 0.447015 0.894527i \(-0.352487\pi\)
0.447015 + 0.894527i \(0.352487\pi\)
\(240\) −1185.83 −0.318939
\(241\) −2398.59 −0.641107 −0.320553 0.947230i \(-0.603869\pi\)
−0.320553 + 0.947230i \(0.603869\pi\)
\(242\) 0 0
\(243\) 243.000 0.0641500
\(244\) −2200.42 −0.577326
\(245\) 3281.87 0.855801
\(246\) 507.965 0.131653
\(247\) 489.073 0.125988
\(248\) 825.202 0.211292
\(249\) −747.480 −0.190239
\(250\) −450.205 −0.113894
\(251\) 2613.23 0.657153 0.328577 0.944477i \(-0.393431\pi\)
0.328577 + 0.944477i \(0.393431\pi\)
\(252\) −1414.56 −0.353606
\(253\) 0 0
\(254\) −2898.69 −0.716063
\(255\) −2073.92 −0.509310
\(256\) 5298.18 1.29350
\(257\) 5774.18 1.40149 0.700746 0.713411i \(-0.252851\pi\)
0.700746 + 0.713411i \(0.252851\pi\)
\(258\) −799.750 −0.192986
\(259\) 4227.16 1.01414
\(260\) −964.932 −0.230164
\(261\) −1071.41 −0.254093
\(262\) 6121.39 1.44344
\(263\) 6772.15 1.58779 0.793895 0.608055i \(-0.208050\pi\)
0.793895 + 0.608055i \(0.208050\pi\)
\(264\) 0 0
\(265\) −383.507 −0.0889005
\(266\) −1434.58 −0.330676
\(267\) 710.945 0.162956
\(268\) −3147.18 −0.717331
\(269\) −3059.42 −0.693442 −0.346721 0.937968i \(-0.612705\pi\)
−0.346721 + 0.937968i \(0.612705\pi\)
\(270\) −486.221 −0.109594
\(271\) 1420.57 0.318427 0.159213 0.987244i \(-0.449104\pi\)
0.159213 + 0.987244i \(0.449104\pi\)
\(272\) 10930.3 2.43658
\(273\) 3681.27 0.816120
\(274\) −4275.58 −0.942691
\(275\) 0 0
\(276\) −2680.54 −0.584601
\(277\) −614.227 −0.133232 −0.0666161 0.997779i \(-0.521220\pi\)
−0.0666161 + 0.997779i \(0.521220\pi\)
\(278\) −9679.91 −2.08835
\(279\) 680.955 0.146121
\(280\) −1723.93 −0.367944
\(281\) −5797.52 −1.23079 −0.615393 0.788220i \(-0.711003\pi\)
−0.615393 + 0.788220i \(0.711003\pi\)
\(282\) 4058.96 0.857119
\(283\) −4077.91 −0.856560 −0.428280 0.903646i \(-0.640880\pi\)
−0.428280 + 0.903646i \(0.640880\pi\)
\(284\) −2409.97 −0.503541
\(285\) −188.996 −0.0392812
\(286\) 0 0
\(287\) 1486.20 0.305671
\(288\) 1777.30 0.363641
\(289\) 14203.2 2.89095
\(290\) 2143.79 0.434095
\(291\) 4567.16 0.920040
\(292\) 2168.42 0.434579
\(293\) 5029.67 1.00286 0.501428 0.865200i \(-0.332808\pi\)
0.501428 + 0.865200i \(0.332808\pi\)
\(294\) −7092.08 −1.40686
\(295\) 4331.80 0.854939
\(296\) −1458.37 −0.286373
\(297\) 0 0
\(298\) 10421.5 2.02584
\(299\) 6975.90 1.34925
\(300\) 372.885 0.0717618
\(301\) −2339.90 −0.448072
\(302\) 90.4917 0.0172424
\(303\) 4654.97 0.882579
\(304\) 996.079 0.187924
\(305\) −2212.90 −0.415444
\(306\) 4481.71 0.837263
\(307\) −3667.16 −0.681746 −0.340873 0.940109i \(-0.610723\pi\)
−0.340873 + 0.940109i \(0.610723\pi\)
\(308\) 0 0
\(309\) −4364.76 −0.803568
\(310\) −1362.53 −0.249634
\(311\) −2328.46 −0.424549 −0.212274 0.977210i \(-0.568087\pi\)
−0.212274 + 0.977210i \(0.568087\pi\)
\(312\) −1270.04 −0.230455
\(313\) 5698.19 1.02901 0.514506 0.857487i \(-0.327975\pi\)
0.514506 + 0.857487i \(0.327975\pi\)
\(314\) 3997.77 0.718495
\(315\) −1422.58 −0.254455
\(316\) 2348.87 0.418147
\(317\) 3389.61 0.600567 0.300283 0.953850i \(-0.402919\pi\)
0.300283 + 0.953850i \(0.402919\pi\)
\(318\) 828.752 0.146145
\(319\) 0 0
\(320\) −393.997 −0.0688285
\(321\) −537.619 −0.0934797
\(322\) −20462.2 −3.54135
\(323\) 1742.06 0.300095
\(324\) 402.716 0.0690528
\(325\) −970.404 −0.165626
\(326\) 12654.1 2.14984
\(327\) −6035.15 −1.02063
\(328\) −512.739 −0.0863149
\(329\) 11875.6 1.99005
\(330\) 0 0
\(331\) 10574.4 1.75595 0.877977 0.478702i \(-0.158893\pi\)
0.877977 + 0.478702i \(0.158893\pi\)
\(332\) −1238.77 −0.204779
\(333\) −1203.45 −0.198044
\(334\) −11575.1 −1.89629
\(335\) −3165.03 −0.516191
\(336\) 7497.53 1.21733
\(337\) 1929.14 0.311831 0.155916 0.987770i \(-0.450167\pi\)
0.155916 + 0.987770i \(0.450167\pi\)
\(338\) 2486.23 0.400098
\(339\) 6124.77 0.981274
\(340\) −3437.04 −0.548235
\(341\) 0 0
\(342\) 408.417 0.0645750
\(343\) −9906.69 −1.55951
\(344\) 807.267 0.126526
\(345\) −2695.75 −0.420679
\(346\) 10024.3 1.55755
\(347\) 10407.4 1.61008 0.805039 0.593221i \(-0.202144\pi\)
0.805039 + 0.593221i \(0.202144\pi\)
\(348\) −1775.61 −0.273513
\(349\) 11338.1 1.73901 0.869503 0.493928i \(-0.164439\pi\)
0.869503 + 0.493928i \(0.164439\pi\)
\(350\) 2846.46 0.434713
\(351\) −1048.04 −0.159373
\(352\) 0 0
\(353\) −3084.18 −0.465027 −0.232513 0.972593i \(-0.574695\pi\)
−0.232513 + 0.972593i \(0.574695\pi\)
\(354\) −9360.95 −1.40545
\(355\) −2423.64 −0.362348
\(356\) 1178.23 0.175410
\(357\) 13112.5 1.94395
\(358\) −5518.12 −0.814641
\(359\) −2292.87 −0.337083 −0.168542 0.985695i \(-0.553906\pi\)
−0.168542 + 0.985695i \(0.553906\pi\)
\(360\) 490.791 0.0718527
\(361\) −6700.25 −0.976855
\(362\) 83.4554 0.0121169
\(363\) 0 0
\(364\) 6100.86 0.878494
\(365\) 2180.71 0.312723
\(366\) 4782.05 0.682955
\(367\) −1121.90 −0.159572 −0.0797858 0.996812i \(-0.525424\pi\)
−0.0797858 + 0.996812i \(0.525424\pi\)
\(368\) 14207.6 2.01256
\(369\) −423.112 −0.0596919
\(370\) 2407.99 0.338339
\(371\) 2424.75 0.339318
\(372\) 1128.52 0.157288
\(373\) 10327.8 1.43365 0.716826 0.697253i \(-0.245594\pi\)
0.716826 + 0.697253i \(0.245594\pi\)
\(374\) 0 0
\(375\) 375.000 0.0516398
\(376\) −4097.11 −0.561947
\(377\) 4620.88 0.631266
\(378\) 3074.17 0.418302
\(379\) −3836.25 −0.519934 −0.259967 0.965617i \(-0.583712\pi\)
−0.259967 + 0.965617i \(0.583712\pi\)
\(380\) −313.217 −0.0422834
\(381\) 2414.48 0.324665
\(382\) 15337.0 2.05421
\(383\) −9206.79 −1.22832 −0.614158 0.789183i \(-0.710504\pi\)
−0.614158 + 0.789183i \(0.710504\pi\)
\(384\) −3888.05 −0.516696
\(385\) 0 0
\(386\) −440.517 −0.0580873
\(387\) 666.155 0.0875002
\(388\) 7569.01 0.990356
\(389\) −3057.27 −0.398483 −0.199241 0.979950i \(-0.563848\pi\)
−0.199241 + 0.979950i \(0.563848\pi\)
\(390\) 2097.03 0.272275
\(391\) 24847.9 3.21384
\(392\) 7158.73 0.922374
\(393\) −5098.84 −0.654459
\(394\) 5448.70 0.696704
\(395\) 2362.19 0.300899
\(396\) 0 0
\(397\) −9682.72 −1.22409 −0.612043 0.790825i \(-0.709652\pi\)
−0.612043 + 0.790825i \(0.709652\pi\)
\(398\) −5037.41 −0.634428
\(399\) 1194.94 0.149930
\(400\) −1976.39 −0.247049
\(401\) −924.364 −0.115114 −0.0575568 0.998342i \(-0.518331\pi\)
−0.0575568 + 0.998342i \(0.518331\pi\)
\(402\) 6839.58 0.848575
\(403\) −2936.89 −0.363020
\(404\) 7714.54 0.950031
\(405\) 405.000 0.0496904
\(406\) −13554.3 −1.65687
\(407\) 0 0
\(408\) −4523.83 −0.548929
\(409\) −4949.78 −0.598413 −0.299207 0.954188i \(-0.596722\pi\)
−0.299207 + 0.954188i \(0.596722\pi\)
\(410\) 846.608 0.101978
\(411\) 3561.36 0.427419
\(412\) −7233.58 −0.864983
\(413\) −27388.1 −3.26315
\(414\) 5825.46 0.691560
\(415\) −1245.80 −0.147359
\(416\) −7665.34 −0.903423
\(417\) 8062.92 0.946865
\(418\) 0 0
\(419\) −8647.87 −1.00830 −0.504148 0.863617i \(-0.668193\pi\)
−0.504148 + 0.863617i \(0.668193\pi\)
\(420\) −2357.60 −0.273902
\(421\) −9322.71 −1.07924 −0.539621 0.841908i \(-0.681432\pi\)
−0.539621 + 0.841908i \(0.681432\pi\)
\(422\) 2194.24 0.253114
\(423\) −3380.93 −0.388620
\(424\) −836.541 −0.0958161
\(425\) −3456.54 −0.394510
\(426\) 5237.45 0.595670
\(427\) 13991.2 1.58568
\(428\) −890.979 −0.100624
\(429\) 0 0
\(430\) −1332.92 −0.149486
\(431\) 8160.16 0.911975 0.455987 0.889986i \(-0.349286\pi\)
0.455987 + 0.889986i \(0.349286\pi\)
\(432\) −2134.50 −0.237723
\(433\) −7199.03 −0.798991 −0.399496 0.916735i \(-0.630815\pi\)
−0.399496 + 0.916735i \(0.630815\pi\)
\(434\) 8614.70 0.952808
\(435\) −1785.68 −0.196820
\(436\) −10001.9 −1.09863
\(437\) 2264.38 0.247872
\(438\) −4712.49 −0.514090
\(439\) 10297.5 1.11953 0.559766 0.828651i \(-0.310891\pi\)
0.559766 + 0.828651i \(0.310891\pi\)
\(440\) 0 0
\(441\) 5907.37 0.637876
\(442\) −19329.2 −2.08008
\(443\) 12847.2 1.37786 0.688928 0.724830i \(-0.258082\pi\)
0.688928 + 0.724830i \(0.258082\pi\)
\(444\) −1994.44 −0.213180
\(445\) 1184.91 0.126225
\(446\) 10747.2 1.14102
\(447\) −8680.61 −0.918520
\(448\) 2491.08 0.262706
\(449\) 12493.1 1.31311 0.656555 0.754278i \(-0.272013\pi\)
0.656555 + 0.754278i \(0.272013\pi\)
\(450\) −810.369 −0.0848914
\(451\) 0 0
\(452\) 10150.4 1.05627
\(453\) −75.3754 −0.00781776
\(454\) −2746.61 −0.283931
\(455\) 6135.46 0.632164
\(456\) −412.256 −0.0423369
\(457\) 14968.1 1.53212 0.766061 0.642767i \(-0.222214\pi\)
0.766061 + 0.642767i \(0.222214\pi\)
\(458\) 16341.4 1.66722
\(459\) −3733.06 −0.379617
\(460\) −4467.57 −0.452830
\(461\) 13649.5 1.37900 0.689501 0.724285i \(-0.257830\pi\)
0.689501 + 0.724285i \(0.257830\pi\)
\(462\) 0 0
\(463\) −4655.26 −0.467275 −0.233638 0.972324i \(-0.575063\pi\)
−0.233638 + 0.972324i \(0.575063\pi\)
\(464\) 9411.19 0.941602
\(465\) 1134.92 0.113185
\(466\) 1439.67 0.143114
\(467\) −1053.94 −0.104434 −0.0522170 0.998636i \(-0.516629\pi\)
−0.0522170 + 0.998636i \(0.516629\pi\)
\(468\) −1736.88 −0.171554
\(469\) 20011.2 1.97021
\(470\) 6764.93 0.663921
\(471\) −3329.96 −0.325768
\(472\) 9448.93 0.921445
\(473\) 0 0
\(474\) −5104.66 −0.494652
\(475\) −314.993 −0.0304271
\(476\) 21731.0 2.09252
\(477\) −690.312 −0.0662625
\(478\) −11897.3 −1.13843
\(479\) 2045.84 0.195150 0.0975749 0.995228i \(-0.468891\pi\)
0.0975749 + 0.995228i \(0.468891\pi\)
\(480\) 2962.17 0.281675
\(481\) 5190.36 0.492017
\(482\) 8638.85 0.816367
\(483\) 17044.1 1.60566
\(484\) 0 0
\(485\) 7611.93 0.712660
\(486\) −875.198 −0.0816868
\(487\) 11771.6 1.09532 0.547661 0.836700i \(-0.315518\pi\)
0.547661 + 0.836700i \(0.315518\pi\)
\(488\) −4826.99 −0.447762
\(489\) −10540.3 −0.974742
\(490\) −11820.1 −1.08975
\(491\) 7886.33 0.724858 0.362429 0.932011i \(-0.381948\pi\)
0.362429 + 0.932011i \(0.381948\pi\)
\(492\) −701.209 −0.0642540
\(493\) 16459.4 1.50364
\(494\) −1761.46 −0.160429
\(495\) 0 0
\(496\) −5981.48 −0.541484
\(497\) 15323.7 1.38302
\(498\) 2692.15 0.242245
\(499\) 13390.6 1.20129 0.600645 0.799516i \(-0.294910\pi\)
0.600645 + 0.799516i \(0.294910\pi\)
\(500\) 621.475 0.0555864
\(501\) 9641.52 0.859784
\(502\) −9411.90 −0.836800
\(503\) 28.9098 0.00256267 0.00128134 0.999999i \(-0.499592\pi\)
0.00128134 + 0.999999i \(0.499592\pi\)
\(504\) −3103.07 −0.274249
\(505\) 7758.29 0.683642
\(506\) 0 0
\(507\) −2070.92 −0.181405
\(508\) 4001.43 0.349478
\(509\) 8883.68 0.773599 0.386800 0.922164i \(-0.373580\pi\)
0.386800 + 0.922164i \(0.373580\pi\)
\(510\) 7469.52 0.648541
\(511\) −13787.7 −1.19361
\(512\) −8714.00 −0.752164
\(513\) −340.193 −0.0292785
\(514\) −20796.5 −1.78462
\(515\) −7274.60 −0.622441
\(516\) 1104.00 0.0941876
\(517\) 0 0
\(518\) −15224.7 −1.29138
\(519\) −8349.80 −0.706196
\(520\) −2116.74 −0.178510
\(521\) −1371.72 −0.115348 −0.0576738 0.998335i \(-0.518368\pi\)
−0.0576738 + 0.998335i \(0.518368\pi\)
\(522\) 3858.82 0.323555
\(523\) −6234.89 −0.521286 −0.260643 0.965435i \(-0.583935\pi\)
−0.260643 + 0.965435i \(0.583935\pi\)
\(524\) −8450.14 −0.704477
\(525\) −2370.97 −0.197100
\(526\) −24390.8 −2.02185
\(527\) −10461.1 −0.864691
\(528\) 0 0
\(529\) 20131.0 1.65456
\(530\) 1381.25 0.113203
\(531\) 7797.24 0.637234
\(532\) 1980.34 0.161388
\(533\) 1824.84 0.148298
\(534\) −2560.57 −0.207503
\(535\) −896.032 −0.0724090
\(536\) −6903.87 −0.556346
\(537\) 4596.34 0.369361
\(538\) 11018.9 0.883009
\(539\) 0 0
\(540\) 671.193 0.0534881
\(541\) 11629.7 0.924212 0.462106 0.886825i \(-0.347094\pi\)
0.462106 + 0.886825i \(0.347094\pi\)
\(542\) −5116.39 −0.405475
\(543\) −69.5145 −0.00549384
\(544\) −27303.6 −2.15190
\(545\) −10058.6 −0.790573
\(546\) −13258.6 −1.03922
\(547\) −22397.1 −1.75070 −0.875349 0.483492i \(-0.839368\pi\)
−0.875349 + 0.483492i \(0.839368\pi\)
\(548\) 5902.13 0.460085
\(549\) −3983.22 −0.309654
\(550\) 0 0
\(551\) 1499.94 0.115970
\(552\) −5880.22 −0.453403
\(553\) −14935.2 −1.14848
\(554\) 2212.22 0.169654
\(555\) −2005.75 −0.153404
\(556\) 13362.4 1.01923
\(557\) −3202.74 −0.243635 −0.121817 0.992553i \(-0.538872\pi\)
−0.121817 + 0.992553i \(0.538872\pi\)
\(558\) −2452.55 −0.186066
\(559\) −2873.07 −0.217384
\(560\) 12495.9 0.942942
\(561\) 0 0
\(562\) 20880.6 1.56725
\(563\) −19681.1 −1.47329 −0.736644 0.676281i \(-0.763590\pi\)
−0.736644 + 0.676281i \(0.763590\pi\)
\(564\) −5603.10 −0.418321
\(565\) 10208.0 0.760092
\(566\) 14687.2 1.09072
\(567\) −2560.64 −0.189660
\(568\) −5286.68 −0.390535
\(569\) 21352.3 1.57317 0.786585 0.617482i \(-0.211847\pi\)
0.786585 + 0.617482i \(0.211847\pi\)
\(570\) 680.695 0.0500196
\(571\) −8197.73 −0.600813 −0.300407 0.953811i \(-0.597122\pi\)
−0.300407 + 0.953811i \(0.597122\pi\)
\(572\) 0 0
\(573\) −12775.0 −0.931387
\(574\) −5352.75 −0.389232
\(575\) −4492.91 −0.325856
\(576\) −709.195 −0.0513017
\(577\) −17324.5 −1.24996 −0.624982 0.780640i \(-0.714894\pi\)
−0.624982 + 0.780640i \(0.714894\pi\)
\(578\) −51154.9 −3.68125
\(579\) 366.930 0.0263370
\(580\) −2959.35 −0.211862
\(581\) 7876.67 0.562443
\(582\) −16449.3 −1.17155
\(583\) 0 0
\(584\) 4756.78 0.337050
\(585\) −1746.73 −0.123450
\(586\) −18115.1 −1.27701
\(587\) −829.014 −0.0582914 −0.0291457 0.999575i \(-0.509279\pi\)
−0.0291457 + 0.999575i \(0.509279\pi\)
\(588\) 9790.10 0.686627
\(589\) −953.316 −0.0666905
\(590\) −15601.6 −1.08866
\(591\) −4538.52 −0.315888
\(592\) 10571.0 0.733897
\(593\) 20619.8 1.42791 0.713957 0.700189i \(-0.246901\pi\)
0.713957 + 0.700189i \(0.246901\pi\)
\(594\) 0 0
\(595\) 21854.2 1.50577
\(596\) −14386.1 −0.988720
\(597\) 4195.93 0.287652
\(598\) −25124.7 −1.71810
\(599\) 6047.56 0.412515 0.206258 0.978498i \(-0.433871\pi\)
0.206258 + 0.978498i \(0.433871\pi\)
\(600\) 817.985 0.0556569
\(601\) −3645.81 −0.247447 −0.123724 0.992317i \(-0.539484\pi\)
−0.123724 + 0.992317i \(0.539484\pi\)
\(602\) 8427.47 0.570562
\(603\) −5697.06 −0.384746
\(604\) −124.917 −0.00841525
\(605\) 0 0
\(606\) −16765.5 −1.12385
\(607\) 7474.16 0.499780 0.249890 0.968274i \(-0.419605\pi\)
0.249890 + 0.968274i \(0.419605\pi\)
\(608\) −2488.17 −0.165968
\(609\) 11290.1 0.751227
\(610\) 7970.08 0.529015
\(611\) 14581.6 0.965482
\(612\) −6186.68 −0.408630
\(613\) 10709.8 0.705652 0.352826 0.935689i \(-0.385221\pi\)
0.352826 + 0.935689i \(0.385221\pi\)
\(614\) 13207.8 0.868116
\(615\) −705.186 −0.0462371
\(616\) 0 0
\(617\) −26312.2 −1.71684 −0.858418 0.512950i \(-0.828552\pi\)
−0.858418 + 0.512950i \(0.828552\pi\)
\(618\) 15720.3 1.02324
\(619\) −20408.5 −1.32518 −0.662590 0.748983i \(-0.730543\pi\)
−0.662590 + 0.748983i \(0.730543\pi\)
\(620\) 1880.87 0.121835
\(621\) −4852.34 −0.313555
\(622\) 8386.26 0.540608
\(623\) −7491.68 −0.481778
\(624\) 9205.91 0.590595
\(625\) 625.000 0.0400000
\(626\) −20522.8 −1.31032
\(627\) 0 0
\(628\) −5518.64 −0.350665
\(629\) 18487.8 1.17195
\(630\) 5123.62 0.324016
\(631\) −13017.6 −0.821273 −0.410636 0.911799i \(-0.634693\pi\)
−0.410636 + 0.911799i \(0.634693\pi\)
\(632\) 5152.64 0.324306
\(633\) −1827.70 −0.114763
\(634\) −12208.2 −0.764745
\(635\) 4024.13 0.251484
\(636\) −1144.03 −0.0713267
\(637\) −25478.0 −1.58473
\(638\) 0 0
\(639\) −4362.56 −0.270078
\(640\) −6480.08 −0.400231
\(641\) 22044.5 1.35836 0.679178 0.733974i \(-0.262337\pi\)
0.679178 + 0.733974i \(0.262337\pi\)
\(642\) 1936.31 0.119034
\(643\) −22105.6 −1.35577 −0.677884 0.735169i \(-0.737103\pi\)
−0.677884 + 0.735169i \(0.737103\pi\)
\(644\) 28246.6 1.72837
\(645\) 1110.26 0.0677774
\(646\) −6274.26 −0.382132
\(647\) −25733.7 −1.56367 −0.781836 0.623484i \(-0.785717\pi\)
−0.781836 + 0.623484i \(0.785717\pi\)
\(648\) 883.424 0.0535558
\(649\) 0 0
\(650\) 3495.05 0.210903
\(651\) −7175.65 −0.432006
\(652\) −17468.1 −1.04924
\(653\) −13778.1 −0.825697 −0.412849 0.910800i \(-0.635466\pi\)
−0.412849 + 0.910800i \(0.635466\pi\)
\(654\) 21736.4 1.29964
\(655\) −8498.06 −0.506942
\(656\) 3716.59 0.221202
\(657\) 3925.29 0.233090
\(658\) −42771.8 −2.53407
\(659\) −9441.03 −0.558074 −0.279037 0.960280i \(-0.590015\pi\)
−0.279037 + 0.960280i \(0.590015\pi\)
\(660\) 0 0
\(661\) 12160.3 0.715553 0.357776 0.933807i \(-0.383535\pi\)
0.357776 + 0.933807i \(0.383535\pi\)
\(662\) −38085.1 −2.23598
\(663\) 16100.3 0.943115
\(664\) −2717.46 −0.158822
\(665\) 1991.57 0.116135
\(666\) 4334.38 0.252183
\(667\) 21394.4 1.24197
\(668\) 15978.6 0.925494
\(669\) −8951.91 −0.517341
\(670\) 11399.3 0.657304
\(671\) 0 0
\(672\) −18728.5 −1.07510
\(673\) 26325.7 1.50784 0.753922 0.656964i \(-0.228159\pi\)
0.753922 + 0.656964i \(0.228159\pi\)
\(674\) −6948.08 −0.397077
\(675\) 675.000 0.0384900
\(676\) −3432.06 −0.195270
\(677\) −21595.7 −1.22598 −0.612991 0.790090i \(-0.710034\pi\)
−0.612991 + 0.790090i \(0.710034\pi\)
\(678\) −22059.2 −1.24953
\(679\) −48127.0 −2.72010
\(680\) −7539.72 −0.425199
\(681\) 2287.80 0.128735
\(682\) 0 0
\(683\) 15507.2 0.868766 0.434383 0.900728i \(-0.356966\pi\)
0.434383 + 0.900728i \(0.356966\pi\)
\(684\) −563.790 −0.0315162
\(685\) 5935.61 0.331077
\(686\) 35680.3 1.98583
\(687\) −13611.7 −0.755921
\(688\) −5851.48 −0.324252
\(689\) 2977.25 0.164622
\(690\) 9709.11 0.535680
\(691\) −16616.7 −0.914804 −0.457402 0.889260i \(-0.651220\pi\)
−0.457402 + 0.889260i \(0.651220\pi\)
\(692\) −13837.9 −0.760168
\(693\) 0 0
\(694\) −37483.6 −2.05023
\(695\) 13438.2 0.733439
\(696\) −3895.09 −0.212131
\(697\) 6500.00 0.353235
\(698\) −40835.6 −2.21440
\(699\) −1199.18 −0.0648884
\(700\) −3929.33 −0.212164
\(701\) 15303.7 0.824552 0.412276 0.911059i \(-0.364734\pi\)
0.412276 + 0.911059i \(0.364734\pi\)
\(702\) 3774.65 0.202942
\(703\) 1684.79 0.0903884
\(704\) 0 0
\(705\) −5634.88 −0.301024
\(706\) 11108.1 0.592152
\(707\) −49052.4 −2.60934
\(708\) 12922.1 0.685936
\(709\) −15341.9 −0.812664 −0.406332 0.913726i \(-0.633192\pi\)
−0.406332 + 0.913726i \(0.633192\pi\)
\(710\) 8729.08 0.461404
\(711\) 4251.95 0.224277
\(712\) 2584.63 0.136044
\(713\) −13597.6 −0.714215
\(714\) −47226.6 −2.47537
\(715\) 0 0
\(716\) 7617.36 0.397590
\(717\) 9909.91 0.516168
\(718\) 8258.08 0.429232
\(719\) −4365.48 −0.226432 −0.113216 0.993570i \(-0.536115\pi\)
−0.113216 + 0.993570i \(0.536115\pi\)
\(720\) −3557.50 −0.184139
\(721\) 45994.2 2.37575
\(722\) 24131.9 1.24390
\(723\) −7195.77 −0.370143
\(724\) −115.204 −0.00591372
\(725\) −2976.13 −0.152456
\(726\) 0 0
\(727\) 33165.7 1.69195 0.845975 0.533222i \(-0.179019\pi\)
0.845975 + 0.533222i \(0.179019\pi\)
\(728\) 13383.2 0.681340
\(729\) 729.000 0.0370370
\(730\) −7854.15 −0.398212
\(731\) −10233.7 −0.517795
\(732\) −6601.27 −0.333320
\(733\) −14858.5 −0.748717 −0.374359 0.927284i \(-0.622137\pi\)
−0.374359 + 0.927284i \(0.622137\pi\)
\(734\) 4040.68 0.203194
\(735\) 9845.62 0.494097
\(736\) −35490.0 −1.77742
\(737\) 0 0
\(738\) 1523.90 0.0760100
\(739\) −19969.8 −0.994048 −0.497024 0.867737i \(-0.665574\pi\)
−0.497024 + 0.867737i \(0.665574\pi\)
\(740\) −3324.06 −0.165128
\(741\) 1467.22 0.0727391
\(742\) −8733.08 −0.432077
\(743\) −11701.0 −0.577750 −0.288875 0.957367i \(-0.593281\pi\)
−0.288875 + 0.957367i \(0.593281\pi\)
\(744\) 2475.60 0.121989
\(745\) −14467.7 −0.711483
\(746\) −37196.9 −1.82557
\(747\) −2242.44 −0.109835
\(748\) 0 0
\(749\) 5665.23 0.276373
\(750\) −1350.61 −0.0657566
\(751\) 29554.0 1.43600 0.718002 0.696041i \(-0.245057\pi\)
0.718002 + 0.696041i \(0.245057\pi\)
\(752\) 29697.9 1.44012
\(753\) 7839.68 0.379408
\(754\) −16642.7 −0.803836
\(755\) −125.626 −0.00605561
\(756\) −4243.67 −0.204155
\(757\) −10649.1 −0.511292 −0.255646 0.966770i \(-0.582288\pi\)
−0.255646 + 0.966770i \(0.582288\pi\)
\(758\) 13816.8 0.662069
\(759\) 0 0
\(760\) −687.093 −0.0327940
\(761\) −9031.14 −0.430195 −0.215098 0.976593i \(-0.569007\pi\)
−0.215098 + 0.976593i \(0.569007\pi\)
\(762\) −8696.07 −0.413419
\(763\) 63596.2 3.01748
\(764\) −21171.6 −1.00257
\(765\) −6221.77 −0.294050
\(766\) 33159.5 1.56410
\(767\) −33628.8 −1.58313
\(768\) 15894.5 0.746803
\(769\) 15844.9 0.743017 0.371509 0.928429i \(-0.378841\pi\)
0.371509 + 0.928429i \(0.378841\pi\)
\(770\) 0 0
\(771\) 17322.5 0.809151
\(772\) 608.101 0.0283498
\(773\) 18651.1 0.867832 0.433916 0.900953i \(-0.357131\pi\)
0.433916 + 0.900953i \(0.357131\pi\)
\(774\) −2399.25 −0.111420
\(775\) 1891.54 0.0876725
\(776\) 16603.9 0.768098
\(777\) 12681.5 0.585516
\(778\) 11011.2 0.507417
\(779\) 592.343 0.0272438
\(780\) −2894.80 −0.132885
\(781\) 0 0
\(782\) −89493.0 −4.09241
\(783\) −3214.22 −0.146701
\(784\) −51890.1 −2.36380
\(785\) −5549.94 −0.252339
\(786\) 18364.2 0.833369
\(787\) −25474.1 −1.15382 −0.576908 0.816809i \(-0.695741\pi\)
−0.576908 + 0.816809i \(0.695741\pi\)
\(788\) −7521.54 −0.340030
\(789\) 20316.5 0.916711
\(790\) −8507.77 −0.383156
\(791\) −64540.6 −2.90114
\(792\) 0 0
\(793\) 17179.3 0.769299
\(794\) 34873.7 1.55872
\(795\) −1150.52 −0.0513267
\(796\) 6953.78 0.309636
\(797\) −22591.3 −1.00405 −0.502024 0.864854i \(-0.667411\pi\)
−0.502024 + 0.864854i \(0.667411\pi\)
\(798\) −4303.75 −0.190916
\(799\) 51939.1 2.29972
\(800\) 4936.95 0.218184
\(801\) 2132.84 0.0940824
\(802\) 3329.22 0.146582
\(803\) 0 0
\(804\) −9441.55 −0.414151
\(805\) 28406.8 1.24374
\(806\) 10577.6 0.462260
\(807\) −9178.25 −0.400359
\(808\) 16923.1 0.736823
\(809\) 10434.9 0.453489 0.226745 0.973954i \(-0.427192\pi\)
0.226745 + 0.973954i \(0.427192\pi\)
\(810\) −1458.66 −0.0632743
\(811\) −12216.2 −0.528937 −0.264469 0.964394i \(-0.585197\pi\)
−0.264469 + 0.964394i \(0.585197\pi\)
\(812\) 18710.7 0.808641
\(813\) 4261.72 0.183844
\(814\) 0 0
\(815\) −17567.2 −0.755032
\(816\) 32791.0 1.40676
\(817\) −932.597 −0.0399357
\(818\) 17827.3 0.762002
\(819\) 11043.8 0.471187
\(820\) −1168.68 −0.0497709
\(821\) 21314.2 0.906054 0.453027 0.891497i \(-0.350344\pi\)
0.453027 + 0.891497i \(0.350344\pi\)
\(822\) −12826.7 −0.544263
\(823\) 30062.2 1.27327 0.636635 0.771165i \(-0.280326\pi\)
0.636635 + 0.771165i \(0.280326\pi\)
\(824\) −15868.1 −0.670861
\(825\) 0 0
\(826\) 98642.2 4.15521
\(827\) 30802.9 1.29519 0.647595 0.761985i \(-0.275775\pi\)
0.647595 + 0.761985i \(0.275775\pi\)
\(828\) −8041.63 −0.337519
\(829\) −15852.0 −0.664130 −0.332065 0.943257i \(-0.607745\pi\)
−0.332065 + 0.943257i \(0.607745\pi\)
\(830\) 4486.92 0.187642
\(831\) −1842.68 −0.0769217
\(832\) 3058.69 0.127453
\(833\) −90751.3 −3.77473
\(834\) −29039.7 −1.20571
\(835\) 16069.2 0.665985
\(836\) 0 0
\(837\) 2042.86 0.0843629
\(838\) 31146.5 1.28394
\(839\) 28627.5 1.17799 0.588994 0.808137i \(-0.299524\pi\)
0.588994 + 0.808137i \(0.299524\pi\)
\(840\) −5171.78 −0.212432
\(841\) −10217.2 −0.418928
\(842\) 33577.0 1.37428
\(843\) −17392.6 −0.710595
\(844\) −3029.00 −0.123534
\(845\) −3451.53 −0.140516
\(846\) 12176.9 0.494858
\(847\) 0 0
\(848\) 6063.67 0.245551
\(849\) −12233.7 −0.494535
\(850\) 12449.2 0.502358
\(851\) 24031.0 0.968006
\(852\) −7229.92 −0.290720
\(853\) −22333.6 −0.896468 −0.448234 0.893916i \(-0.647947\pi\)
−0.448234 + 0.893916i \(0.647947\pi\)
\(854\) −50391.4 −2.01916
\(855\) −566.988 −0.0226790
\(856\) −1954.51 −0.0780418
\(857\) −20331.4 −0.810392 −0.405196 0.914230i \(-0.632797\pi\)
−0.405196 + 0.914230i \(0.632797\pi\)
\(858\) 0 0
\(859\) −41004.7 −1.62871 −0.814355 0.580367i \(-0.802909\pi\)
−0.814355 + 0.580367i \(0.802909\pi\)
\(860\) 1840.00 0.0729574
\(861\) 4458.59 0.176479
\(862\) −29390.0 −1.16128
\(863\) 27576.4 1.08773 0.543865 0.839173i \(-0.316960\pi\)
0.543865 + 0.839173i \(0.316960\pi\)
\(864\) 5331.90 0.209948
\(865\) −13916.3 −0.547017
\(866\) 25928.3 1.01741
\(867\) 42609.7 1.66909
\(868\) −11892.0 −0.465023
\(869\) 0 0
\(870\) 6431.37 0.250625
\(871\) 24570.9 0.955858
\(872\) −21940.7 −0.852072
\(873\) 13701.5 0.531185
\(874\) −8155.47 −0.315633
\(875\) −3951.61 −0.152673
\(876\) 6505.25 0.250904
\(877\) 35904.7 1.38246 0.691229 0.722636i \(-0.257069\pi\)
0.691229 + 0.722636i \(0.257069\pi\)
\(878\) −37088.0 −1.42558
\(879\) 15089.0 0.578999
\(880\) 0 0
\(881\) −8200.35 −0.313595 −0.156797 0.987631i \(-0.550117\pi\)
−0.156797 + 0.987631i \(0.550117\pi\)
\(882\) −21276.2 −0.812254
\(883\) −37817.9 −1.44131 −0.720654 0.693295i \(-0.756158\pi\)
−0.720654 + 0.693295i \(0.756158\pi\)
\(884\) 26682.6 1.01519
\(885\) 12995.4 0.493599
\(886\) −46271.1 −1.75452
\(887\) −7045.46 −0.266701 −0.133350 0.991069i \(-0.542574\pi\)
−0.133350 + 0.991069i \(0.542574\pi\)
\(888\) −4375.12 −0.165337
\(889\) −25442.8 −0.959871
\(890\) −4267.61 −0.160731
\(891\) 0 0
\(892\) −14835.7 −0.556879
\(893\) 4733.19 0.177369
\(894\) 31264.4 1.16962
\(895\) 7660.56 0.286105
\(896\) 40970.8 1.52761
\(897\) 20927.7 0.778992
\(898\) −44995.7 −1.67208
\(899\) −9007.15 −0.334155
\(900\) 1118.66 0.0414317
\(901\) 10604.8 0.392118
\(902\) 0 0
\(903\) −7019.70 −0.258694
\(904\) 22266.6 0.819220
\(905\) −115.858 −0.00425551
\(906\) 271.475 0.00995492
\(907\) −31139.3 −1.13998 −0.569992 0.821651i \(-0.693054\pi\)
−0.569992 + 0.821651i \(0.693054\pi\)
\(908\) 3791.50 0.138574
\(909\) 13964.9 0.509557
\(910\) −22097.7 −0.804980
\(911\) 5053.79 0.183798 0.0918988 0.995768i \(-0.470706\pi\)
0.0918988 + 0.995768i \(0.470706\pi\)
\(912\) 2988.24 0.108498
\(913\) 0 0
\(914\) −53909.8 −1.95096
\(915\) −6638.71 −0.239857
\(916\) −22558.2 −0.813693
\(917\) 53729.7 1.93491
\(918\) 13445.1 0.483394
\(919\) −32201.2 −1.15584 −0.577922 0.816092i \(-0.696136\pi\)
−0.577922 + 0.816092i \(0.696136\pi\)
\(920\) −9800.36 −0.351205
\(921\) −11001.5 −0.393606
\(922\) −49160.5 −1.75598
\(923\) 18815.3 0.670978
\(924\) 0 0
\(925\) −3342.91 −0.118826
\(926\) 16766.6 0.595015
\(927\) −13094.3 −0.463940
\(928\) −23508.8 −0.831588
\(929\) 18704.0 0.660557 0.330279 0.943883i \(-0.392857\pi\)
0.330279 + 0.943883i \(0.392857\pi\)
\(930\) −4087.59 −0.144126
\(931\) −8270.14 −0.291131
\(932\) −1987.36 −0.0698477
\(933\) −6985.37 −0.245113
\(934\) 3795.92 0.132983
\(935\) 0 0
\(936\) −3810.13 −0.133053
\(937\) 27848.6 0.970944 0.485472 0.874252i \(-0.338648\pi\)
0.485472 + 0.874252i \(0.338648\pi\)
\(938\) −72073.0 −2.50881
\(939\) 17094.6 0.594101
\(940\) −9338.50 −0.324030
\(941\) −24235.0 −0.839573 −0.419786 0.907623i \(-0.637895\pi\)
−0.419786 + 0.907623i \(0.637895\pi\)
\(942\) 11993.3 0.414823
\(943\) 8448.90 0.291765
\(944\) −68490.6 −2.36142
\(945\) −4267.74 −0.146910
\(946\) 0 0
\(947\) −35474.1 −1.21727 −0.608635 0.793451i \(-0.708282\pi\)
−0.608635 + 0.793451i \(0.708282\pi\)
\(948\) 7046.62 0.241417
\(949\) −16929.4 −0.579085
\(950\) 1134.49 0.0387450
\(951\) 10168.8 0.346737
\(952\) 47670.5 1.62291
\(953\) −6194.48 −0.210555 −0.105277 0.994443i \(-0.533573\pi\)
−0.105277 + 0.994443i \(0.533573\pi\)
\(954\) 2486.25 0.0843768
\(955\) −21291.7 −0.721449
\(956\) 16423.4 0.555617
\(957\) 0 0
\(958\) −7368.37 −0.248498
\(959\) −37528.3 −1.26366
\(960\) −1181.99 −0.0397381
\(961\) −24066.3 −0.807839
\(962\) −18693.8 −0.626520
\(963\) −1612.86 −0.0539705
\(964\) −11925.3 −0.398432
\(965\) 611.550 0.0204005
\(966\) −61386.6 −2.04460
\(967\) −14858.3 −0.494115 −0.247058 0.969001i \(-0.579464\pi\)
−0.247058 + 0.969001i \(0.579464\pi\)
\(968\) 0 0
\(969\) 5226.17 0.173260
\(970\) −27415.4 −0.907481
\(971\) 3584.21 0.118458 0.0592290 0.998244i \(-0.481136\pi\)
0.0592290 + 0.998244i \(0.481136\pi\)
\(972\) 1208.15 0.0398677
\(973\) −84964.1 −2.79941
\(974\) −42397.0 −1.39475
\(975\) −2911.21 −0.0956240
\(976\) 34988.5 1.14749
\(977\) 39576.7 1.29598 0.647989 0.761650i \(-0.275610\pi\)
0.647989 + 0.761650i \(0.275610\pi\)
\(978\) 37962.4 1.24121
\(979\) 0 0
\(980\) 16316.8 0.531859
\(981\) −18105.4 −0.589258
\(982\) −28403.7 −0.923014
\(983\) −74.1406 −0.00240561 −0.00120281 0.999999i \(-0.500383\pi\)
−0.00120281 + 0.999999i \(0.500383\pi\)
\(984\) −1538.22 −0.0498340
\(985\) −7564.20 −0.244686
\(986\) −59280.7 −1.91469
\(987\) 35626.9 1.14895
\(988\) 2431.57 0.0782983
\(989\) −13302.1 −0.427687
\(990\) 0 0
\(991\) −44698.7 −1.43280 −0.716399 0.697691i \(-0.754211\pi\)
−0.716399 + 0.697691i \(0.754211\pi\)
\(992\) 14941.5 0.478219
\(993\) 31723.2 1.01380
\(994\) −55190.3 −1.76110
\(995\) 6993.22 0.222814
\(996\) −3716.32 −0.118229
\(997\) 7086.74 0.225115 0.112557 0.993645i \(-0.464096\pi\)
0.112557 + 0.993645i \(0.464096\pi\)
\(998\) −48228.0 −1.52969
\(999\) −3610.34 −0.114341
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1815.4.a.bb.1.2 6
11.10 odd 2 inner 1815.4.a.bb.1.5 yes 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1815.4.a.bb.1.2 6 1.1 even 1 trivial
1815.4.a.bb.1.5 yes 6 11.10 odd 2 inner