Properties

Label 1815.4.a.bb.1.1
Level $1815$
Weight $4$
Character 1815.1
Self dual yes
Analytic conductor $107.088$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1815,4,Mod(1,1815)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1815, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1815.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1815 = 3 \cdot 5 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1815.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(107.088466660\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: \(\mathbb{Q}[x]/(x^{6} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 44x^{4} + 495x^{2} - 1200 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{4}\cdot 5 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-5.26184\) of defining polynomial
Character \(\chi\) \(=\) 1815.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-5.26184 q^{2} +3.00000 q^{3} +19.6870 q^{4} +5.00000 q^{5} -15.7855 q^{6} +5.37309 q^{7} -61.4950 q^{8} +9.00000 q^{9} +O(q^{10})\) \(q-5.26184 q^{2} +3.00000 q^{3} +19.6870 q^{4} +5.00000 q^{5} -15.7855 q^{6} +5.37309 q^{7} -61.4950 q^{8} +9.00000 q^{9} -26.3092 q^{10} +59.0609 q^{12} -5.15059 q^{13} -28.2724 q^{14} +15.0000 q^{15} +166.081 q^{16} +107.538 q^{17} -47.3566 q^{18} -70.1491 q^{19} +98.4349 q^{20} +16.1193 q^{21} +104.545 q^{23} -184.485 q^{24} +25.0000 q^{25} +27.1016 q^{26} +27.0000 q^{27} +105.780 q^{28} -122.545 q^{29} -78.9276 q^{30} +252.244 q^{31} -381.933 q^{32} -565.849 q^{34} +26.8655 q^{35} +177.183 q^{36} +150.545 q^{37} +369.113 q^{38} -15.4518 q^{39} -307.475 q^{40} -17.3082 q^{41} -84.8171 q^{42} -459.004 q^{43} +45.0000 q^{45} -550.098 q^{46} +310.585 q^{47} +498.244 q^{48} -314.130 q^{49} -131.546 q^{50} +322.615 q^{51} -101.400 q^{52} -322.186 q^{53} -142.070 q^{54} -330.418 q^{56} -210.447 q^{57} +644.812 q^{58} +425.601 q^{59} +295.305 q^{60} +75.2233 q^{61} -1327.27 q^{62} +48.3578 q^{63} +681.020 q^{64} -25.7530 q^{65} -898.576 q^{67} +2117.10 q^{68} +313.634 q^{69} -141.362 q^{70} +1192.10 q^{71} -553.455 q^{72} +277.379 q^{73} -792.142 q^{74} +75.0000 q^{75} -1381.02 q^{76} +81.3048 q^{78} +1257.17 q^{79} +830.406 q^{80} +81.0000 q^{81} +91.0729 q^{82} -156.497 q^{83} +317.340 q^{84} +537.691 q^{85} +2415.21 q^{86} -367.635 q^{87} -96.0978 q^{89} -236.783 q^{90} -27.6746 q^{91} +2058.17 q^{92} +756.731 q^{93} -1634.25 q^{94} -350.746 q^{95} -1145.80 q^{96} -840.690 q^{97} +1652.90 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 18 q^{3} + 40 q^{4} + 30 q^{5} + 54 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 6 q + 18 q^{3} + 40 q^{4} + 30 q^{5} + 54 q^{9} + 120 q^{12} + 116 q^{14} + 90 q^{15} + 164 q^{16} + 200 q^{20} + 56 q^{23} + 150 q^{25} + 292 q^{26} + 162 q^{27} + 576 q^{31} - 92 q^{34} + 360 q^{36} + 332 q^{37} + 496 q^{38} + 348 q^{42} + 270 q^{45} + 96 q^{47} + 492 q^{48} + 454 q^{49} + 308 q^{53} - 652 q^{56} + 1784 q^{58} + 2080 q^{59} + 600 q^{60} + 1928 q^{64} - 1168 q^{67} + 168 q^{69} + 580 q^{70} + 1064 q^{71} + 450 q^{75} + 876 q^{78} + 820 q^{80} + 486 q^{81} + 24 q^{82} + 5412 q^{86} - 684 q^{89} + 2744 q^{91} + 1368 q^{92} + 1728 q^{93} + 2812 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −5.26184 −1.86034 −0.930171 0.367127i \(-0.880342\pi\)
−0.930171 + 0.367127i \(0.880342\pi\)
\(3\) 3.00000 0.577350
\(4\) 19.6870 2.46087
\(5\) 5.00000 0.447214
\(6\) −15.7855 −1.07407
\(7\) 5.37309 0.290120 0.145060 0.989423i \(-0.453663\pi\)
0.145060 + 0.989423i \(0.453663\pi\)
\(8\) −61.4950 −2.71772
\(9\) 9.00000 0.333333
\(10\) −26.3092 −0.831970
\(11\) 0 0
\(12\) 59.0609 1.42079
\(13\) −5.15059 −0.109886 −0.0549430 0.998489i \(-0.517498\pi\)
−0.0549430 + 0.998489i \(0.517498\pi\)
\(14\) −28.2724 −0.539722
\(15\) 15.0000 0.258199
\(16\) 166.081 2.59502
\(17\) 107.538 1.53423 0.767113 0.641512i \(-0.221692\pi\)
0.767113 + 0.641512i \(0.221692\pi\)
\(18\) −47.3566 −0.620114
\(19\) −70.1491 −0.847016 −0.423508 0.905892i \(-0.639201\pi\)
−0.423508 + 0.905892i \(0.639201\pi\)
\(20\) 98.4349 1.10054
\(21\) 16.1193 0.167501
\(22\) 0 0
\(23\) 104.545 0.947786 0.473893 0.880582i \(-0.342848\pi\)
0.473893 + 0.880582i \(0.342848\pi\)
\(24\) −184.485 −1.56908
\(25\) 25.0000 0.200000
\(26\) 27.1016 0.204425
\(27\) 27.0000 0.192450
\(28\) 105.780 0.713947
\(29\) −122.545 −0.784691 −0.392345 0.919818i \(-0.628336\pi\)
−0.392345 + 0.919818i \(0.628336\pi\)
\(30\) −78.9276 −0.480338
\(31\) 252.244 1.46143 0.730715 0.682683i \(-0.239187\pi\)
0.730715 + 0.682683i \(0.239187\pi\)
\(32\) −381.933 −2.10990
\(33\) 0 0
\(34\) −565.849 −2.85419
\(35\) 26.8655 0.129745
\(36\) 177.183 0.820291
\(37\) 150.545 0.668903 0.334451 0.942413i \(-0.391449\pi\)
0.334451 + 0.942413i \(0.391449\pi\)
\(38\) 369.113 1.57574
\(39\) −15.4518 −0.0634427
\(40\) −307.475 −1.21540
\(41\) −17.3082 −0.0659289 −0.0329645 0.999457i \(-0.510495\pi\)
−0.0329645 + 0.999457i \(0.510495\pi\)
\(42\) −84.8171 −0.311608
\(43\) −459.004 −1.62785 −0.813924 0.580972i \(-0.802673\pi\)
−0.813924 + 0.580972i \(0.802673\pi\)
\(44\) 0 0
\(45\) 45.0000 0.149071
\(46\) −550.098 −1.76321
\(47\) 310.585 0.963904 0.481952 0.876198i \(-0.339928\pi\)
0.481952 + 0.876198i \(0.339928\pi\)
\(48\) 498.244 1.49823
\(49\) −314.130 −0.915831
\(50\) −131.546 −0.372068
\(51\) 322.615 0.885786
\(52\) −101.400 −0.270415
\(53\) −322.186 −0.835013 −0.417507 0.908674i \(-0.637096\pi\)
−0.417507 + 0.908674i \(0.637096\pi\)
\(54\) −142.070 −0.358023
\(55\) 0 0
\(56\) −330.418 −0.788464
\(57\) −210.447 −0.489025
\(58\) 644.812 1.45979
\(59\) 425.601 0.939128 0.469564 0.882898i \(-0.344411\pi\)
0.469564 + 0.882898i \(0.344411\pi\)
\(60\) 295.305 0.635394
\(61\) 75.2233 0.157891 0.0789455 0.996879i \(-0.474845\pi\)
0.0789455 + 0.996879i \(0.474845\pi\)
\(62\) −1327.27 −2.71876
\(63\) 48.3578 0.0967065
\(64\) 681.020 1.33012
\(65\) −25.7530 −0.0491425
\(66\) 0 0
\(67\) −898.576 −1.63849 −0.819243 0.573447i \(-0.805606\pi\)
−0.819243 + 0.573447i \(0.805606\pi\)
\(68\) 2117.10 3.77554
\(69\) 313.634 0.547204
\(70\) −141.362 −0.241371
\(71\) 1192.10 1.99263 0.996315 0.0857641i \(-0.0273331\pi\)
0.996315 + 0.0857641i \(0.0273331\pi\)
\(72\) −553.455 −0.905907
\(73\) 277.379 0.444722 0.222361 0.974964i \(-0.428624\pi\)
0.222361 + 0.974964i \(0.428624\pi\)
\(74\) −792.142 −1.24439
\(75\) 75.0000 0.115470
\(76\) −1381.02 −2.08440
\(77\) 0 0
\(78\) 81.3048 0.118025
\(79\) 1257.17 1.79041 0.895207 0.445651i \(-0.147028\pi\)
0.895207 + 0.445651i \(0.147028\pi\)
\(80\) 830.406 1.16053
\(81\) 81.0000 0.111111
\(82\) 91.0729 0.122650
\(83\) −156.497 −0.206961 −0.103480 0.994632i \(-0.532998\pi\)
−0.103480 + 0.994632i \(0.532998\pi\)
\(84\) 317.340 0.412198
\(85\) 537.691 0.686127
\(86\) 2415.21 3.02835
\(87\) −367.635 −0.453042
\(88\) 0 0
\(89\) −96.0978 −0.114453 −0.0572267 0.998361i \(-0.518226\pi\)
−0.0572267 + 0.998361i \(0.518226\pi\)
\(90\) −236.783 −0.277323
\(91\) −27.6746 −0.0318801
\(92\) 2058.17 2.33238
\(93\) 756.731 0.843757
\(94\) −1634.25 −1.79319
\(95\) −350.746 −0.378797
\(96\) −1145.80 −1.21815
\(97\) −840.690 −0.879991 −0.439995 0.898000i \(-0.645020\pi\)
−0.439995 + 0.898000i \(0.645020\pi\)
\(98\) 1652.90 1.70376
\(99\) 0 0
\(100\) 492.174 0.492174
\(101\) 1906.92 1.87867 0.939333 0.343008i \(-0.111446\pi\)
0.939333 + 0.343008i \(0.111446\pi\)
\(102\) −1697.55 −1.64787
\(103\) 142.967 0.136767 0.0683834 0.997659i \(-0.478216\pi\)
0.0683834 + 0.997659i \(0.478216\pi\)
\(104\) 316.736 0.298639
\(105\) 80.5964 0.0749086
\(106\) 1695.29 1.55341
\(107\) 1908.21 1.72405 0.862027 0.506862i \(-0.169195\pi\)
0.862027 + 0.506862i \(0.169195\pi\)
\(108\) 531.548 0.473595
\(109\) 672.607 0.591046 0.295523 0.955336i \(-0.404506\pi\)
0.295523 + 0.955336i \(0.404506\pi\)
\(110\) 0 0
\(111\) 451.634 0.386191
\(112\) 892.369 0.752866
\(113\) −1635.11 −1.36123 −0.680613 0.732644i \(-0.738286\pi\)
−0.680613 + 0.732644i \(0.738286\pi\)
\(114\) 1107.34 0.909754
\(115\) 522.724 0.423863
\(116\) −2412.54 −1.93102
\(117\) −46.3553 −0.0366286
\(118\) −2239.45 −1.74710
\(119\) 577.813 0.445109
\(120\) −922.425 −0.701713
\(121\) 0 0
\(122\) −395.813 −0.293731
\(123\) −51.9246 −0.0380641
\(124\) 4965.92 3.59639
\(125\) 125.000 0.0894427
\(126\) −254.451 −0.179907
\(127\) −941.002 −0.657484 −0.328742 0.944420i \(-0.606625\pi\)
−0.328742 + 0.944420i \(0.606625\pi\)
\(128\) −527.958 −0.364573
\(129\) −1377.01 −0.939838
\(130\) 135.508 0.0914218
\(131\) −1243.83 −0.829574 −0.414787 0.909919i \(-0.636144\pi\)
−0.414787 + 0.909919i \(0.636144\pi\)
\(132\) 0 0
\(133\) −376.917 −0.245736
\(134\) 4728.16 3.04814
\(135\) 135.000 0.0860663
\(136\) −6613.06 −4.16960
\(137\) −1127.14 −0.702904 −0.351452 0.936206i \(-0.614312\pi\)
−0.351452 + 0.936206i \(0.614312\pi\)
\(138\) −1650.29 −1.01799
\(139\) 2537.94 1.54867 0.774335 0.632776i \(-0.218084\pi\)
0.774335 + 0.632776i \(0.218084\pi\)
\(140\) 528.899 0.319287
\(141\) 931.756 0.556510
\(142\) −6272.67 −3.70697
\(143\) 0 0
\(144\) 1494.73 0.865006
\(145\) −612.725 −0.350924
\(146\) −1459.52 −0.827335
\(147\) −942.390 −0.528755
\(148\) 2963.77 1.64608
\(149\) 2635.22 1.44890 0.724448 0.689329i \(-0.242095\pi\)
0.724448 + 0.689329i \(0.242095\pi\)
\(150\) −394.638 −0.214814
\(151\) −2665.26 −1.43639 −0.718197 0.695839i \(-0.755032\pi\)
−0.718197 + 0.695839i \(0.755032\pi\)
\(152\) 4313.82 2.30195
\(153\) 967.844 0.511409
\(154\) 0 0
\(155\) 1261.22 0.653571
\(156\) −304.199 −0.156124
\(157\) 2341.32 1.19017 0.595087 0.803661i \(-0.297118\pi\)
0.595087 + 0.803661i \(0.297118\pi\)
\(158\) −6615.03 −3.33078
\(159\) −966.559 −0.482095
\(160\) −1909.66 −0.943576
\(161\) 561.728 0.274971
\(162\) −426.209 −0.206705
\(163\) −3408.54 −1.63790 −0.818949 0.573866i \(-0.805443\pi\)
−0.818949 + 0.573866i \(0.805443\pi\)
\(164\) −340.746 −0.162243
\(165\) 0 0
\(166\) 823.460 0.385017
\(167\) 769.717 0.356662 0.178331 0.983971i \(-0.442930\pi\)
0.178331 + 0.983971i \(0.442930\pi\)
\(168\) −991.255 −0.455220
\(169\) −2170.47 −0.987925
\(170\) −2829.25 −1.27643
\(171\) −631.342 −0.282339
\(172\) −9036.40 −4.00592
\(173\) −2110.51 −0.927508 −0.463754 0.885964i \(-0.653498\pi\)
−0.463754 + 0.885964i \(0.653498\pi\)
\(174\) 1934.44 0.842812
\(175\) 134.327 0.0580239
\(176\) 0 0
\(177\) 1276.80 0.542206
\(178\) 505.651 0.212922
\(179\) 1473.25 0.615173 0.307587 0.951520i \(-0.400479\pi\)
0.307587 + 0.951520i \(0.400479\pi\)
\(180\) 885.914 0.366845
\(181\) −2290.00 −0.940413 −0.470206 0.882557i \(-0.655821\pi\)
−0.470206 + 0.882557i \(0.655821\pi\)
\(182\) 145.619 0.0593078
\(183\) 225.670 0.0911584
\(184\) −6428.98 −2.57582
\(185\) 752.724 0.299142
\(186\) −3981.80 −1.56968
\(187\) 0 0
\(188\) 6114.48 2.37205
\(189\) 145.073 0.0558335
\(190\) 1845.57 0.704692
\(191\) 3880.34 1.47001 0.735003 0.678063i \(-0.237180\pi\)
0.735003 + 0.678063i \(0.237180\pi\)
\(192\) 2043.06 0.767944
\(193\) 852.978 0.318128 0.159064 0.987268i \(-0.449152\pi\)
0.159064 + 0.987268i \(0.449152\pi\)
\(194\) 4423.58 1.63708
\(195\) −77.2589 −0.0283724
\(196\) −6184.27 −2.25374
\(197\) −766.748 −0.277302 −0.138651 0.990341i \(-0.544277\pi\)
−0.138651 + 0.990341i \(0.544277\pi\)
\(198\) 0 0
\(199\) 1242.15 0.442479 0.221240 0.975219i \(-0.428990\pi\)
0.221240 + 0.975219i \(0.428990\pi\)
\(200\) −1537.38 −0.543544
\(201\) −2695.73 −0.945980
\(202\) −10033.9 −3.49496
\(203\) −658.445 −0.227654
\(204\) 6351.31 2.17981
\(205\) −86.5409 −0.0294843
\(206\) −752.271 −0.254433
\(207\) 940.902 0.315929
\(208\) −855.416 −0.285156
\(209\) 0 0
\(210\) −424.085 −0.139356
\(211\) −4347.95 −1.41860 −0.709301 0.704906i \(-0.750989\pi\)
−0.709301 + 0.704906i \(0.750989\pi\)
\(212\) −6342.88 −2.05486
\(213\) 3576.31 1.15045
\(214\) −10040.7 −3.20733
\(215\) −2295.02 −0.727996
\(216\) −1660.37 −0.523026
\(217\) 1355.33 0.423989
\(218\) −3539.15 −1.09955
\(219\) 832.136 0.256760
\(220\) 0 0
\(221\) −553.886 −0.168590
\(222\) −2376.43 −0.718447
\(223\) −1123.30 −0.337317 −0.168658 0.985675i \(-0.553943\pi\)
−0.168658 + 0.985675i \(0.553943\pi\)
\(224\) −2052.16 −0.612123
\(225\) 225.000 0.0666667
\(226\) 8603.70 2.53234
\(227\) −435.002 −0.127190 −0.0635949 0.997976i \(-0.520257\pi\)
−0.0635949 + 0.997976i \(0.520257\pi\)
\(228\) −4143.07 −1.20343
\(229\) 4207.36 1.21411 0.607053 0.794661i \(-0.292351\pi\)
0.607053 + 0.794661i \(0.292351\pi\)
\(230\) −2750.49 −0.788530
\(231\) 0 0
\(232\) 7535.91 2.13257
\(233\) 235.268 0.0661499 0.0330749 0.999453i \(-0.489470\pi\)
0.0330749 + 0.999453i \(0.489470\pi\)
\(234\) 243.914 0.0681418
\(235\) 1552.93 0.431071
\(236\) 8378.80 2.31107
\(237\) 3771.51 1.03370
\(238\) −3040.36 −0.828055
\(239\) −647.975 −0.175373 −0.0876863 0.996148i \(-0.527947\pi\)
−0.0876863 + 0.996148i \(0.527947\pi\)
\(240\) 2491.22 0.670031
\(241\) 2281.64 0.609848 0.304924 0.952377i \(-0.401369\pi\)
0.304924 + 0.952377i \(0.401369\pi\)
\(242\) 0 0
\(243\) 243.000 0.0641500
\(244\) 1480.92 0.388550
\(245\) −1570.65 −0.409572
\(246\) 273.219 0.0708122
\(247\) 361.309 0.0930752
\(248\) −15511.7 −3.97176
\(249\) −469.490 −0.119489
\(250\) −657.730 −0.166394
\(251\) −4869.34 −1.22450 −0.612251 0.790664i \(-0.709736\pi\)
−0.612251 + 0.790664i \(0.709736\pi\)
\(252\) 952.019 0.237982
\(253\) 0 0
\(254\) 4951.41 1.22314
\(255\) 1613.07 0.396136
\(256\) −2670.13 −0.651887
\(257\) −1381.17 −0.335234 −0.167617 0.985852i \(-0.553607\pi\)
−0.167617 + 0.985852i \(0.553607\pi\)
\(258\) 7245.62 1.74842
\(259\) 808.890 0.194062
\(260\) −506.998 −0.120933
\(261\) −1102.91 −0.261564
\(262\) 6544.85 1.54329
\(263\) 1121.05 0.262841 0.131420 0.991327i \(-0.458046\pi\)
0.131420 + 0.991327i \(0.458046\pi\)
\(264\) 0 0
\(265\) −1610.93 −0.373429
\(266\) 1983.28 0.457153
\(267\) −288.293 −0.0660797
\(268\) −17690.2 −4.03210
\(269\) −1161.36 −0.263232 −0.131616 0.991301i \(-0.542017\pi\)
−0.131616 + 0.991301i \(0.542017\pi\)
\(270\) −710.349 −0.160113
\(271\) 3568.57 0.799908 0.399954 0.916535i \(-0.369026\pi\)
0.399954 + 0.916535i \(0.369026\pi\)
\(272\) 17860.1 3.98135
\(273\) −83.0238 −0.0184060
\(274\) 5930.81 1.30764
\(275\) 0 0
\(276\) 6174.51 1.34660
\(277\) 8346.58 1.81046 0.905230 0.424922i \(-0.139698\pi\)
0.905230 + 0.424922i \(0.139698\pi\)
\(278\) −13354.2 −2.88106
\(279\) 2270.19 0.487143
\(280\) −1652.09 −0.352612
\(281\) −1723.69 −0.365931 −0.182966 0.983119i \(-0.558570\pi\)
−0.182966 + 0.983119i \(0.558570\pi\)
\(282\) −4902.75 −1.03530
\(283\) −2086.76 −0.438321 −0.219160 0.975689i \(-0.570332\pi\)
−0.219160 + 0.975689i \(0.570332\pi\)
\(284\) 23468.9 4.90361
\(285\) −1052.24 −0.218699
\(286\) 0 0
\(287\) −92.9985 −0.0191273
\(288\) −3437.39 −0.703300
\(289\) 6651.47 1.35385
\(290\) 3224.06 0.652839
\(291\) −2522.07 −0.508063
\(292\) 5460.75 1.09440
\(293\) 3127.52 0.623588 0.311794 0.950150i \(-0.399070\pi\)
0.311794 + 0.950150i \(0.399070\pi\)
\(294\) 4958.71 0.983665
\(295\) 2128.01 0.419991
\(296\) −9257.75 −1.81789
\(297\) 0 0
\(298\) −13866.1 −2.69544
\(299\) −538.467 −0.104148
\(300\) 1476.52 0.284157
\(301\) −2466.27 −0.472271
\(302\) 14024.2 2.67219
\(303\) 5720.75 1.08465
\(304\) −11650.4 −2.19802
\(305\) 376.116 0.0706110
\(306\) −5092.64 −0.951395
\(307\) −1397.12 −0.259732 −0.129866 0.991532i \(-0.541455\pi\)
−0.129866 + 0.991532i \(0.541455\pi\)
\(308\) 0 0
\(309\) 428.902 0.0789623
\(310\) −6636.33 −1.21587
\(311\) 5405.45 0.985579 0.492790 0.870148i \(-0.335977\pi\)
0.492790 + 0.870148i \(0.335977\pi\)
\(312\) 950.207 0.172419
\(313\) 6240.77 1.12699 0.563497 0.826118i \(-0.309456\pi\)
0.563497 + 0.826118i \(0.309456\pi\)
\(314\) −12319.6 −2.21413
\(315\) 241.789 0.0432485
\(316\) 24749.9 4.40598
\(317\) −6919.66 −1.22601 −0.613007 0.790077i \(-0.710040\pi\)
−0.613007 + 0.790077i \(0.710040\pi\)
\(318\) 5085.88 0.896862
\(319\) 0 0
\(320\) 3405.10 0.594847
\(321\) 5724.64 0.995383
\(322\) −2955.72 −0.511541
\(323\) −7543.71 −1.29951
\(324\) 1594.64 0.273430
\(325\) −128.765 −0.0219772
\(326\) 17935.2 3.04705
\(327\) 2017.82 0.341241
\(328\) 1064.37 0.179176
\(329\) 1668.80 0.279648
\(330\) 0 0
\(331\) −3134.58 −0.520519 −0.260260 0.965539i \(-0.583808\pi\)
−0.260260 + 0.965539i \(0.583808\pi\)
\(332\) −3080.94 −0.509303
\(333\) 1354.90 0.222968
\(334\) −4050.13 −0.663513
\(335\) −4492.88 −0.732753
\(336\) 2677.11 0.434667
\(337\) 6484.89 1.04823 0.524117 0.851647i \(-0.324396\pi\)
0.524117 + 0.851647i \(0.324396\pi\)
\(338\) 11420.7 1.83788
\(339\) −4905.34 −0.785904
\(340\) 10585.5 1.68847
\(341\) 0 0
\(342\) 3322.02 0.525247
\(343\) −3530.82 −0.555820
\(344\) 28226.5 4.42404
\(345\) 1568.17 0.244717
\(346\) 11105.1 1.72548
\(347\) −2535.12 −0.392198 −0.196099 0.980584i \(-0.562827\pi\)
−0.196099 + 0.980584i \(0.562827\pi\)
\(348\) −7237.62 −1.11488
\(349\) −9319.24 −1.42936 −0.714681 0.699451i \(-0.753428\pi\)
−0.714681 + 0.699451i \(0.753428\pi\)
\(350\) −706.809 −0.107944
\(351\) −139.066 −0.0211476
\(352\) 0 0
\(353\) −3958.44 −0.596846 −0.298423 0.954434i \(-0.596461\pi\)
−0.298423 + 0.954434i \(0.596461\pi\)
\(354\) −6718.34 −1.00869
\(355\) 5960.52 0.891132
\(356\) −1891.88 −0.281655
\(357\) 1733.44 0.256984
\(358\) −7752.02 −1.14443
\(359\) 10876.2 1.59896 0.799480 0.600693i \(-0.205109\pi\)
0.799480 + 0.600693i \(0.205109\pi\)
\(360\) −2767.28 −0.405134
\(361\) −1938.10 −0.282564
\(362\) 12049.6 1.74949
\(363\) 0 0
\(364\) −544.829 −0.0784528
\(365\) 1386.89 0.198886
\(366\) −1187.44 −0.169586
\(367\) 4192.86 0.596364 0.298182 0.954509i \(-0.403620\pi\)
0.298182 + 0.954509i \(0.403620\pi\)
\(368\) 17362.9 2.45952
\(369\) −155.774 −0.0219763
\(370\) −3960.71 −0.556507
\(371\) −1731.14 −0.242254
\(372\) 14897.7 2.07638
\(373\) 11108.9 1.54209 0.771044 0.636782i \(-0.219735\pi\)
0.771044 + 0.636782i \(0.219735\pi\)
\(374\) 0 0
\(375\) 375.000 0.0516398
\(376\) −19099.4 −2.61962
\(377\) 631.179 0.0862265
\(378\) −763.353 −0.103869
\(379\) −4716.38 −0.639219 −0.319610 0.947549i \(-0.603552\pi\)
−0.319610 + 0.947549i \(0.603552\pi\)
\(380\) −6905.12 −0.932171
\(381\) −2823.01 −0.379599
\(382\) −20417.7 −2.73472
\(383\) 10117.1 1.34977 0.674883 0.737925i \(-0.264194\pi\)
0.674883 + 0.737925i \(0.264194\pi\)
\(384\) −1583.87 −0.210486
\(385\) 0 0
\(386\) −4488.23 −0.591827
\(387\) −4131.04 −0.542616
\(388\) −16550.6 −2.16554
\(389\) 11322.0 1.47571 0.737853 0.674961i \(-0.235840\pi\)
0.737853 + 0.674961i \(0.235840\pi\)
\(390\) 406.524 0.0527824
\(391\) 11242.6 1.45412
\(392\) 19317.4 2.48897
\(393\) −3731.50 −0.478955
\(394\) 4034.51 0.515877
\(395\) 6285.85 0.800697
\(396\) 0 0
\(397\) 5400.42 0.682718 0.341359 0.939933i \(-0.389113\pi\)
0.341359 + 0.939933i \(0.389113\pi\)
\(398\) −6535.97 −0.823163
\(399\) −1130.75 −0.141876
\(400\) 4152.03 0.519004
\(401\) 13782.4 1.71637 0.858183 0.513344i \(-0.171594\pi\)
0.858183 + 0.513344i \(0.171594\pi\)
\(402\) 14184.5 1.75985
\(403\) −1299.20 −0.160591
\(404\) 37541.4 4.62315
\(405\) 405.000 0.0496904
\(406\) 3464.64 0.423515
\(407\) 0 0
\(408\) −19839.2 −2.40732
\(409\) −113.092 −0.0136725 −0.00683626 0.999977i \(-0.502176\pi\)
−0.00683626 + 0.999977i \(0.502176\pi\)
\(410\) 455.365 0.0548509
\(411\) −3381.41 −0.405822
\(412\) 2814.59 0.336565
\(413\) 2286.79 0.272459
\(414\) −4950.88 −0.587735
\(415\) −782.483 −0.0925556
\(416\) 1967.18 0.231848
\(417\) 7613.82 0.894125
\(418\) 0 0
\(419\) 7352.48 0.857261 0.428630 0.903480i \(-0.358996\pi\)
0.428630 + 0.903480i \(0.358996\pi\)
\(420\) 1586.70 0.184340
\(421\) 3306.97 0.382831 0.191416 0.981509i \(-0.438692\pi\)
0.191416 + 0.981509i \(0.438692\pi\)
\(422\) 22878.2 2.63908
\(423\) 2795.27 0.321301
\(424\) 19812.9 2.26933
\(425\) 2688.46 0.306845
\(426\) −18818.0 −2.14022
\(427\) 404.181 0.0458073
\(428\) 37566.9 4.24268
\(429\) 0 0
\(430\) 12076.0 1.35432
\(431\) 9959.87 1.11311 0.556555 0.830811i \(-0.312123\pi\)
0.556555 + 0.830811i \(0.312123\pi\)
\(432\) 4484.19 0.499412
\(433\) 10913.1 1.21120 0.605598 0.795771i \(-0.292934\pi\)
0.605598 + 0.795771i \(0.292934\pi\)
\(434\) −7131.52 −0.788765
\(435\) −1838.18 −0.202606
\(436\) 13241.6 1.45449
\(437\) −7333.72 −0.802790
\(438\) −4378.57 −0.477662
\(439\) −6589.60 −0.716411 −0.358205 0.933643i \(-0.616611\pi\)
−0.358205 + 0.933643i \(0.616611\pi\)
\(440\) 0 0
\(441\) −2827.17 −0.305277
\(442\) 2914.46 0.313635
\(443\) −2597.43 −0.278572 −0.139286 0.990252i \(-0.544481\pi\)
−0.139286 + 0.990252i \(0.544481\pi\)
\(444\) 8891.31 0.950367
\(445\) −480.489 −0.0511851
\(446\) 5910.62 0.627524
\(447\) 7905.66 0.836521
\(448\) 3659.18 0.385893
\(449\) 6460.30 0.679021 0.339511 0.940602i \(-0.389739\pi\)
0.339511 + 0.940602i \(0.389739\pi\)
\(450\) −1183.91 −0.124023
\(451\) 0 0
\(452\) −32190.4 −3.34980
\(453\) −7995.77 −0.829303
\(454\) 2288.91 0.236617
\(455\) −138.373 −0.0142572
\(456\) 12941.5 1.32903
\(457\) 7676.12 0.785720 0.392860 0.919598i \(-0.371486\pi\)
0.392860 + 0.919598i \(0.371486\pi\)
\(458\) −22138.5 −2.25865
\(459\) 2903.53 0.295262
\(460\) 10290.8 1.04307
\(461\) −7555.51 −0.763330 −0.381665 0.924301i \(-0.624649\pi\)
−0.381665 + 0.924301i \(0.624649\pi\)
\(462\) 0 0
\(463\) 5480.50 0.550109 0.275055 0.961429i \(-0.411304\pi\)
0.275055 + 0.961429i \(0.411304\pi\)
\(464\) −20352.4 −2.03629
\(465\) 3783.66 0.377339
\(466\) −1237.94 −0.123061
\(467\) −10339.7 −1.02455 −0.512275 0.858822i \(-0.671197\pi\)
−0.512275 + 0.858822i \(0.671197\pi\)
\(468\) −912.596 −0.0901384
\(469\) −4828.13 −0.475357
\(470\) −8171.25 −0.801940
\(471\) 7023.95 0.687147
\(472\) −26172.3 −2.55229
\(473\) 0 0
\(474\) −19845.1 −1.92303
\(475\) −1753.73 −0.169403
\(476\) 11375.4 1.09536
\(477\) −2899.68 −0.278338
\(478\) 3409.54 0.326253
\(479\) −4320.65 −0.412141 −0.206070 0.978537i \(-0.566068\pi\)
−0.206070 + 0.978537i \(0.566068\pi\)
\(480\) −5728.99 −0.544774
\(481\) −775.394 −0.0735030
\(482\) −12005.6 −1.13453
\(483\) 1685.18 0.158755
\(484\) 0 0
\(485\) −4203.45 −0.393544
\(486\) −1278.63 −0.119341
\(487\) −9426.09 −0.877078 −0.438539 0.898712i \(-0.644504\pi\)
−0.438539 + 0.898712i \(0.644504\pi\)
\(488\) −4625.86 −0.429104
\(489\) −10225.6 −0.945641
\(490\) 8264.51 0.761944
\(491\) −569.771 −0.0523694 −0.0261847 0.999657i \(-0.508336\pi\)
−0.0261847 + 0.999657i \(0.508336\pi\)
\(492\) −1022.24 −0.0936708
\(493\) −13178.3 −1.20389
\(494\) −1901.15 −0.173152
\(495\) 0 0
\(496\) 41892.9 3.79244
\(497\) 6405.29 0.578101
\(498\) 2470.38 0.222290
\(499\) 17072.5 1.53161 0.765804 0.643074i \(-0.222341\pi\)
0.765804 + 0.643074i \(0.222341\pi\)
\(500\) 2460.87 0.220107
\(501\) 2309.15 0.205919
\(502\) 25621.7 2.27799
\(503\) −18622.7 −1.65079 −0.825395 0.564556i \(-0.809047\pi\)
−0.825395 + 0.564556i \(0.809047\pi\)
\(504\) −2973.76 −0.262821
\(505\) 9534.58 0.840165
\(506\) 0 0
\(507\) −6511.41 −0.570379
\(508\) −18525.5 −1.61798
\(509\) 16294.6 1.41895 0.709473 0.704733i \(-0.248933\pi\)
0.709473 + 0.704733i \(0.248933\pi\)
\(510\) −8487.74 −0.736948
\(511\) 1490.38 0.129023
\(512\) 18273.5 1.57731
\(513\) −1894.03 −0.163008
\(514\) 7267.50 0.623649
\(515\) 714.836 0.0611640
\(516\) −27109.2 −2.31282
\(517\) 0 0
\(518\) −4256.25 −0.361021
\(519\) −6331.52 −0.535497
\(520\) 1583.68 0.133556
\(521\) −20991.0 −1.76513 −0.882565 0.470189i \(-0.844186\pi\)
−0.882565 + 0.470189i \(0.844186\pi\)
\(522\) 5803.31 0.486598
\(523\) −11326.3 −0.946966 −0.473483 0.880803i \(-0.657003\pi\)
−0.473483 + 0.880803i \(0.657003\pi\)
\(524\) −24487.3 −2.04147
\(525\) 402.982 0.0335001
\(526\) −5898.80 −0.488973
\(527\) 27125.8 2.24216
\(528\) 0 0
\(529\) −1237.41 −0.101702
\(530\) 8476.47 0.694706
\(531\) 3830.41 0.313043
\(532\) −7420.36 −0.604725
\(533\) 89.1474 0.00724466
\(534\) 1516.95 0.122931
\(535\) 9541.06 0.771021
\(536\) 55257.9 4.45295
\(537\) 4419.76 0.355171
\(538\) 6110.90 0.489702
\(539\) 0 0
\(540\) 2657.74 0.211798
\(541\) −23994.8 −1.90687 −0.953433 0.301603i \(-0.902478\pi\)
−0.953433 + 0.301603i \(0.902478\pi\)
\(542\) −18777.2 −1.48810
\(543\) −6870.01 −0.542948
\(544\) −41072.4 −3.23707
\(545\) 3363.03 0.264324
\(546\) 436.858 0.0342414
\(547\) −14347.6 −1.12150 −0.560748 0.827986i \(-0.689487\pi\)
−0.560748 + 0.827986i \(0.689487\pi\)
\(548\) −22189.9 −1.72976
\(549\) 677.009 0.0526303
\(550\) 0 0
\(551\) 8596.42 0.664646
\(552\) −19286.9 −1.48715
\(553\) 6754.89 0.519434
\(554\) −43918.4 −3.36807
\(555\) 2258.17 0.172710
\(556\) 49964.3 3.81108
\(557\) 19041.9 1.44853 0.724265 0.689521i \(-0.242179\pi\)
0.724265 + 0.689521i \(0.242179\pi\)
\(558\) −11945.4 −0.906253
\(559\) 2364.14 0.178878
\(560\) 4461.85 0.336692
\(561\) 0 0
\(562\) 9069.77 0.680757
\(563\) 15082.0 1.12900 0.564502 0.825432i \(-0.309068\pi\)
0.564502 + 0.825432i \(0.309068\pi\)
\(564\) 18343.4 1.36950
\(565\) −8175.56 −0.608758
\(566\) 10980.2 0.815426
\(567\) 435.220 0.0322355
\(568\) −73308.5 −5.41541
\(569\) 13321.8 0.981513 0.490756 0.871297i \(-0.336720\pi\)
0.490756 + 0.871297i \(0.336720\pi\)
\(570\) 5536.70 0.406854
\(571\) 24112.7 1.76722 0.883611 0.468223i \(-0.155105\pi\)
0.883611 + 0.468223i \(0.155105\pi\)
\(572\) 0 0
\(573\) 11641.0 0.848709
\(574\) 489.343 0.0355833
\(575\) 2613.62 0.189557
\(576\) 6129.18 0.443372
\(577\) −4355.07 −0.314218 −0.157109 0.987581i \(-0.550217\pi\)
−0.157109 + 0.987581i \(0.550217\pi\)
\(578\) −34999.0 −2.51863
\(579\) 2558.93 0.183671
\(580\) −12062.7 −0.863580
\(581\) −840.870 −0.0600433
\(582\) 13270.7 0.945171
\(583\) 0 0
\(584\) −17057.4 −1.20863
\(585\) −231.777 −0.0163808
\(586\) −16456.5 −1.16009
\(587\) 14765.2 1.03820 0.519101 0.854713i \(-0.326267\pi\)
0.519101 + 0.854713i \(0.326267\pi\)
\(588\) −18552.8 −1.30120
\(589\) −17694.7 −1.23785
\(590\) −11197.2 −0.781327
\(591\) −2300.24 −0.160100
\(592\) 25002.6 1.73581
\(593\) 2990.56 0.207095 0.103548 0.994625i \(-0.466981\pi\)
0.103548 + 0.994625i \(0.466981\pi\)
\(594\) 0 0
\(595\) 2889.06 0.199059
\(596\) 51879.5 3.56555
\(597\) 3726.44 0.255466
\(598\) 2833.33 0.193752
\(599\) −1019.09 −0.0695138 −0.0347569 0.999396i \(-0.511066\pi\)
−0.0347569 + 0.999396i \(0.511066\pi\)
\(600\) −4612.13 −0.313815
\(601\) 18514.0 1.25658 0.628289 0.777980i \(-0.283756\pi\)
0.628289 + 0.777980i \(0.283756\pi\)
\(602\) 12977.1 0.878585
\(603\) −8087.18 −0.546162
\(604\) −52470.9 −3.53478
\(605\) 0 0
\(606\) −30101.7 −2.01782
\(607\) 15129.0 1.01164 0.505821 0.862638i \(-0.331190\pi\)
0.505821 + 0.862638i \(0.331190\pi\)
\(608\) 26792.2 1.78712
\(609\) −1975.34 −0.131436
\(610\) −1979.06 −0.131361
\(611\) −1599.70 −0.105920
\(612\) 19053.9 1.25851
\(613\) −10775.7 −0.709992 −0.354996 0.934868i \(-0.615518\pi\)
−0.354996 + 0.934868i \(0.615518\pi\)
\(614\) 7351.42 0.483191
\(615\) −259.623 −0.0170228
\(616\) 0 0
\(617\) 13290.2 0.867170 0.433585 0.901113i \(-0.357248\pi\)
0.433585 + 0.901113i \(0.357248\pi\)
\(618\) −2256.81 −0.146897
\(619\) −21299.7 −1.38305 −0.691526 0.722352i \(-0.743061\pi\)
−0.691526 + 0.722352i \(0.743061\pi\)
\(620\) 24829.6 1.60835
\(621\) 2822.71 0.182401
\(622\) −28442.6 −1.83351
\(623\) −516.342 −0.0332052
\(624\) −2566.25 −0.164635
\(625\) 625.000 0.0400000
\(626\) −32837.9 −2.09659
\(627\) 0 0
\(628\) 46093.4 2.92887
\(629\) 16189.3 1.02625
\(630\) −1272.26 −0.0804570
\(631\) 13486.2 0.850834 0.425417 0.904997i \(-0.360127\pi\)
0.425417 + 0.904997i \(0.360127\pi\)
\(632\) −77309.7 −4.86584
\(633\) −13043.8 −0.819030
\(634\) 36410.1 2.28081
\(635\) −4705.01 −0.294036
\(636\) −19028.6 −1.18637
\(637\) 1617.95 0.100637
\(638\) 0 0
\(639\) 10728.9 0.664210
\(640\) −2639.79 −0.163042
\(641\) 3234.75 0.199321 0.0996605 0.995021i \(-0.468224\pi\)
0.0996605 + 0.995021i \(0.468224\pi\)
\(642\) −30122.1 −1.85175
\(643\) −19623.4 −1.20353 −0.601766 0.798672i \(-0.705536\pi\)
−0.601766 + 0.798672i \(0.705536\pi\)
\(644\) 11058.7 0.676669
\(645\) −6885.06 −0.420308
\(646\) 39693.8 2.41754
\(647\) −14293.8 −0.868541 −0.434271 0.900782i \(-0.642994\pi\)
−0.434271 + 0.900782i \(0.642994\pi\)
\(648\) −4981.10 −0.301969
\(649\) 0 0
\(650\) 677.540 0.0408851
\(651\) 4065.98 0.244790
\(652\) −67103.9 −4.03066
\(653\) −3963.73 −0.237539 −0.118769 0.992922i \(-0.537895\pi\)
−0.118769 + 0.992922i \(0.537895\pi\)
\(654\) −10617.5 −0.634825
\(655\) −6219.16 −0.370997
\(656\) −2874.56 −0.171087
\(657\) 2496.41 0.148241
\(658\) −8780.97 −0.520240
\(659\) 1516.65 0.0896515 0.0448258 0.998995i \(-0.485727\pi\)
0.0448258 + 0.998995i \(0.485727\pi\)
\(660\) 0 0
\(661\) 106.966 0.00629425 0.00314713 0.999995i \(-0.498998\pi\)
0.00314713 + 0.999995i \(0.498998\pi\)
\(662\) 16493.6 0.968344
\(663\) −1661.66 −0.0973354
\(664\) 9623.76 0.562461
\(665\) −1884.59 −0.109896
\(666\) −7129.28 −0.414796
\(667\) −12811.4 −0.743719
\(668\) 15153.4 0.877699
\(669\) −3369.90 −0.194750
\(670\) 23640.8 1.36317
\(671\) 0 0
\(672\) −6156.48 −0.353410
\(673\) −15728.1 −0.900852 −0.450426 0.892814i \(-0.648728\pi\)
−0.450426 + 0.892814i \(0.648728\pi\)
\(674\) −34122.5 −1.95007
\(675\) 675.000 0.0384900
\(676\) −42730.0 −2.43116
\(677\) 316.806 0.0179850 0.00899249 0.999960i \(-0.497138\pi\)
0.00899249 + 0.999960i \(0.497138\pi\)
\(678\) 25811.1 1.46205
\(679\) −4517.10 −0.255303
\(680\) −33065.3 −1.86470
\(681\) −1305.01 −0.0734331
\(682\) 0 0
\(683\) −11621.2 −0.651057 −0.325528 0.945532i \(-0.605542\pi\)
−0.325528 + 0.945532i \(0.605542\pi\)
\(684\) −12429.2 −0.694799
\(685\) −5635.68 −0.314348
\(686\) 18578.6 1.03402
\(687\) 12622.1 0.700965
\(688\) −76231.9 −4.22429
\(689\) 1659.45 0.0917562
\(690\) −8251.46 −0.455258
\(691\) 22281.8 1.22669 0.613344 0.789816i \(-0.289824\pi\)
0.613344 + 0.789816i \(0.289824\pi\)
\(692\) −41549.5 −2.28248
\(693\) 0 0
\(694\) 13339.4 0.729622
\(695\) 12689.7 0.692586
\(696\) 22607.7 1.23124
\(697\) −1861.29 −0.101150
\(698\) 49036.3 2.65910
\(699\) 705.804 0.0381917
\(700\) 2644.50 0.142789
\(701\) −31634.6 −1.70445 −0.852227 0.523172i \(-0.824749\pi\)
−0.852227 + 0.523172i \(0.824749\pi\)
\(702\) 731.743 0.0393417
\(703\) −10560.6 −0.566571
\(704\) 0 0
\(705\) 4658.78 0.248879
\(706\) 20828.7 1.11034
\(707\) 10246.0 0.545038
\(708\) 25136.4 1.33430
\(709\) −7245.11 −0.383774 −0.191887 0.981417i \(-0.561461\pi\)
−0.191887 + 0.981417i \(0.561461\pi\)
\(710\) −31363.3 −1.65781
\(711\) 11314.5 0.596804
\(712\) 5909.54 0.311052
\(713\) 26370.7 1.38512
\(714\) −9121.08 −0.478078
\(715\) 0 0
\(716\) 29003.9 1.51386
\(717\) −1943.93 −0.101251
\(718\) −57229.1 −2.97461
\(719\) −33452.4 −1.73514 −0.867569 0.497317i \(-0.834319\pi\)
−0.867569 + 0.497317i \(0.834319\pi\)
\(720\) 7473.65 0.386842
\(721\) 768.176 0.0396787
\(722\) 10198.0 0.525665
\(723\) 6844.92 0.352096
\(724\) −45083.3 −2.31424
\(725\) −3063.63 −0.156938
\(726\) 0 0
\(727\) 7395.29 0.377271 0.188636 0.982047i \(-0.439594\pi\)
0.188636 + 0.982047i \(0.439594\pi\)
\(728\) 1701.85 0.0866411
\(729\) 729.000 0.0370370
\(730\) −7297.61 −0.369996
\(731\) −49360.5 −2.49749
\(732\) 4442.76 0.224329
\(733\) −666.961 −0.0336082 −0.0168041 0.999859i \(-0.505349\pi\)
−0.0168041 + 0.999859i \(0.505349\pi\)
\(734\) −22062.2 −1.10944
\(735\) −4711.95 −0.236466
\(736\) −39929.0 −1.99973
\(737\) 0 0
\(738\) 819.656 0.0408834
\(739\) 25530.9 1.27087 0.635433 0.772156i \(-0.280822\pi\)
0.635433 + 0.772156i \(0.280822\pi\)
\(740\) 14818.8 0.736151
\(741\) 1083.93 0.0537370
\(742\) 9108.97 0.450675
\(743\) −11909.0 −0.588019 −0.294009 0.955803i \(-0.594990\pi\)
−0.294009 + 0.955803i \(0.594990\pi\)
\(744\) −46535.2 −2.29309
\(745\) 13176.1 0.647966
\(746\) −58453.4 −2.86881
\(747\) −1408.47 −0.0689869
\(748\) 0 0
\(749\) 10253.0 0.500182
\(750\) −1973.19 −0.0960676
\(751\) −16437.5 −0.798685 −0.399343 0.916802i \(-0.630762\pi\)
−0.399343 + 0.916802i \(0.630762\pi\)
\(752\) 51582.4 2.50135
\(753\) −14608.0 −0.706966
\(754\) −3321.17 −0.160411
\(755\) −13326.3 −0.642375
\(756\) 2856.06 0.137399
\(757\) 38642.1 1.85531 0.927657 0.373434i \(-0.121820\pi\)
0.927657 + 0.373434i \(0.121820\pi\)
\(758\) 24816.8 1.18917
\(759\) 0 0
\(760\) 21569.1 1.02946
\(761\) 32325.7 1.53982 0.769912 0.638150i \(-0.220300\pi\)
0.769912 + 0.638150i \(0.220300\pi\)
\(762\) 14854.2 0.706183
\(763\) 3613.98 0.171474
\(764\) 76392.1 3.61750
\(765\) 4839.22 0.228709
\(766\) −53234.6 −2.51102
\(767\) −2192.10 −0.103197
\(768\) −8010.39 −0.376367
\(769\) 29461.5 1.38155 0.690773 0.723072i \(-0.257270\pi\)
0.690773 + 0.723072i \(0.257270\pi\)
\(770\) 0 0
\(771\) −4143.51 −0.193547
\(772\) 16792.6 0.782872
\(773\) 28275.2 1.31564 0.657820 0.753175i \(-0.271479\pi\)
0.657820 + 0.753175i \(0.271479\pi\)
\(774\) 21736.9 1.00945
\(775\) 6306.09 0.292286
\(776\) 51698.2 2.39157
\(777\) 2426.67 0.112042
\(778\) −59574.8 −2.74532
\(779\) 1214.15 0.0558428
\(780\) −1520.99 −0.0698209
\(781\) 0 0
\(782\) −59156.5 −2.70516
\(783\) −3308.72 −0.151014
\(784\) −52171.1 −2.37660
\(785\) 11706.6 0.532262
\(786\) 19634.6 0.891019
\(787\) 27311.6 1.23705 0.618523 0.785767i \(-0.287731\pi\)
0.618523 + 0.785767i \(0.287731\pi\)
\(788\) −15094.9 −0.682405
\(789\) 3363.16 0.151751
\(790\) −33075.1 −1.48957
\(791\) −8785.61 −0.394918
\(792\) 0 0
\(793\) −387.444 −0.0173500
\(794\) −28416.1 −1.27009
\(795\) −4832.80 −0.215600
\(796\) 24454.1 1.08888
\(797\) −35217.6 −1.56521 −0.782605 0.622518i \(-0.786110\pi\)
−0.782605 + 0.622518i \(0.786110\pi\)
\(798\) 5949.84 0.263937
\(799\) 33399.8 1.47885
\(800\) −9548.32 −0.421980
\(801\) −864.880 −0.0381511
\(802\) −72521.1 −3.19303
\(803\) 0 0
\(804\) −53070.7 −2.32794
\(805\) 2808.64 0.122971
\(806\) 6836.21 0.298753
\(807\) −3484.08 −0.151977
\(808\) −117266. −5.10569
\(809\) −26775.1 −1.16361 −0.581806 0.813327i \(-0.697654\pi\)
−0.581806 + 0.813327i \(0.697654\pi\)
\(810\) −2131.05 −0.0924411
\(811\) 22851.7 0.989434 0.494717 0.869054i \(-0.335272\pi\)
0.494717 + 0.869054i \(0.335272\pi\)
\(812\) −12962.8 −0.560228
\(813\) 10705.7 0.461827
\(814\) 0 0
\(815\) −17042.7 −0.732491
\(816\) 53580.2 2.29863
\(817\) 32198.7 1.37881
\(818\) 595.074 0.0254356
\(819\) −249.071 −0.0106267
\(820\) −1703.73 −0.0725571
\(821\) 11277.7 0.479408 0.239704 0.970846i \(-0.422950\pi\)
0.239704 + 0.970846i \(0.422950\pi\)
\(822\) 17792.4 0.754967
\(823\) 3325.42 0.140847 0.0704234 0.997517i \(-0.477565\pi\)
0.0704234 + 0.997517i \(0.477565\pi\)
\(824\) −8791.77 −0.371694
\(825\) 0 0
\(826\) −12032.7 −0.506868
\(827\) 9271.96 0.389864 0.194932 0.980817i \(-0.437551\pi\)
0.194932 + 0.980817i \(0.437551\pi\)
\(828\) 18523.5 0.777460
\(829\) 7773.46 0.325674 0.162837 0.986653i \(-0.447936\pi\)
0.162837 + 0.986653i \(0.447936\pi\)
\(830\) 4117.30 0.172185
\(831\) 25039.7 1.04527
\(832\) −3507.66 −0.146161
\(833\) −33781.0 −1.40509
\(834\) −40062.7 −1.66338
\(835\) 3848.59 0.159504
\(836\) 0 0
\(837\) 6810.58 0.281252
\(838\) −38687.6 −1.59480
\(839\) 8879.30 0.365372 0.182686 0.983171i \(-0.441521\pi\)
0.182686 + 0.983171i \(0.441521\pi\)
\(840\) −4956.27 −0.203581
\(841\) −9371.72 −0.384260
\(842\) −17400.8 −0.712197
\(843\) −5171.07 −0.211270
\(844\) −85597.9 −3.49100
\(845\) −10852.4 −0.441814
\(846\) −14708.3 −0.597731
\(847\) 0 0
\(848\) −53509.1 −2.16687
\(849\) −6260.27 −0.253065
\(850\) −14146.2 −0.570837
\(851\) 15738.7 0.633976
\(852\) 70406.8 2.83110
\(853\) 20374.6 0.817835 0.408917 0.912571i \(-0.365906\pi\)
0.408917 + 0.912571i \(0.365906\pi\)
\(854\) −2126.74 −0.0852172
\(855\) −3156.71 −0.126266
\(856\) −117346. −4.68550
\(857\) −47483.4 −1.89265 −0.946326 0.323213i \(-0.895237\pi\)
−0.946326 + 0.323213i \(0.895237\pi\)
\(858\) 0 0
\(859\) −10722.1 −0.425882 −0.212941 0.977065i \(-0.568304\pi\)
−0.212941 + 0.977065i \(0.568304\pi\)
\(860\) −45182.0 −1.79150
\(861\) −278.995 −0.0110431
\(862\) −52407.3 −2.07076
\(863\) 18040.1 0.711578 0.355789 0.934566i \(-0.384212\pi\)
0.355789 + 0.934566i \(0.384212\pi\)
\(864\) −10312.2 −0.406050
\(865\) −10552.5 −0.414794
\(866\) −57422.8 −2.25324
\(867\) 19954.4 0.781647
\(868\) 26682.3 1.04338
\(869\) 0 0
\(870\) 9672.19 0.376917
\(871\) 4628.20 0.180047
\(872\) −41362.0 −1.60630
\(873\) −7566.21 −0.293330
\(874\) 38588.9 1.49346
\(875\) 671.636 0.0259491
\(876\) 16382.2 0.631855
\(877\) −26506.3 −1.02059 −0.510294 0.860000i \(-0.670463\pi\)
−0.510294 + 0.860000i \(0.670463\pi\)
\(878\) 34673.4 1.33277
\(879\) 9382.55 0.360029
\(880\) 0 0
\(881\) 14870.8 0.568685 0.284342 0.958723i \(-0.408225\pi\)
0.284342 + 0.958723i \(0.408225\pi\)
\(882\) 14876.1 0.567919
\(883\) 42210.9 1.60873 0.804366 0.594134i \(-0.202505\pi\)
0.804366 + 0.594134i \(0.202505\pi\)
\(884\) −10904.3 −0.414878
\(885\) 6384.02 0.242482
\(886\) 13667.3 0.518240
\(887\) −20743.2 −0.785220 −0.392610 0.919705i \(-0.628428\pi\)
−0.392610 + 0.919705i \(0.628428\pi\)
\(888\) −27773.2 −1.04956
\(889\) −5056.09 −0.190749
\(890\) 2528.26 0.0952218
\(891\) 0 0
\(892\) −22114.3 −0.830093
\(893\) −21787.3 −0.816443
\(894\) −41598.3 −1.55622
\(895\) 7366.26 0.275114
\(896\) −2836.76 −0.105770
\(897\) −1615.40 −0.0601301
\(898\) −33993.1 −1.26321
\(899\) −30911.2 −1.14677
\(900\) 4429.57 0.164058
\(901\) −34647.4 −1.28110
\(902\) 0 0
\(903\) −7398.81 −0.272666
\(904\) 100551. 3.69943
\(905\) −11450.0 −0.420565
\(906\) 42072.5 1.54279
\(907\) 34322.7 1.25652 0.628261 0.778002i \(-0.283767\pi\)
0.628261 + 0.778002i \(0.283767\pi\)
\(908\) −8563.87 −0.312998
\(909\) 17162.2 0.626222
\(910\) 728.097 0.0265233
\(911\) 46372.6 1.68649 0.843245 0.537529i \(-0.180642\pi\)
0.843245 + 0.537529i \(0.180642\pi\)
\(912\) −34951.3 −1.26903
\(913\) 0 0
\(914\) −40390.5 −1.46171
\(915\) 1128.35 0.0407673
\(916\) 82830.3 2.98776
\(917\) −6683.23 −0.240676
\(918\) −15277.9 −0.549288
\(919\) 15809.4 0.567469 0.283734 0.958903i \(-0.408427\pi\)
0.283734 + 0.958903i \(0.408427\pi\)
\(920\) −32144.9 −1.15194
\(921\) −4191.36 −0.149957
\(922\) 39755.9 1.42005
\(923\) −6140.05 −0.218962
\(924\) 0 0
\(925\) 3763.62 0.133781
\(926\) −28837.5 −1.02339
\(927\) 1286.70 0.0455889
\(928\) 46804.0 1.65562
\(929\) 37806.1 1.33517 0.667587 0.744532i \(-0.267327\pi\)
0.667587 + 0.744532i \(0.267327\pi\)
\(930\) −19909.0 −0.701980
\(931\) 22035.9 0.775723
\(932\) 4631.72 0.162786
\(933\) 16216.4 0.569025
\(934\) 54405.9 1.90601
\(935\) 0 0
\(936\) 2850.62 0.0995464
\(937\) −2703.76 −0.0942669 −0.0471334 0.998889i \(-0.515009\pi\)
−0.0471334 + 0.998889i \(0.515009\pi\)
\(938\) 25404.9 0.884326
\(939\) 18722.3 0.650670
\(940\) 30572.4 1.06081
\(941\) 42365.9 1.46768 0.733841 0.679322i \(-0.237726\pi\)
0.733841 + 0.679322i \(0.237726\pi\)
\(942\) −36958.9 −1.27833
\(943\) −1809.48 −0.0624865
\(944\) 70684.3 2.43705
\(945\) 725.367 0.0249695
\(946\) 0 0
\(947\) −7085.97 −0.243150 −0.121575 0.992582i \(-0.538794\pi\)
−0.121575 + 0.992582i \(0.538794\pi\)
\(948\) 74249.6 2.54379
\(949\) −1428.66 −0.0488687
\(950\) 9227.84 0.315148
\(951\) −20759.0 −0.707840
\(952\) −35532.6 −1.20968
\(953\) 26409.0 0.897662 0.448831 0.893617i \(-0.351840\pi\)
0.448831 + 0.893617i \(0.351840\pi\)
\(954\) 15257.6 0.517803
\(955\) 19401.7 0.657407
\(956\) −12756.7 −0.431569
\(957\) 0 0
\(958\) 22734.6 0.766723
\(959\) −6056.21 −0.203926
\(960\) 10215.3 0.343435
\(961\) 33835.9 1.13578
\(962\) 4080.00 0.136741
\(963\) 17173.9 0.574685
\(964\) 44918.6 1.50076
\(965\) 4264.89 0.142271
\(966\) −8867.17 −0.295338
\(967\) 31278.1 1.04016 0.520081 0.854117i \(-0.325902\pi\)
0.520081 + 0.854117i \(0.325902\pi\)
\(968\) 0 0
\(969\) −22631.1 −0.750275
\(970\) 22117.9 0.732126
\(971\) −10461.4 −0.345750 −0.172875 0.984944i \(-0.555306\pi\)
−0.172875 + 0.984944i \(0.555306\pi\)
\(972\) 4783.93 0.157865
\(973\) 13636.6 0.449300
\(974\) 49598.6 1.63167
\(975\) −386.294 −0.0126885
\(976\) 12493.2 0.409730
\(977\) −38539.6 −1.26202 −0.631008 0.775776i \(-0.717359\pi\)
−0.631008 + 0.775776i \(0.717359\pi\)
\(978\) 53805.6 1.75922
\(979\) 0 0
\(980\) −30921.3 −1.00790
\(981\) 6053.46 0.197015
\(982\) 2998.04 0.0974250
\(983\) 48220.9 1.56461 0.782304 0.622897i \(-0.214045\pi\)
0.782304 + 0.622897i \(0.214045\pi\)
\(984\) 3193.10 0.103448
\(985\) −3833.74 −0.124013
\(986\) 69342.0 2.23965
\(987\) 5006.41 0.161455
\(988\) 7113.09 0.229046
\(989\) −47986.4 −1.54285
\(990\) 0 0
\(991\) 19959.7 0.639798 0.319899 0.947452i \(-0.396351\pi\)
0.319899 + 0.947452i \(0.396351\pi\)
\(992\) −96340.1 −3.08347
\(993\) −9403.73 −0.300522
\(994\) −33703.6 −1.07547
\(995\) 6210.73 0.197883
\(996\) −9242.83 −0.294046
\(997\) −59491.3 −1.88978 −0.944889 0.327392i \(-0.893830\pi\)
−0.944889 + 0.327392i \(0.893830\pi\)
\(998\) −89833.0 −2.84931
\(999\) 4064.71 0.128730
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1815.4.a.bb.1.1 6
11.10 odd 2 inner 1815.4.a.bb.1.6 yes 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1815.4.a.bb.1.1 6 1.1 even 1 trivial
1815.4.a.bb.1.6 yes 6 11.10 odd 2 inner