Properties

Label 1815.2.c.e.364.2
Level $1815$
Weight $2$
Character 1815.364
Analytic conductor $14.493$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1815,2,Mod(364,1815)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1815, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1815.364");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1815 = 3 \cdot 5 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1815.c (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(14.4928479669\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.0.350464.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 2x^{5} + 2x^{4} + 2x^{3} + 4x^{2} - 4x + 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 165)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 364.2
Root \(0.403032 - 0.403032i\) of defining polynomial
Character \(\chi\) \(=\) 1815.364
Dual form 1815.2.c.e.364.5

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.48119i q^{2} +1.00000i q^{3} -0.193937 q^{4} +(-1.48119 + 1.67513i) q^{5} +1.48119 q^{6} +1.19394i q^{7} -2.67513i q^{8} -1.00000 q^{9} +O(q^{10})\) \(q-1.48119i q^{2} +1.00000i q^{3} -0.193937 q^{4} +(-1.48119 + 1.67513i) q^{5} +1.48119 q^{6} +1.19394i q^{7} -2.67513i q^{8} -1.00000 q^{9} +(2.48119 + 2.19394i) q^{10} -0.193937i q^{12} -0.806063i q^{13} +1.76845 q^{14} +(-1.67513 - 1.48119i) q^{15} -4.35026 q^{16} +3.76845i q^{17} +1.48119i q^{18} -5.35026 q^{19} +(0.287258 - 0.324869i) q^{20} -1.19394 q^{21} +4.00000i q^{23} +2.67513 q^{24} +(-0.612127 - 4.96239i) q^{25} -1.19394 q^{26} -1.00000i q^{27} -0.231548i q^{28} -4.31265 q^{29} +(-2.19394 + 2.48119i) q^{30} +0.962389 q^{31} +1.09332i q^{32} +5.58181 q^{34} +(-2.00000 - 1.76845i) q^{35} +0.193937 q^{36} -1.61213i q^{37} +7.92478i q^{38} +0.806063 q^{39} +(4.48119 + 3.96239i) q^{40} -9.08840 q^{41} +1.76845i q^{42} -4.41819i q^{43} +(1.48119 - 1.67513i) q^{45} +5.92478 q^{46} -12.3127i q^{47} -4.35026i q^{48} +5.57452 q^{49} +(-7.35026 + 0.906679i) q^{50} -3.76845 q^{51} +0.156325i q^{52} +1.42548i q^{53} -1.48119 q^{54} +3.19394 q^{56} -5.35026i q^{57} +6.38787i q^{58} -13.2750 q^{59} +(0.324869 + 0.287258i) q^{60} +0.0752228 q^{61} -1.42548i q^{62} -1.19394i q^{63} -7.08110 q^{64} +(1.35026 + 1.19394i) q^{65} +2.70052i q^{67} -0.730841i q^{68} -4.00000 q^{69} +(-2.61942 + 2.96239i) q^{70} -14.0508 q^{71} +2.67513i q^{72} +10.7308i q^{73} -2.38787 q^{74} +(4.96239 - 0.612127i) q^{75} +1.03761 q^{76} -1.19394i q^{78} +13.9756 q^{79} +(6.44358 - 7.28726i) q^{80} +1.00000 q^{81} +13.4617i q^{82} +9.89446i q^{83} +0.231548 q^{84} +(-6.31265 - 5.58181i) q^{85} -6.54420 q^{86} -4.31265i q^{87} -16.8872 q^{89} +(-2.48119 - 2.19394i) q^{90} +0.962389 q^{91} -0.775746i q^{92} +0.962389i q^{93} -18.2374 q^{94} +(7.92478 - 8.96239i) q^{95} -1.09332 q^{96} -11.4763i q^{97} -8.25694i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 2 q^{4} + 2 q^{5} - 2 q^{6} - 6 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 6 q - 2 q^{4} + 2 q^{5} - 2 q^{6} - 6 q^{9} + 4 q^{10} - 12 q^{14} - 6 q^{16} - 12 q^{19} - 10 q^{20} - 8 q^{21} + 6 q^{24} - 2 q^{25} - 8 q^{26} + 16 q^{29} - 14 q^{30} - 16 q^{31} + 36 q^{34} - 12 q^{35} + 2 q^{36} + 4 q^{39} + 16 q^{40} - 16 q^{41} - 2 q^{45} - 8 q^{46} + 10 q^{49} - 24 q^{50} + 2 q^{54} + 20 q^{56} - 16 q^{59} + 12 q^{60} + 44 q^{61} + 22 q^{64} - 12 q^{65} - 24 q^{69} - 40 q^{70} - 24 q^{71} - 16 q^{74} + 8 q^{75} + 28 q^{76} - 20 q^{79} + 6 q^{80} + 6 q^{81} + 24 q^{84} + 4 q^{85} - 20 q^{86} - 36 q^{89} - 4 q^{90} - 16 q^{91} - 24 q^{94} + 4 q^{95} + 6 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1815\mathbb{Z}\right)^\times\).

\(n\) \(727\) \(1211\) \(1696\)
\(\chi(n)\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.48119i 1.04736i −0.851914 0.523681i \(-0.824558\pi\)
0.851914 0.523681i \(-0.175442\pi\)
\(3\) 1.00000i 0.577350i
\(4\) −0.193937 −0.0969683
\(5\) −1.48119 + 1.67513i −0.662410 + 0.749141i
\(6\) 1.48119 0.604695
\(7\) 1.19394i 0.451266i 0.974212 + 0.225633i \(0.0724450\pi\)
−0.974212 + 0.225633i \(0.927555\pi\)
\(8\) 2.67513i 0.945802i
\(9\) −1.00000 −0.333333
\(10\) 2.48119 + 2.19394i 0.784623 + 0.693784i
\(11\) 0 0
\(12\) 0.193937i 0.0559847i
\(13\) 0.806063i 0.223562i −0.993733 0.111781i \(-0.964345\pi\)
0.993733 0.111781i \(-0.0356555\pi\)
\(14\) 1.76845 0.472639
\(15\) −1.67513 1.48119i −0.432517 0.382443i
\(16\) −4.35026 −1.08757
\(17\) 3.76845i 0.913984i 0.889471 + 0.456992i \(0.151073\pi\)
−0.889471 + 0.456992i \(0.848927\pi\)
\(18\) 1.48119i 0.349121i
\(19\) −5.35026 −1.22743 −0.613717 0.789526i \(-0.710326\pi\)
−0.613717 + 0.789526i \(0.710326\pi\)
\(20\) 0.287258 0.324869i 0.0642328 0.0726429i
\(21\) −1.19394 −0.260538
\(22\) 0 0
\(23\) 4.00000i 0.834058i 0.908893 + 0.417029i \(0.136929\pi\)
−0.908893 + 0.417029i \(0.863071\pi\)
\(24\) 2.67513 0.546059
\(25\) −0.612127 4.96239i −0.122425 0.992478i
\(26\) −1.19394 −0.234150
\(27\) 1.00000i 0.192450i
\(28\) 0.231548i 0.0437585i
\(29\) −4.31265 −0.800839 −0.400420 0.916332i \(-0.631136\pi\)
−0.400420 + 0.916332i \(0.631136\pi\)
\(30\) −2.19394 + 2.48119i −0.400556 + 0.453002i
\(31\) 0.962389 0.172850 0.0864250 0.996258i \(-0.472456\pi\)
0.0864250 + 0.996258i \(0.472456\pi\)
\(32\) 1.09332i 0.193274i
\(33\) 0 0
\(34\) 5.58181 0.957272
\(35\) −2.00000 1.76845i −0.338062 0.298923i
\(36\) 0.193937 0.0323228
\(37\) 1.61213i 0.265032i −0.991181 0.132516i \(-0.957694\pi\)
0.991181 0.132516i \(-0.0423056\pi\)
\(38\) 7.92478i 1.28557i
\(39\) 0.806063 0.129073
\(40\) 4.48119 + 3.96239i 0.708539 + 0.626509i
\(41\) −9.08840 −1.41937 −0.709685 0.704520i \(-0.751163\pi\)
−0.709685 + 0.704520i \(0.751163\pi\)
\(42\) 1.76845i 0.272878i
\(43\) 4.41819i 0.673768i −0.941546 0.336884i \(-0.890627\pi\)
0.941546 0.336884i \(-0.109373\pi\)
\(44\) 0 0
\(45\) 1.48119 1.67513i 0.220803 0.249714i
\(46\) 5.92478 0.873561
\(47\) 12.3127i 1.79598i −0.440011 0.897992i \(-0.645026\pi\)
0.440011 0.897992i \(-0.354974\pi\)
\(48\) 4.35026i 0.627906i
\(49\) 5.57452 0.796359
\(50\) −7.35026 + 0.906679i −1.03948 + 0.128224i
\(51\) −3.76845 −0.527689
\(52\) 0.156325i 0.0216784i
\(53\) 1.42548i 0.195805i 0.995196 + 0.0979027i \(0.0312134\pi\)
−0.995196 + 0.0979027i \(0.968787\pi\)
\(54\) −1.48119 −0.201565
\(55\) 0 0
\(56\) 3.19394 0.426808
\(57\) 5.35026i 0.708659i
\(58\) 6.38787i 0.838769i
\(59\) −13.2750 −1.72826 −0.864131 0.503266i \(-0.832132\pi\)
−0.864131 + 0.503266i \(0.832132\pi\)
\(60\) 0.324869 + 0.287258i 0.0419404 + 0.0370848i
\(61\) 0.0752228 0.00963129 0.00481565 0.999988i \(-0.498467\pi\)
0.00481565 + 0.999988i \(0.498467\pi\)
\(62\) 1.42548i 0.181037i
\(63\) 1.19394i 0.150422i
\(64\) −7.08110 −0.885138
\(65\) 1.35026 + 1.19394i 0.167479 + 0.148090i
\(66\) 0 0
\(67\) 2.70052i 0.329921i 0.986300 + 0.164961i \(0.0527497\pi\)
−0.986300 + 0.164961i \(0.947250\pi\)
\(68\) 0.730841i 0.0886274i
\(69\) −4.00000 −0.481543
\(70\) −2.61942 + 2.96239i −0.313081 + 0.354073i
\(71\) −14.0508 −1.66752 −0.833761 0.552126i \(-0.813817\pi\)
−0.833761 + 0.552126i \(0.813817\pi\)
\(72\) 2.67513i 0.315267i
\(73\) 10.7308i 1.25595i 0.778234 + 0.627975i \(0.216116\pi\)
−0.778234 + 0.627975i \(0.783884\pi\)
\(74\) −2.38787 −0.277585
\(75\) 4.96239 0.612127i 0.573007 0.0706823i
\(76\) 1.03761 0.119022
\(77\) 0 0
\(78\) 1.19394i 0.135187i
\(79\) 13.9756 1.57237 0.786187 0.617989i \(-0.212052\pi\)
0.786187 + 0.617989i \(0.212052\pi\)
\(80\) 6.44358 7.28726i 0.720414 0.814740i
\(81\) 1.00000 0.111111
\(82\) 13.4617i 1.48659i
\(83\) 9.89446i 1.08606i 0.839714 + 0.543029i \(0.182723\pi\)
−0.839714 + 0.543029i \(0.817277\pi\)
\(84\) 0.231548 0.0252640
\(85\) −6.31265 5.58181i −0.684703 0.605432i
\(86\) −6.54420 −0.705679
\(87\) 4.31265i 0.462365i
\(88\) 0 0
\(89\) −16.8872 −1.79004 −0.895018 0.446030i \(-0.852837\pi\)
−0.895018 + 0.446030i \(0.852837\pi\)
\(90\) −2.48119 2.19394i −0.261541 0.231261i
\(91\) 0.962389 0.100886
\(92\) 0.775746i 0.0808771i
\(93\) 0.962389i 0.0997950i
\(94\) −18.2374 −1.88105
\(95\) 7.92478 8.96239i 0.813065 0.919522i
\(96\) −1.09332 −0.111587
\(97\) 11.4763i 1.16524i −0.812745 0.582619i \(-0.802028\pi\)
0.812745 0.582619i \(-0.197972\pi\)
\(98\) 8.25694i 0.834077i
\(99\) 0 0
\(100\) 0.118714 + 0.962389i 0.0118714 + 0.0962389i
\(101\) −10.7612 −1.07078 −0.535388 0.844606i \(-0.679834\pi\)
−0.535388 + 0.844606i \(0.679834\pi\)
\(102\) 5.58181i 0.552682i
\(103\) 16.9380i 1.66895i 0.551049 + 0.834473i \(0.314228\pi\)
−0.551049 + 0.834473i \(0.685772\pi\)
\(104\) −2.15633 −0.211445
\(105\) 1.76845 2.00000i 0.172583 0.195180i
\(106\) 2.11142 0.205079
\(107\) 8.28233i 0.800683i 0.916366 + 0.400342i \(0.131109\pi\)
−0.916366 + 0.400342i \(0.868891\pi\)
\(108\) 0.193937i 0.0186616i
\(109\) −10.0000 −0.957826 −0.478913 0.877862i \(-0.658969\pi\)
−0.478913 + 0.877862i \(0.658969\pi\)
\(110\) 0 0
\(111\) 1.61213 0.153016
\(112\) 5.19394i 0.490781i
\(113\) 2.26187i 0.212778i 0.994325 + 0.106389i \(0.0339289\pi\)
−0.994325 + 0.106389i \(0.966071\pi\)
\(114\) −7.92478 −0.742223
\(115\) −6.70052 5.92478i −0.624827 0.552488i
\(116\) 0.836381 0.0776560
\(117\) 0.806063i 0.0745206i
\(118\) 19.6629i 1.81012i
\(119\) −4.49929 −0.412449
\(120\) −3.96239 + 4.48119i −0.361715 + 0.409075i
\(121\) 0 0
\(122\) 0.111420i 0.0100875i
\(123\) 9.08840i 0.819473i
\(124\) −0.186642 −0.0167610
\(125\) 9.21933 + 6.32487i 0.824602 + 0.565713i
\(126\) −1.76845 −0.157546
\(127\) 13.8192i 1.22626i −0.789982 0.613130i \(-0.789910\pi\)
0.789982 0.613130i \(-0.210090\pi\)
\(128\) 12.6751i 1.12033i
\(129\) 4.41819 0.389000
\(130\) 1.76845 2.00000i 0.155104 0.175412i
\(131\) 5.92478 0.517650 0.258825 0.965924i \(-0.416665\pi\)
0.258825 + 0.965924i \(0.416665\pi\)
\(132\) 0 0
\(133\) 6.38787i 0.553899i
\(134\) 4.00000 0.345547
\(135\) 1.67513 + 1.48119i 0.144172 + 0.127481i
\(136\) 10.0811 0.864447
\(137\) 3.35026i 0.286232i −0.989706 0.143116i \(-0.954288\pi\)
0.989706 0.143116i \(-0.0457122\pi\)
\(138\) 5.92478i 0.504351i
\(139\) −21.1998 −1.79814 −0.899072 0.437800i \(-0.855758\pi\)
−0.899072 + 0.437800i \(0.855758\pi\)
\(140\) 0.387873 + 0.342968i 0.0327813 + 0.0289860i
\(141\) 12.3127 1.03691
\(142\) 20.8119i 1.74650i
\(143\) 0 0
\(144\) 4.35026 0.362522
\(145\) 6.38787 7.22425i 0.530484 0.599942i
\(146\) 15.8945 1.31543
\(147\) 5.57452i 0.459778i
\(148\) 0.312650i 0.0256997i
\(149\) 6.38787 0.523315 0.261657 0.965161i \(-0.415731\pi\)
0.261657 + 0.965161i \(0.415731\pi\)
\(150\) −0.906679 7.35026i −0.0740300 0.600146i
\(151\) 2.64974 0.215633 0.107816 0.994171i \(-0.465614\pi\)
0.107816 + 0.994171i \(0.465614\pi\)
\(152\) 14.3127i 1.16091i
\(153\) 3.76845i 0.304661i
\(154\) 0 0
\(155\) −1.42548 + 1.61213i −0.114498 + 0.129489i
\(156\) −0.156325 −0.0125160
\(157\) 1.61213i 0.128662i −0.997929 0.0643309i \(-0.979509\pi\)
0.997929 0.0643309i \(-0.0204913\pi\)
\(158\) 20.7005i 1.64685i
\(159\) −1.42548 −0.113048
\(160\) −1.83146 1.61942i −0.144789 0.128026i
\(161\) −4.77575 −0.376382
\(162\) 1.48119i 0.116374i
\(163\) 0.312650i 0.0244887i −0.999925 0.0122443i \(-0.996102\pi\)
0.999925 0.0122443i \(-0.00389759\pi\)
\(164\) 1.76257 0.137634
\(165\) 0 0
\(166\) 14.6556 1.13750
\(167\) 0.493413i 0.0381815i 0.999818 + 0.0190907i \(0.00607714\pi\)
−0.999818 + 0.0190907i \(0.993923\pi\)
\(168\) 3.19394i 0.246418i
\(169\) 12.3503 0.950020
\(170\) −8.26774 + 9.35026i −0.634107 + 0.717132i
\(171\) 5.35026 0.409145
\(172\) 0.856849i 0.0653341i
\(173\) 23.3054i 1.77187i 0.463806 + 0.885937i \(0.346483\pi\)
−0.463806 + 0.885937i \(0.653517\pi\)
\(174\) −6.38787 −0.484263
\(175\) 5.92478 0.730841i 0.447871 0.0552464i
\(176\) 0 0
\(177\) 13.2750i 0.997813i
\(178\) 25.0132i 1.87482i
\(179\) 10.7005 0.799795 0.399897 0.916560i \(-0.369046\pi\)
0.399897 + 0.916560i \(0.369046\pi\)
\(180\) −0.287258 + 0.324869i −0.0214109 + 0.0242143i
\(181\) −7.79877 −0.579678 −0.289839 0.957075i \(-0.593602\pi\)
−0.289839 + 0.957075i \(0.593602\pi\)
\(182\) 1.42548i 0.105664i
\(183\) 0.0752228i 0.00556063i
\(184\) 10.7005 0.788853
\(185\) 2.70052 + 2.38787i 0.198546 + 0.175560i
\(186\) 1.42548 0.104522
\(187\) 0 0
\(188\) 2.38787i 0.174154i
\(189\) 1.19394 0.0868461
\(190\) −13.2750 11.7381i −0.963073 0.851574i
\(191\) 1.29948 0.0940268 0.0470134 0.998894i \(-0.485030\pi\)
0.0470134 + 0.998894i \(0.485030\pi\)
\(192\) 7.08110i 0.511035i
\(193\) 8.59498i 0.618680i −0.950951 0.309340i \(-0.899892\pi\)
0.950951 0.309340i \(-0.100108\pi\)
\(194\) −16.9986 −1.22043
\(195\) −1.19394 + 1.35026i −0.0854996 + 0.0966943i
\(196\) −1.08110 −0.0772216
\(197\) 20.7064i 1.47527i −0.675200 0.737635i \(-0.735943\pi\)
0.675200 0.737635i \(-0.264057\pi\)
\(198\) 0 0
\(199\) −5.55149 −0.393535 −0.196767 0.980450i \(-0.563044\pi\)
−0.196767 + 0.980450i \(0.563044\pi\)
\(200\) −13.2750 + 1.63752i −0.938687 + 0.115790i
\(201\) −2.70052 −0.190480
\(202\) 15.9394i 1.12149i
\(203\) 5.14903i 0.361391i
\(204\) 0.730841 0.0511691
\(205\) 13.4617 15.2243i 0.940205 1.06331i
\(206\) 25.0884 1.74799
\(207\) 4.00000i 0.278019i
\(208\) 3.50659i 0.243138i
\(209\) 0 0
\(210\) −2.96239 2.61942i −0.204424 0.180757i
\(211\) 18.4993 1.27354 0.636772 0.771052i \(-0.280269\pi\)
0.636772 + 0.771052i \(0.280269\pi\)
\(212\) 0.276454i 0.0189869i
\(213\) 14.0508i 0.962744i
\(214\) 12.2677 0.838606
\(215\) 7.40105 + 6.54420i 0.504747 + 0.446311i
\(216\) −2.67513 −0.182020
\(217\) 1.14903i 0.0780013i
\(218\) 14.8119i 1.00319i
\(219\) −10.7308 −0.725123
\(220\) 0 0
\(221\) 3.03761 0.204332
\(222\) 2.38787i 0.160264i
\(223\) 17.6121i 1.17940i 0.807624 + 0.589698i \(0.200753\pi\)
−0.807624 + 0.589698i \(0.799247\pi\)
\(224\) −1.30536 −0.0872178
\(225\) 0.612127 + 4.96239i 0.0408085 + 0.330826i
\(226\) 3.35026 0.222856
\(227\) 17.4314i 1.15696i −0.815696 0.578480i \(-0.803646\pi\)
0.815696 0.578480i \(-0.196354\pi\)
\(228\) 1.03761i 0.0687175i
\(229\) −13.0738 −0.863942 −0.431971 0.901888i \(-0.642182\pi\)
−0.431971 + 0.901888i \(0.642182\pi\)
\(230\) −8.77575 + 9.92478i −0.578656 + 0.654420i
\(231\) 0 0
\(232\) 11.5369i 0.757435i
\(233\) 13.8437i 0.906929i 0.891274 + 0.453465i \(0.149812\pi\)
−0.891274 + 0.453465i \(0.850188\pi\)
\(234\) 1.19394 0.0780501
\(235\) 20.6253 + 18.2374i 1.34545 + 1.18968i
\(236\) 2.57452 0.167587
\(237\) 13.9756i 0.907810i
\(238\) 6.66433i 0.431984i
\(239\) −12.3733 −0.800361 −0.400181 0.916436i \(-0.631053\pi\)
−0.400181 + 0.916436i \(0.631053\pi\)
\(240\) 7.28726 + 6.44358i 0.470390 + 0.415931i
\(241\) 24.5501 1.58141 0.790705 0.612198i \(-0.209714\pi\)
0.790705 + 0.612198i \(0.209714\pi\)
\(242\) 0 0
\(243\) 1.00000i 0.0641500i
\(244\) −0.0145884 −0.000933930
\(245\) −8.25694 + 9.33804i −0.527517 + 0.596586i
\(246\) −13.4617 −0.858285
\(247\) 4.31265i 0.274407i
\(248\) 2.57452i 0.163482i
\(249\) −9.89446 −0.627036
\(250\) 9.36836 13.6556i 0.592507 0.863657i
\(251\) 13.9003 0.877382 0.438691 0.898638i \(-0.355442\pi\)
0.438691 + 0.898638i \(0.355442\pi\)
\(252\) 0.231548i 0.0145862i
\(253\) 0 0
\(254\) −20.4690 −1.28434
\(255\) 5.58181 6.31265i 0.349546 0.395313i
\(256\) 4.61213 0.288258
\(257\) 18.8872i 1.17815i 0.808079 + 0.589075i \(0.200508\pi\)
−0.808079 + 0.589075i \(0.799492\pi\)
\(258\) 6.54420i 0.407424i
\(259\) 1.92478 0.119600
\(260\) −0.261865 0.231548i −0.0162402 0.0143600i
\(261\) 4.31265 0.266946
\(262\) 8.77575i 0.542167i
\(263\) 20.8061i 1.28296i −0.767141 0.641478i \(-0.778321\pi\)
0.767141 0.641478i \(-0.221679\pi\)
\(264\) 0 0
\(265\) −2.38787 2.11142i −0.146686 0.129703i
\(266\) −9.46168 −0.580133
\(267\) 16.8872i 1.03348i
\(268\) 0.523730i 0.0319919i
\(269\) 32.3996 1.97544 0.987720 0.156233i \(-0.0499351\pi\)
0.987720 + 0.156233i \(0.0499351\pi\)
\(270\) 2.19394 2.48119i 0.133519 0.151001i
\(271\) 16.8265 1.02214 0.511069 0.859539i \(-0.329249\pi\)
0.511069 + 0.859539i \(0.329249\pi\)
\(272\) 16.3938i 0.994017i
\(273\) 0.962389i 0.0582464i
\(274\) −4.96239 −0.299789
\(275\) 0 0
\(276\) 0.775746 0.0466944
\(277\) 16.9076i 1.01588i 0.861392 + 0.507941i \(0.169593\pi\)
−0.861392 + 0.507941i \(0.830407\pi\)
\(278\) 31.4010i 1.88331i
\(279\) −0.962389 −0.0576167
\(280\) −4.73084 + 5.35026i −0.282722 + 0.319739i
\(281\) −5.61213 −0.334791 −0.167396 0.985890i \(-0.553536\pi\)
−0.167396 + 0.985890i \(0.553536\pi\)
\(282\) 18.2374i 1.08602i
\(283\) 5.81924i 0.345918i −0.984929 0.172959i \(-0.944667\pi\)
0.984929 0.172959i \(-0.0553328\pi\)
\(284\) 2.72496 0.161697
\(285\) 8.96239 + 7.92478i 0.530886 + 0.469423i
\(286\) 0 0
\(287\) 10.8510i 0.640512i
\(288\) 1.09332i 0.0644246i
\(289\) 2.79877 0.164633
\(290\) −10.7005 9.46168i −0.628356 0.555609i
\(291\) 11.4763 0.672751
\(292\) 2.08110i 0.121787i
\(293\) 8.29218i 0.484434i 0.970222 + 0.242217i \(0.0778747\pi\)
−0.970222 + 0.242217i \(0.922125\pi\)
\(294\) 8.25694 0.481555
\(295\) 19.6629 22.2374i 1.14482 1.29471i
\(296\) −4.31265 −0.250668
\(297\) 0 0
\(298\) 9.46168i 0.548100i
\(299\) 3.22425 0.186463
\(300\) −0.962389 + 0.118714i −0.0555635 + 0.00685394i
\(301\) 5.27504 0.304048
\(302\) 3.92478i 0.225846i
\(303\) 10.7612i 0.618212i
\(304\) 23.2750 1.33492
\(305\) −0.111420 + 0.126008i −0.00637987 + 0.00721520i
\(306\) −5.58181 −0.319091
\(307\) 25.6688i 1.46500i 0.680770 + 0.732498i \(0.261646\pi\)
−0.680770 + 0.732498i \(0.738354\pi\)
\(308\) 0 0
\(309\) −16.9380 −0.963566
\(310\) 2.38787 + 2.11142i 0.135622 + 0.119921i
\(311\) −15.7235 −0.891601 −0.445800 0.895132i \(-0.647081\pi\)
−0.445800 + 0.895132i \(0.647081\pi\)
\(312\) 2.15633i 0.122078i
\(313\) 26.8627i 1.51837i −0.650874 0.759186i \(-0.725597\pi\)
0.650874 0.759186i \(-0.274403\pi\)
\(314\) −2.38787 −0.134755
\(315\) 2.00000 + 1.76845i 0.112687 + 0.0996410i
\(316\) −2.71037 −0.152470
\(317\) 0.710373i 0.0398985i −0.999801 0.0199492i \(-0.993650\pi\)
0.999801 0.0199492i \(-0.00635046\pi\)
\(318\) 2.11142i 0.118403i
\(319\) 0 0
\(320\) 10.4885 11.8618i 0.586324 0.663093i
\(321\) −8.28233 −0.462275
\(322\) 7.07381i 0.394208i
\(323\) 20.1622i 1.12186i
\(324\) −0.193937 −0.0107743
\(325\) −4.00000 + 0.493413i −0.221880 + 0.0273696i
\(326\) −0.463096 −0.0256485
\(327\) 10.0000i 0.553001i
\(328\) 24.3127i 1.34244i
\(329\) 14.7005 0.810466
\(330\) 0 0
\(331\) 0.962389 0.0528977 0.0264488 0.999650i \(-0.491580\pi\)
0.0264488 + 0.999650i \(0.491580\pi\)
\(332\) 1.91890i 0.105313i
\(333\) 1.61213i 0.0883440i
\(334\) 0.730841 0.0399898
\(335\) −4.52373 4.00000i −0.247158 0.218543i
\(336\) 5.19394 0.283352
\(337\) 19.8192i 1.07962i 0.841786 + 0.539811i \(0.181504\pi\)
−0.841786 + 0.539811i \(0.818496\pi\)
\(338\) 18.2931i 0.995015i
\(339\) −2.26187 −0.122848
\(340\) 1.22425 + 1.08252i 0.0663945 + 0.0587077i
\(341\) 0 0
\(342\) 7.92478i 0.428523i
\(343\) 15.0132i 0.810635i
\(344\) −11.8192 −0.637251
\(345\) 5.92478 6.70052i 0.318979 0.360744i
\(346\) 34.5198 1.85579
\(347\) 6.20711i 0.333215i 0.986023 + 0.166608i \(0.0532813\pi\)
−0.986023 + 0.166608i \(0.946719\pi\)
\(348\) 0.836381i 0.0448347i
\(349\) 4.44851 0.238123 0.119062 0.992887i \(-0.462011\pi\)
0.119062 + 0.992887i \(0.462011\pi\)
\(350\) −1.08252 8.77575i −0.0578630 0.469083i
\(351\) −0.806063 −0.0430245
\(352\) 0 0
\(353\) 6.57452i 0.349926i 0.984575 + 0.174963i \(0.0559806\pi\)
−0.984575 + 0.174963i \(0.944019\pi\)
\(354\) −19.6629 −1.04507
\(355\) 20.8119 23.5369i 1.10458 1.24921i
\(356\) 3.27504 0.173577
\(357\) 4.49929i 0.238128i
\(358\) 15.8496i 0.837675i
\(359\) 8.62530 0.455226 0.227613 0.973752i \(-0.426908\pi\)
0.227613 + 0.973752i \(0.426908\pi\)
\(360\) −4.48119 3.96239i −0.236180 0.208836i
\(361\) 9.62530 0.506595
\(362\) 11.5515i 0.607133i
\(363\) 0 0
\(364\) −0.186642 −0.00978272
\(365\) −17.9756 15.8945i −0.940884 0.831954i
\(366\) 0.111420 0.00582399
\(367\) 23.0132i 1.20128i −0.799520 0.600639i \(-0.794913\pi\)
0.799520 0.600639i \(-0.205087\pi\)
\(368\) 17.4010i 0.907092i
\(369\) 9.08840 0.473123
\(370\) 3.53690 4.00000i 0.183875 0.207950i
\(371\) −1.70194 −0.0883602
\(372\) 0.186642i 0.00967695i
\(373\) 28.1925i 1.45975i −0.683579 0.729877i \(-0.739577\pi\)
0.683579 0.729877i \(-0.260423\pi\)
\(374\) 0 0
\(375\) −6.32487 + 9.21933i −0.326615 + 0.476084i
\(376\) −32.9380 −1.69865
\(377\) 3.47627i 0.179037i
\(378\) 1.76845i 0.0909594i
\(379\) −3.74798 −0.192521 −0.0962605 0.995356i \(-0.530688\pi\)
−0.0962605 + 0.995356i \(0.530688\pi\)
\(380\) −1.53690 + 1.73813i −0.0788415 + 0.0891644i
\(381\) 13.8192 0.707981
\(382\) 1.92478i 0.0984802i
\(383\) 1.76257i 0.0900632i 0.998986 + 0.0450316i \(0.0143389\pi\)
−0.998986 + 0.0450316i \(0.985661\pi\)
\(384\) −12.6751 −0.646825
\(385\) 0 0
\(386\) −12.7308 −0.647983
\(387\) 4.41819i 0.224589i
\(388\) 2.22567i 0.112991i
\(389\) −6.52373 −0.330766 −0.165383 0.986229i \(-0.552886\pi\)
−0.165383 + 0.986229i \(0.552886\pi\)
\(390\) 2.00000 + 1.76845i 0.101274 + 0.0895491i
\(391\) −15.0738 −0.762315
\(392\) 14.9126i 0.753198i
\(393\) 5.92478i 0.298865i
\(394\) −30.6702 −1.54514
\(395\) −20.7005 + 23.4109i −1.04156 + 1.17793i
\(396\) 0 0
\(397\) 23.6991i 1.18942i 0.803939 + 0.594712i \(0.202734\pi\)
−0.803939 + 0.594712i \(0.797266\pi\)
\(398\) 8.22284i 0.412174i
\(399\) 6.38787 0.319794
\(400\) 2.66291 + 21.5877i 0.133146 + 1.07938i
\(401\) 8.88717 0.443804 0.221902 0.975069i \(-0.428774\pi\)
0.221902 + 0.975069i \(0.428774\pi\)
\(402\) 4.00000i 0.199502i
\(403\) 0.775746i 0.0386427i
\(404\) 2.08698 0.103831
\(405\) −1.48119 + 1.67513i −0.0736011 + 0.0832379i
\(406\) −7.62672 −0.378508
\(407\) 0 0
\(408\) 10.0811i 0.499089i
\(409\) −4.85097 −0.239865 −0.119932 0.992782i \(-0.538268\pi\)
−0.119932 + 0.992782i \(0.538268\pi\)
\(410\) −22.5501 19.9394i −1.11367 0.984735i
\(411\) 3.35026 0.165256
\(412\) 3.28489i 0.161835i
\(413\) 15.8496i 0.779906i
\(414\) −5.92478 −0.291187
\(415\) −16.5745 14.6556i −0.813611 0.719416i
\(416\) 0.881286 0.0432086
\(417\) 21.1998i 1.03816i
\(418\) 0 0
\(419\) 10.7005 0.522755 0.261377 0.965237i \(-0.415823\pi\)
0.261377 + 0.965237i \(0.415823\pi\)
\(420\) −0.342968 + 0.387873i −0.0167351 + 0.0189263i
\(421\) −30.6009 −1.49139 −0.745697 0.666285i \(-0.767884\pi\)
−0.745697 + 0.666285i \(0.767884\pi\)
\(422\) 27.4010i 1.33386i
\(423\) 12.3127i 0.598662i
\(424\) 3.81336 0.185193
\(425\) 18.7005 2.30677i 0.907109 0.111895i
\(426\) −20.8119 −1.00834
\(427\) 0.0898112i 0.00434627i
\(428\) 1.60625i 0.0776409i
\(429\) 0 0
\(430\) 9.69323 10.9624i 0.467449 0.528653i
\(431\) 5.92478 0.285386 0.142693 0.989767i \(-0.454424\pi\)
0.142693 + 0.989767i \(0.454424\pi\)
\(432\) 4.35026i 0.209302i
\(433\) 16.0000i 0.768911i −0.923144 0.384455i \(-0.874389\pi\)
0.923144 0.384455i \(-0.125611\pi\)
\(434\) 1.70194 0.0816956
\(435\) 7.22425 + 6.38787i 0.346376 + 0.306275i
\(436\) 1.93937 0.0928788
\(437\) 21.4010i 1.02375i
\(438\) 15.8945i 0.759467i
\(439\) 5.35026 0.255354 0.127677 0.991816i \(-0.459248\pi\)
0.127677 + 0.991816i \(0.459248\pi\)
\(440\) 0 0
\(441\) −5.57452 −0.265453
\(442\) 4.49929i 0.214010i
\(443\) 19.6873i 0.935374i 0.883894 + 0.467687i \(0.154913\pi\)
−0.883894 + 0.467687i \(0.845087\pi\)
\(444\) −0.312650 −0.0148377
\(445\) 25.0132 28.2882i 1.18574 1.34099i
\(446\) 26.0870 1.23525
\(447\) 6.38787i 0.302136i
\(448\) 8.45439i 0.399432i
\(449\) 31.3357 1.47882 0.739411 0.673254i \(-0.235104\pi\)
0.739411 + 0.673254i \(0.235104\pi\)
\(450\) 7.35026 0.906679i 0.346495 0.0427412i
\(451\) 0 0
\(452\) 0.438658i 0.0206328i
\(453\) 2.64974i 0.124496i
\(454\) −25.8192 −1.21176
\(455\) −1.42548 + 1.61213i −0.0668277 + 0.0755777i
\(456\) −14.3127 −0.670251
\(457\) 37.5936i 1.75855i −0.476312 0.879276i \(-0.658027\pi\)
0.476312 0.879276i \(-0.341973\pi\)
\(458\) 19.3649i 0.904860i
\(459\) 3.76845 0.175896
\(460\) 1.29948 + 1.14903i 0.0605884 + 0.0535738i
\(461\) −17.9854 −0.837664 −0.418832 0.908064i \(-0.637560\pi\)
−0.418832 + 0.908064i \(0.637560\pi\)
\(462\) 0 0
\(463\) 39.0132i 1.81310i 0.422103 + 0.906548i \(0.361292\pi\)
−0.422103 + 0.906548i \(0.638708\pi\)
\(464\) 18.7612 0.870965
\(465\) −1.61213 1.42548i −0.0747606 0.0661053i
\(466\) 20.5052 0.949884
\(467\) 14.5501i 0.673297i −0.941630 0.336649i \(-0.890707\pi\)
0.941630 0.336649i \(-0.109293\pi\)
\(468\) 0.156325i 0.00722613i
\(469\) −3.22425 −0.148882
\(470\) 27.0132 30.5501i 1.24602 1.40917i
\(471\) 1.61213 0.0742829
\(472\) 35.5125i 1.63459i
\(473\) 0 0
\(474\) 20.7005 0.950807
\(475\) 3.27504 + 26.5501i 0.150269 + 1.21820i
\(476\) 0.872577 0.0399945
\(477\) 1.42548i 0.0652685i
\(478\) 18.3272i 0.838268i
\(479\) 28.6253 1.30792 0.653962 0.756528i \(-0.273106\pi\)
0.653962 + 0.756528i \(0.273106\pi\)
\(480\) 1.61942 1.83146i 0.0739161 0.0835941i
\(481\) −1.29948 −0.0592510
\(482\) 36.3634i 1.65631i
\(483\) 4.77575i 0.217304i
\(484\) 0 0
\(485\) 19.2243 + 16.9986i 0.872928 + 0.771866i
\(486\) 1.48119 0.0671883
\(487\) 1.44992i 0.0657022i −0.999460 0.0328511i \(-0.989541\pi\)
0.999460 0.0328511i \(-0.0104587\pi\)
\(488\) 0.201231i 0.00910929i
\(489\) 0.312650 0.0141385
\(490\) 13.8315 + 12.2301i 0.624841 + 0.552501i
\(491\) 8.00000 0.361035 0.180517 0.983572i \(-0.442223\pi\)
0.180517 + 0.983572i \(0.442223\pi\)
\(492\) 1.76257i 0.0794629i
\(493\) 16.2520i 0.731954i
\(494\) 6.38787 0.287404
\(495\) 0 0
\(496\) −4.18664 −0.187986
\(497\) 16.7757i 0.752495i
\(498\) 14.6556i 0.656734i
\(499\) −30.7005 −1.37434 −0.687172 0.726495i \(-0.741148\pi\)
−0.687172 + 0.726495i \(0.741148\pi\)
\(500\) −1.78797 1.22662i −0.0799602 0.0548563i
\(501\) −0.493413 −0.0220441
\(502\) 20.5891i 0.918937i
\(503\) 19.7586i 0.880993i 0.897754 + 0.440496i \(0.145198\pi\)
−0.897754 + 0.440496i \(0.854802\pi\)
\(504\) −3.19394 −0.142269
\(505\) 15.9394 18.0263i 0.709292 0.802162i
\(506\) 0 0
\(507\) 12.3503i 0.548494i
\(508\) 2.68006i 0.118908i
\(509\) −22.1016 −0.979635 −0.489817 0.871825i \(-0.662937\pi\)
−0.489817 + 0.871825i \(0.662937\pi\)
\(510\) −9.35026 8.26774i −0.414037 0.366102i
\(511\) −12.8119 −0.566767
\(512\) 18.5188i 0.818423i
\(513\) 5.35026i 0.236220i
\(514\) 27.9756 1.23395
\(515\) −28.3733 25.0884i −1.25028 1.10553i
\(516\) −0.856849 −0.0377207
\(517\) 0 0
\(518\) 2.85097i 0.125264i
\(519\) −23.3054 −1.02299
\(520\) 3.19394 3.61213i 0.140063 0.158402i
\(521\) −22.8119 −0.999409 −0.499705 0.866196i \(-0.666558\pi\)
−0.499705 + 0.866196i \(0.666558\pi\)
\(522\) 6.38787i 0.279590i
\(523\) 12.2677i 0.536431i 0.963359 + 0.268216i \(0.0864339\pi\)
−0.963359 + 0.268216i \(0.913566\pi\)
\(524\) −1.14903 −0.0501957
\(525\) 0.730841 + 5.92478i 0.0318965 + 0.258578i
\(526\) −30.8178 −1.34372
\(527\) 3.62672i 0.157982i
\(528\) 0 0
\(529\) 7.00000 0.304348
\(530\) −3.12742 + 3.53690i −0.135847 + 0.153633i
\(531\) 13.2750 0.576088
\(532\) 1.23884i 0.0537106i
\(533\) 7.32582i 0.317317i
\(534\) −25.0132 −1.08243
\(535\) −13.8740 12.2677i −0.599825 0.530381i
\(536\) 7.22425 0.312040
\(537\) 10.7005i 0.461762i
\(538\) 47.9902i 2.06900i
\(539\) 0 0
\(540\) −0.324869 0.287258i −0.0139801 0.0123616i
\(541\) 5.22425 0.224608 0.112304 0.993674i \(-0.464177\pi\)
0.112304 + 0.993674i \(0.464177\pi\)
\(542\) 24.9234i 1.07055i
\(543\) 7.79877i 0.334677i
\(544\) −4.12013 −0.176649
\(545\) 14.8119 16.7513i 0.634474 0.717547i
\(546\) 1.42548 0.0610051
\(547\) 17.9697i 0.768328i −0.923265 0.384164i \(-0.874490\pi\)
0.923265 0.384164i \(-0.125510\pi\)
\(548\) 0.649738i 0.0277554i
\(549\) −0.0752228 −0.00321043
\(550\) 0 0
\(551\) 23.0738 0.982977
\(552\) 10.7005i 0.455445i
\(553\) 16.6859i 0.709558i
\(554\) 25.0435 1.06400
\(555\) −2.38787 + 2.70052i −0.101360 + 0.114631i
\(556\) 4.11142 0.174363
\(557\) 15.8700i 0.672434i 0.941784 + 0.336217i \(0.109148\pi\)
−0.941784 + 0.336217i \(0.890852\pi\)
\(558\) 1.42548i 0.0603456i
\(559\) −3.56134 −0.150629
\(560\) 8.70052 + 7.69323i 0.367664 + 0.325098i
\(561\) 0 0
\(562\) 8.31265i 0.350648i
\(563\) 31.6688i 1.33468i −0.744753 0.667340i \(-0.767433\pi\)
0.744753 0.667340i \(-0.232567\pi\)
\(564\) −2.38787 −0.100548
\(565\) −3.78892 3.35026i −0.159401 0.140947i
\(566\) −8.61942 −0.362301
\(567\) 1.19394i 0.0501406i
\(568\) 37.5877i 1.57714i
\(569\) −24.3127 −1.01924 −0.509620 0.860400i \(-0.670214\pi\)
−0.509620 + 0.860400i \(0.670214\pi\)
\(570\) 11.7381 13.2750i 0.491656 0.556030i
\(571\) −8.05079 −0.336915 −0.168457 0.985709i \(-0.553879\pi\)
−0.168457 + 0.985709i \(0.553879\pi\)
\(572\) 0 0
\(573\) 1.29948i 0.0542864i
\(574\) −16.0724 −0.670849
\(575\) 19.8496 2.44851i 0.827784 0.102110i
\(576\) 7.08110 0.295046
\(577\) 44.5355i 1.85404i 0.375016 + 0.927018i \(0.377637\pi\)
−0.375016 + 0.927018i \(0.622363\pi\)
\(578\) 4.14552i 0.172431i
\(579\) 8.59498 0.357195
\(580\) −1.23884 + 1.40105i −0.0514401 + 0.0581753i
\(581\) −11.8134 −0.490101
\(582\) 16.9986i 0.704614i
\(583\) 0 0
\(584\) 28.7064 1.18788
\(585\) −1.35026 1.19394i −0.0558265 0.0493632i
\(586\) 12.2823 0.507379
\(587\) 15.4763i 0.638774i 0.947624 + 0.319387i \(0.103477\pi\)
−0.947624 + 0.319387i \(0.896523\pi\)
\(588\) 1.08110i 0.0445839i
\(589\) −5.14903 −0.212162
\(590\) −32.9380 29.1246i −1.35603 1.19904i
\(591\) 20.7064 0.851748
\(592\) 7.01317i 0.288240i
\(593\) 9.53102i 0.391392i 0.980665 + 0.195696i \(0.0626966\pi\)
−0.980665 + 0.195696i \(0.937303\pi\)
\(594\) 0 0
\(595\) 6.66433 7.53690i 0.273211 0.308983i
\(596\) −1.23884 −0.0507450
\(597\) 5.55149i 0.227207i
\(598\) 4.77575i 0.195295i
\(599\) 25.5515 1.04401 0.522003 0.852944i \(-0.325185\pi\)
0.522003 + 0.852944i \(0.325185\pi\)
\(600\) −1.63752 13.2750i −0.0668515 0.541951i
\(601\) −12.0263 −0.490565 −0.245282 0.969452i \(-0.578881\pi\)
−0.245282 + 0.969452i \(0.578881\pi\)
\(602\) 7.81336i 0.318449i
\(603\) 2.70052i 0.109974i
\(604\) −0.513881 −0.0209095
\(605\) 0 0
\(606\) −15.9394 −0.647492
\(607\) 6.86670i 0.278711i −0.990242 0.139355i \(-0.955497\pi\)
0.990242 0.139355i \(-0.0445030\pi\)
\(608\) 5.84955i 0.237231i
\(609\) 5.14903 0.208649
\(610\) 0.186642 + 0.165034i 0.00755693 + 0.00668203i
\(611\) −9.92478 −0.401514
\(612\) 0.730841i 0.0295425i
\(613\) 7.25457i 0.293009i 0.989210 + 0.146505i \(0.0468023\pi\)
−0.989210 + 0.146505i \(0.953198\pi\)
\(614\) 38.0205 1.53438
\(615\) 15.2243 + 13.4617i 0.613901 + 0.542827i
\(616\) 0 0
\(617\) 38.3634i 1.54445i −0.635347 0.772227i \(-0.719143\pi\)
0.635347 0.772227i \(-0.280857\pi\)
\(618\) 25.0884i 1.00920i
\(619\) 29.6893 1.19331 0.596656 0.802497i \(-0.296496\pi\)
0.596656 + 0.802497i \(0.296496\pi\)
\(620\) 0.276454 0.312650i 0.0111026 0.0125563i
\(621\) 4.00000 0.160514
\(622\) 23.2896i 0.933829i
\(623\) 20.1622i 0.807782i
\(624\) −3.50659 −0.140376
\(625\) −24.2506 + 6.07522i −0.970024 + 0.243009i
\(626\) −39.7889 −1.59029
\(627\) 0 0
\(628\) 0.312650i 0.0124761i
\(629\) 6.07522 0.242235
\(630\) 2.61942 2.96239i 0.104360 0.118024i
\(631\) −19.6991 −0.784209 −0.392105 0.919921i \(-0.628253\pi\)
−0.392105 + 0.919921i \(0.628253\pi\)
\(632\) 37.3865i 1.48715i
\(633\) 18.4993i 0.735281i
\(634\) −1.05220 −0.0417882
\(635\) 23.1490 + 20.4690i 0.918641 + 0.812287i
\(636\) 0.276454 0.0109621
\(637\) 4.49341i 0.178036i
\(638\) 0 0
\(639\) 14.0508 0.555840
\(640\) −21.2325 18.7743i −0.839288 0.742121i
\(641\) −31.4372 −1.24170 −0.620848 0.783931i \(-0.713212\pi\)
−0.620848 + 0.783931i \(0.713212\pi\)
\(642\) 12.2677i 0.484169i
\(643\) 34.4894i 1.36013i −0.733151 0.680065i \(-0.761951\pi\)
0.733151 0.680065i \(-0.238049\pi\)
\(644\) 0.926192 0.0364971
\(645\) −6.54420 + 7.40105i −0.257678 + 0.291416i
\(646\) −29.8641 −1.17499
\(647\) 5.61213i 0.220635i 0.993896 + 0.110318i \(0.0351868\pi\)
−0.993896 + 0.110318i \(0.964813\pi\)
\(648\) 2.67513i 0.105089i
\(649\) 0 0
\(650\) 0.730841 + 5.92478i 0.0286659 + 0.232389i
\(651\) −1.14903 −0.0450341
\(652\) 0.0606343i 0.00237462i
\(653\) 4.06537i 0.159090i 0.996831 + 0.0795452i \(0.0253468\pi\)
−0.996831 + 0.0795452i \(0.974653\pi\)
\(654\) −14.8119 −0.579193
\(655\) −8.77575 + 9.92478i −0.342897 + 0.387793i
\(656\) 39.5369 1.54366
\(657\) 10.7308i 0.418650i
\(658\) 21.7743i 0.848852i
\(659\) 11.3747 0.443095 0.221548 0.975150i \(-0.428889\pi\)
0.221548 + 0.975150i \(0.428889\pi\)
\(660\) 0 0
\(661\) −42.4749 −1.65208 −0.826040 0.563611i \(-0.809412\pi\)
−0.826040 + 0.563611i \(0.809412\pi\)
\(662\) 1.42548i 0.0554030i
\(663\) 3.03761i 0.117971i
\(664\) 26.4690 1.02720
\(665\) 10.7005 + 9.46168i 0.414949 + 0.366908i
\(666\) 2.38787 0.0925282
\(667\) 17.2506i 0.667946i
\(668\) 0.0956908i 0.00370239i
\(669\) −17.6121 −0.680924
\(670\) −5.92478 + 6.70052i −0.228894 + 0.258864i
\(671\) 0 0
\(672\) 1.30536i 0.0503552i
\(673\) 14.8813i 0.573631i 0.957986 + 0.286816i \(0.0925967\pi\)
−0.957986 + 0.286816i \(0.907403\pi\)
\(674\) 29.3561 1.13076
\(675\) −4.96239 + 0.612127i −0.191002 + 0.0235608i
\(676\) −2.39517 −0.0921218
\(677\) 27.7685i 1.06723i −0.845728 0.533614i \(-0.820833\pi\)
0.845728 0.533614i \(-0.179167\pi\)
\(678\) 3.35026i 0.128666i
\(679\) 13.7019 0.525832
\(680\) −14.9321 + 16.8872i −0.572619 + 0.647593i
\(681\) 17.4314 0.667971
\(682\) 0 0
\(683\) 25.4617i 0.974264i −0.873328 0.487132i \(-0.838043\pi\)
0.873328 0.487132i \(-0.161957\pi\)
\(684\) −1.03761 −0.0396741
\(685\) 5.61213 + 4.96239i 0.214428 + 0.189603i
\(686\) 22.2374 0.849029
\(687\) 13.0738i 0.498797i
\(688\) 19.2203i 0.732766i
\(689\) 1.14903 0.0437746
\(690\) −9.92478 8.77575i −0.377830 0.334087i
\(691\) 43.6991 1.66239 0.831196 0.555979i \(-0.187657\pi\)
0.831196 + 0.555979i \(0.187657\pi\)
\(692\) 4.51976i 0.171816i
\(693\) 0 0
\(694\) 9.19394 0.348997
\(695\) 31.4010 35.5125i 1.19111 1.34706i
\(696\) −11.5369 −0.437305
\(697\) 34.2492i 1.29728i
\(698\) 6.58910i 0.249401i
\(699\) −13.8437 −0.523616
\(700\) −1.14903 + 0.141737i −0.0434293 + 0.00535714i
\(701\) −7.01317 −0.264884 −0.132442 0.991191i \(-0.542282\pi\)
−0.132442 + 0.991191i \(0.542282\pi\)
\(702\) 1.19394i 0.0450622i
\(703\) 8.62530i 0.325309i
\(704\) 0 0
\(705\) −18.2374 + 20.6253i −0.686861 + 0.776794i
\(706\) 9.73813 0.366500
\(707\) 12.8481i 0.483204i
\(708\) 2.57452i 0.0967562i
\(709\) −45.6747 −1.71535 −0.857674 0.514194i \(-0.828091\pi\)
−0.857674 + 0.514194i \(0.828091\pi\)
\(710\) −34.8627 30.8265i −1.30837 1.15690i
\(711\) −13.9756 −0.524125
\(712\) 45.1754i 1.69302i
\(713\) 3.84955i 0.144167i
\(714\) −6.66433 −0.249406
\(715\) 0 0
\(716\) −2.07522 −0.0775547
\(717\) 12.3733i 0.462089i
\(718\) 12.7757i 0.476787i
\(719\) −16.2520 −0.606098 −0.303049 0.952975i \(-0.598005\pi\)
−0.303049 + 0.952975i \(0.598005\pi\)
\(720\) −6.44358 + 7.28726i −0.240138 + 0.271580i
\(721\) −20.2228 −0.753138
\(722\) 14.2569i 0.530588i
\(723\) 24.5501i 0.913027i
\(724\) 1.51247 0.0562104
\(725\) 2.63989 + 21.4010i 0.0980430 + 0.794815i
\(726\) 0 0
\(727\) 15.2243i 0.564636i −0.959321 0.282318i \(-0.908897\pi\)
0.959321 0.282318i \(-0.0911034\pi\)
\(728\) 2.57452i 0.0954179i
\(729\) −1.00000 −0.0370370
\(730\) −23.5428 + 26.6253i −0.871358 + 0.985447i
\(731\) 16.6497 0.615813
\(732\) 0.0145884i 0.000539205i
\(733\) 43.5066i 1.60695i 0.595337 + 0.803476i \(0.297019\pi\)
−0.595337 + 0.803476i \(0.702981\pi\)
\(734\) −34.0870 −1.25817
\(735\) −9.33804 8.25694i −0.344439 0.304562i
\(736\) −4.37328 −0.161201
\(737\) 0 0
\(738\) 13.4617i 0.495531i
\(739\) −7.02302 −0.258346 −0.129173 0.991622i \(-0.541232\pi\)
−0.129173 + 0.991622i \(0.541232\pi\)
\(740\) −0.523730 0.463096i −0.0192527 0.0170237i
\(741\) −4.31265 −0.158429
\(742\) 2.52090i 0.0925452i
\(743\) 2.94192i 0.107929i 0.998543 + 0.0539643i \(0.0171857\pi\)
−0.998543 + 0.0539643i \(0.982814\pi\)
\(744\) 2.57452 0.0943863
\(745\) −9.46168 + 10.7005i −0.346649 + 0.392037i
\(746\) −41.7586 −1.52889
\(747\) 9.89446i 0.362019i
\(748\) 0 0
\(749\) −9.88858 −0.361321
\(750\) 13.6556 + 9.36836i 0.498633 + 0.342084i
\(751\) 24.1016 0.879479 0.439739 0.898125i \(-0.355071\pi\)
0.439739 + 0.898125i \(0.355071\pi\)
\(752\) 53.5633i 1.95325i
\(753\) 13.9003i 0.506557i
\(754\) 5.14903 0.187517
\(755\) −3.92478 + 4.43866i −0.142837 + 0.161539i
\(756\) −0.231548 −0.00842132
\(757\) 16.3127i 0.592893i 0.955049 + 0.296447i \(0.0958017\pi\)
−0.955049 + 0.296447i \(0.904198\pi\)
\(758\) 5.55149i 0.201639i
\(759\) 0 0
\(760\) −23.9756 21.1998i −0.869685 0.768998i
\(761\) 5.08840 0.184454 0.0922271 0.995738i \(-0.470601\pi\)
0.0922271 + 0.995738i \(0.470601\pi\)
\(762\) 20.4690i 0.741513i
\(763\) 11.9394i 0.432234i
\(764\) −0.252016 −0.00911762
\(765\) 6.31265 + 5.58181i 0.228234 + 0.201811i
\(766\) 2.61071 0.0943289
\(767\) 10.7005i 0.386374i
\(768\) 4.61213i 0.166426i
\(769\) 2.10157 0.0757846 0.0378923 0.999282i \(-0.487936\pi\)
0.0378923 + 0.999282i \(0.487936\pi\)
\(770\) 0 0
\(771\) −18.8872 −0.680205
\(772\) 1.66688i 0.0599924i
\(773\) 46.0625i 1.65675i 0.560171 + 0.828377i \(0.310736\pi\)
−0.560171 + 0.828377i \(0.689264\pi\)
\(774\) 6.54420 0.235226
\(775\) −0.589104 4.77575i −0.0211612 0.171550i
\(776\) −30.7005 −1.10208
\(777\) 1.92478i 0.0690510i
\(778\) 9.66291i 0.346432i
\(779\) 48.6253 1.74218
\(780\) 0.231548 0.261865i 0.00829075 0.00937628i
\(781\) 0 0
\(782\) 22.3272i 0.798420i
\(783\) 4.31265i 0.154122i
\(784\) −24.2506 −0.866093