# Properties

 Label 1815.2.c.d Level $1815$ Weight $2$ Character orbit 1815.c Analytic conductor $14.493$ Analytic rank $0$ Dimension $6$ CM no Inner twists $2$

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$1815 = 3 \cdot 5 \cdot 11^{2}$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 1815.c (of order $$2$$, degree $$1$$, minimal)

## Newform invariants

 Self dual: no Analytic conductor: $$14.4928479669$$ Analytic rank: $$0$$ Dimension: $$6$$ Coefficient field: 6.0.350464.1 Defining polynomial: $$x^{6} - 2 x^{5} + 2 x^{4} + 2 x^{3} + 4 x^{2} - 4 x + 2$$ Coefficient ring: $$\Z[a_1, a_2, a_3]$$ Coefficient ring index: $$2$$ Twist minimal: no (minimal twist has level 165) Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

## $q$-expansion

Coefficients of the $$q$$-expansion are expressed in terms of a basis $$1,\beta_1,\ldots,\beta_{5}$$ for the coefficient ring described below. We also show the integral $$q$$-expansion of the trace form.

 $$f(q)$$ $$=$$ $$q + ( \beta_{3} - \beta_{5} ) q^{2} -\beta_{3} q^{3} + ( -2 - \beta_{1} - \beta_{2} ) q^{4} + ( -\beta_{2} - \beta_{5} ) q^{5} + ( 1 + \beta_{1} ) q^{6} + ( 3 \beta_{3} - \beta_{4} + \beta_{5} ) q^{7} + ( -4 \beta_{3} + 3 \beta_{4} ) q^{8} - q^{9} +O(q^{10})$$ $$q + ( \beta_{3} - \beta_{5} ) q^{2} -\beta_{3} q^{3} + ( -2 - \beta_{1} - \beta_{2} ) q^{4} + ( -\beta_{2} - \beta_{5} ) q^{5} + ( 1 + \beta_{1} ) q^{6} + ( 3 \beta_{3} - \beta_{4} + \beta_{5} ) q^{7} + ( -4 \beta_{3} + 3 \beta_{4} ) q^{8} - q^{9} + ( -3 - \beta_{2} - \beta_{3} + 2 \beta_{4} ) q^{10} + ( 2 \beta_{3} - \beta_{4} - \beta_{5} ) q^{12} + ( -\beta_{3} - 3 \beta_{4} - \beta_{5} ) q^{13} + ( -1 - 3 \beta_{1} - \beta_{2} ) q^{14} + ( \beta_{1} - \beta_{4} ) q^{15} + ( 3 + 2 \beta_{1} + 4 \beta_{2} ) q^{16} + ( \beta_{3} + \beta_{4} - 3 \beta_{5} ) q^{17} + ( -\beta_{3} + \beta_{5} ) q^{18} + ( -2 + 2 \beta_{1} - 4 \beta_{2} ) q^{19} + ( 3 + \beta_{1} + 2 \beta_{2} - 4 \beta_{3} + 2 \beta_{4} + \beta_{5} ) q^{20} + ( 3 - \beta_{1} + \beta_{2} ) q^{21} + 4 \beta_{3} q^{23} + ( -4 - 3 \beta_{2} ) q^{24} + ( -1 + 2 \beta_{1} - 2 \beta_{2} - 2 \beta_{3} + 2 \beta_{4} ) q^{25} + ( -5 + \beta_{1} - 7 \beta_{2} ) q^{26} + \beta_{3} q^{27} + ( -5 \beta_{3} + 3 \beta_{4} + 3 \beta_{5} ) q^{28} + ( -2 - 2 \beta_{1} + 2 \beta_{2} ) q^{29} + ( -1 - 2 \beta_{2} + 3 \beta_{3} - \beta_{4} ) q^{30} + ( 2 - 2 \beta_{2} ) q^{31} + ( 5 \beta_{3} - 4 \beta_{4} - 3 \beta_{5} ) q^{32} + ( -9 - \beta_{1} - \beta_{2} ) q^{34} + ( 2 - 4 \beta_{1} - \beta_{3} + \beta_{4} + \beta_{5} ) q^{35} + ( 2 + \beta_{1} + \beta_{2} ) q^{36} + ( -2 \beta_{3} + 2 \beta_{4} - 2 \beta_{5} ) q^{37} + ( 6 \beta_{4} + 2 \beta_{5} ) q^{38} + ( -1 + \beta_{1} + 3 \beta_{2} ) q^{39} + ( 3 + 4 \beta_{1} + 3 \beta_{2} + 6 \beta_{3} - \beta_{4} - 3 \beta_{5} ) q^{40} + ( 2 + 2 \beta_{1} - 2 \beta_{2} ) q^{41} + ( \beta_{3} - \beta_{4} - 3 \beta_{5} ) q^{42} + ( -3 \beta_{3} + \beta_{4} - \beta_{5} ) q^{43} + ( \beta_{2} + \beta_{5} ) q^{45} + ( -4 - 4 \beta_{1} ) q^{46} + ( -2 \beta_{3} - 2 \beta_{4} - 2 \beta_{5} ) q^{47} + ( -3 \beta_{3} + 4 \beta_{4} + 2 \beta_{5} ) q^{48} + ( -5 + 6 \beta_{1} - 4 \beta_{2} ) q^{49} + ( 4 + 2 \beta_{1} + 4 \beta_{2} + 3 \beta_{3} + 2 \beta_{4} + \beta_{5} ) q^{50} + ( 1 + 3 \beta_{1} - \beta_{2} ) q^{51} + ( -11 \beta_{3} + 7 \beta_{4} + 3 \beta_{5} ) q^{52} + ( -4 \beta_{3} + 4 \beta_{4} - 2 \beta_{5} ) q^{53} + ( -1 - \beta_{1} ) q^{54} + ( 15 - \beta_{1} + 7 \beta_{2} ) q^{56} + ( 2 \beta_{3} - 4 \beta_{4} + 2 \beta_{5} ) q^{57} + ( -6 \beta_{3} - 2 \beta_{4} + 2 \beta_{5} ) q^{58} + ( 4 + 2 \beta_{1} + 4 \beta_{2} ) q^{59} + ( -4 - \beta_{1} - 2 \beta_{2} - 3 \beta_{3} + 2 \beta_{4} + \beta_{5} ) q^{60} + ( -2 - 4 \beta_{2} ) q^{61} + ( 4 \beta_{4} - 2 \beta_{5} ) q^{62} + ( -3 \beta_{3} + \beta_{4} - \beta_{5} ) q^{63} + ( -12 - \beta_{1} - 3 \beta_{2} ) q^{64} + ( -6 + 2 \beta_{1} - 4 \beta_{2} - 7 \beta_{3} - 3 \beta_{4} + 3 \beta_{5} ) q^{65} + ( -4 \beta_{3} + 4 \beta_{5} ) q^{67} + ( -11 \beta_{3} + 5 \beta_{4} + 3 \beta_{5} ) q^{68} + 4 q^{69} + ( 5 + \beta_{1} + 3 \beta_{2} - 10 \beta_{3} + 4 \beta_{4} - 2 \beta_{5} ) q^{70} + ( -4 - 2 \beta_{1} ) q^{71} + ( 4 \beta_{3} - 3 \beta_{4} ) q^{72} + ( -7 \beta_{3} + 3 \beta_{4} - 3 \beta_{5} ) q^{73} + ( -2 + 2 \beta_{1} + 2 \beta_{2} ) q^{74} + ( -2 - 2 \beta_{2} + \beta_{3} - 2 \beta_{4} + 2 \beta_{5} ) q^{75} + ( 8 + 4 \beta_{1} + 6 \beta_{2} ) q^{76} + ( 5 \beta_{3} - 7 \beta_{4} + \beta_{5} ) q^{78} + ( -2 + 2 \beta_{1} ) q^{79} + ( -10 - 4 \beta_{1} - \beta_{2} + 10 \beta_{3} - 6 \beta_{4} - \beta_{5} ) q^{80} + q^{81} + ( 6 \beta_{3} + 2 \beta_{4} - 2 \beta_{5} ) q^{82} + ( \beta_{3} - \beta_{4} + \beta_{5} ) q^{83} + ( -5 - 3 \beta_{1} - 3 \beta_{2} ) q^{84} + ( -8 + 2 \beta_{1} - 2 \beta_{2} - \beta_{3} + 5 \beta_{4} - \beta_{5} ) q^{85} + ( 1 + 3 \beta_{1} + \beta_{2} ) q^{86} + ( 2 \beta_{3} + 2 \beta_{4} - 2 \beta_{5} ) q^{87} + 2 \beta_{2} q^{89} + ( 3 + \beta_{2} + \beta_{3} - 2 \beta_{4} ) q^{90} + ( 2 - 8 \beta_{1} - 2 \beta_{2} ) q^{91} + ( -8 \beta_{3} + 4 \beta_{4} + 4 \beta_{5} ) q^{92} + ( -2 \beta_{3} - 2 \beta_{4} ) q^{93} + ( -6 + 2 \beta_{1} - 6 \beta_{2} ) q^{94} + ( 6 + 4 \beta_{1} - 4 \beta_{2} + 2 \beta_{3} + 2 \beta_{4} + 4 \beta_{5} ) q^{95} + ( 5 + 3 \beta_{1} + 4 \beta_{2} ) q^{96} + ( 4 \beta_{3} - 4 \beta_{4} ) q^{97} + ( 9 \beta_{3} + 2 \beta_{4} + 5 \beta_{5} ) q^{98} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$6q - 10q^{4} + 2q^{5} + 6q^{6} - 6q^{9} + O(q^{10})$$ $$6q - 10q^{4} + 2q^{5} + 6q^{6} - 6q^{9} - 16q^{10} - 4q^{14} + 10q^{16} - 4q^{19} + 14q^{20} + 16q^{21} - 18q^{24} - 2q^{25} - 16q^{26} - 16q^{29} - 2q^{30} + 16q^{31} - 52q^{34} + 12q^{35} + 10q^{36} - 12q^{39} + 12q^{40} + 16q^{41} - 2q^{45} - 24q^{46} - 22q^{49} + 16q^{50} + 8q^{51} - 6q^{54} + 76q^{56} + 16q^{59} - 20q^{60} - 4q^{61} - 66q^{64} - 28q^{65} + 24q^{69} + 24q^{70} - 24q^{71} - 16q^{74} - 8q^{75} + 36q^{76} - 12q^{79} - 58q^{80} + 6q^{81} - 24q^{84} - 44q^{85} + 4q^{86} - 4q^{89} + 16q^{90} + 16q^{91} - 24q^{94} + 44q^{95} + 22q^{96} + O(q^{100})$$

Basis of coefficient ring in terms of a root $$\nu$$ of $$x^{6} - 2 x^{5} + 2 x^{4} + 2 x^{3} + 4 x^{2} - 4 x + 2$$:

 $$\beta_{0}$$ $$=$$ $$1$$ $$\beta_{1}$$ $$=$$ $$($$$$-\nu^{5} + 8 \nu^{4} - 4 \nu^{3} - \nu^{2} + 2 \nu + 38$$$$)/23$$ $$\beta_{2}$$ $$=$$ $$($$$$-5 \nu^{5} + 17 \nu^{4} - 20 \nu^{3} - 5 \nu^{2} + 10 \nu + 29$$$$)/23$$ $$\beta_{3}$$ $$=$$ $$($$$$7 \nu^{5} - 10 \nu^{4} + 5 \nu^{3} + 30 \nu^{2} + 32 \nu - 13$$$$)/23$$ $$\beta_{4}$$ $$=$$ $$($$$$-11 \nu^{5} + 19 \nu^{4} - 21 \nu^{3} - 11 \nu^{2} - 70 \nu + 27$$$$)/23$$ $$\beta_{5}$$ $$=$$ $$($$$$-14 \nu^{5} + 20 \nu^{4} - 10 \nu^{3} - 37 \nu^{2} - 64 \nu + 26$$$$)/23$$
 $$1$$ $$=$$ $$\beta_0$$ $$\nu$$ $$=$$ $$($$$$\beta_{5} - \beta_{4} + \beta_{3} + \beta_{2} - \beta_{1} + 1$$$$)/2$$ $$\nu^{2}$$ $$=$$ $$\beta_{5} + 2 \beta_{3}$$ $$\nu^{3}$$ $$=$$ $$2 \beta_{5} - \beta_{4} + 2 \beta_{3} - \beta_{2} + 2 \beta_{1} - 2$$ $$\nu^{4}$$ $$=$$ $$-\beta_{2} + 5 \beta_{1} - 7$$ $$\nu^{5}$$ $$=$$ $$-8 \beta_{5} + 3 \beta_{4} - 9 \beta_{3} - 3 \beta_{2} + 8 \beta_{1} - 9$$

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/1815\mathbb{Z}\right)^\times$$.

 $$n$$ $$727$$ $$1211$$ $$1696$$ $$\chi(n)$$ $$-1$$ $$1$$ $$1$$

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

Label $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
364.1
 0.403032 − 0.403032i −0.854638 + 0.854638i 1.45161 + 1.45161i 1.45161 − 1.45161i −0.854638 − 0.854638i 0.403032 + 0.403032i
2.67513i 1.00000i −5.15633 −1.48119 1.67513i 2.67513 2.80606i 8.44358i −1.00000 −4.48119 + 3.96239i
364.2 1.53919i 1.00000i −0.369102 2.17009 0.539189i 1.53919 0.290725i 2.51026i −1.00000 −0.829914 3.34017i
364.3 1.21432i 1.00000i 0.525428 0.311108 2.21432i −1.21432 4.90321i 3.06668i −1.00000 −2.68889 0.377784i
364.4 1.21432i 1.00000i 0.525428 0.311108 + 2.21432i −1.21432 4.90321i 3.06668i −1.00000 −2.68889 + 0.377784i
364.5 1.53919i 1.00000i −0.369102 2.17009 + 0.539189i 1.53919 0.290725i 2.51026i −1.00000 −0.829914 + 3.34017i
364.6 2.67513i 1.00000i −5.15633 −1.48119 + 1.67513i 2.67513 2.80606i 8.44358i −1.00000 −4.48119 3.96239i
 $$n$$: e.g. 2-40 or 990-1000 Embeddings: e.g. 1-3 or 364.6 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1815.2.c.d 6
5.b even 2 1 inner 1815.2.c.d 6
5.c odd 4 1 9075.2.a.cc 3
5.c odd 4 1 9075.2.a.ck 3
11.b odd 2 1 165.2.c.a 6
33.d even 2 1 495.2.c.d 6
44.c even 2 1 2640.2.d.i 6
55.d odd 2 1 165.2.c.a 6
55.e even 4 1 825.2.a.h 3
55.e even 4 1 825.2.a.n 3
165.d even 2 1 495.2.c.d 6
165.l odd 4 1 2475.2.a.y 3
165.l odd 4 1 2475.2.a.be 3
220.g even 2 1 2640.2.d.i 6

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
165.2.c.a 6 11.b odd 2 1
165.2.c.a 6 55.d odd 2 1
495.2.c.d 6 33.d even 2 1
495.2.c.d 6 165.d even 2 1
825.2.a.h 3 55.e even 4 1
825.2.a.n 3 55.e even 4 1
1815.2.c.d 6 1.a even 1 1 trivial
1815.2.c.d 6 5.b even 2 1 inner
2475.2.a.y 3 165.l odd 4 1
2475.2.a.be 3 165.l odd 4 1
2640.2.d.i 6 44.c even 2 1
2640.2.d.i 6 220.g even 2 1
9075.2.a.cc 3 5.c odd 4 1
9075.2.a.ck 3 5.c odd 4 1

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(1815, [\chi])$$:

 $$T_{2}^{6} + 11 T_{2}^{4} + 31 T_{2}^{2} + 25$$ $$T_{19}^{3} + 2 T_{19}^{2} - 52 T_{19} - 184$$

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$25 + 31 T^{2} + 11 T^{4} + T^{6}$$
$3$ $$( 1 + T^{2} )^{3}$$
$5$ $$125 - 50 T + 15 T^{2} - 12 T^{3} + 3 T^{4} - 2 T^{5} + T^{6}$$
$7$ $$16 + 192 T^{2} + 32 T^{4} + T^{6}$$
$11$ $$T^{6}$$
$13$ $$21904 + 2560 T^{2} + 92 T^{4} + T^{6}$$
$17$ $$13456 + 1712 T^{2} + 72 T^{4} + T^{6}$$
$19$ $$( -184 - 52 T + 2 T^{2} + T^{3} )^{2}$$
$23$ $$( 16 + T^{2} )^{3}$$
$29$ $$( -32 + 8 T^{2} + T^{3} )^{2}$$
$31$ $$( 16 + 8 T - 8 T^{2} + T^{3} )^{2}$$
$37$ $$1024 + 512 T^{2} + 48 T^{4} + T^{6}$$
$41$ $$( 32 - 8 T^{2} + T^{3} )^{2}$$
$43$ $$16 + 192 T^{2} + 32 T^{4} + T^{6}$$
$47$ $$25600 + 2816 T^{2} + 96 T^{4} + T^{6}$$
$53$ $$73984 + 5376 T^{2} + 128 T^{4} + T^{6}$$
$59$ $$( -80 - 64 T - 8 T^{2} + T^{3} )^{2}$$
$61$ $$( -40 - 52 T + 2 T^{2} + T^{3} )^{2}$$
$67$ $$102400 + 7936 T^{2} + 176 T^{4} + T^{6}$$
$71$ $$( -16 + 32 T + 12 T^{2} + T^{3} )^{2}$$
$73$ $$8464 + 6912 T^{2} + 204 T^{4} + T^{6}$$
$79$ $$( -8 - 4 T + 6 T^{2} + T^{3} )^{2}$$
$83$ $$16 + 32 T^{2} + 12 T^{4} + T^{6}$$
$89$ $$( -8 - 12 T + 2 T^{2} + T^{3} )^{2}$$
$97$ $$16384 + 3072 T^{2} + 128 T^{4} + T^{6}$$