Properties

Label 1815.2.a.s
Level $1815$
Weight $2$
Character orbit 1815.a
Self dual yes
Analytic conductor $14.493$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1815,2,Mod(1,1815)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1815.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1815, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1815 = 3 \cdot 5 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1815.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,-4,8,4,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(14.4928479669\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: 4.4.8112.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 5x^{2} + 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_{2} q^{2} - q^{3} + ( - \beta_{3} + 2) q^{4} + q^{5} + \beta_{2} q^{6} + \beta_1 q^{7} + ( - 3 \beta_{2} + \beta_1) q^{8} + q^{9} - \beta_{2} q^{10} + (\beta_{3} - 2) q^{12} + (2 \beta_{2} + \beta_1) q^{13}+ \cdots + (3 \beta_{2} - 2 \beta_1) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{3} + 8 q^{4} + 4 q^{5} + 4 q^{9} - 8 q^{12} + 4 q^{14} - 4 q^{15} + 36 q^{16} + 8 q^{20} - 8 q^{23} + 4 q^{25} - 28 q^{26} - 4 q^{27} + 16 q^{31} + 4 q^{34} + 8 q^{36} + 32 q^{38} - 4 q^{42}+ \cdots + 48 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - 5x^{2} + 3 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( 2\nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{3} - 4\nu \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( 2\nu^{2} - 5 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_1 ) / 2 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( \beta_{3} + 5 ) / 2 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{2} + 2\beta_1 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−0.835000
2.07431
−2.07431
0.835000
−2.75782 −1.00000 5.60555 1.00000 2.75782 −1.67000 −9.94345 1.00000 −2.75782
1.2 −0.628052 −1.00000 −1.60555 1.00000 0.628052 4.14863 2.26447 1.00000 −0.628052
1.3 0.628052 −1.00000 −1.60555 1.00000 −0.628052 −4.14863 −2.26447 1.00000 0.628052
1.4 2.75782 −1.00000 5.60555 1.00000 −2.75782 1.67000 9.94345 1.00000 2.75782
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( +1 \)
\(5\) \( -1 \)
\(11\) \( +1 \)

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
11.b odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1815.2.a.s 4
3.b odd 2 1 5445.2.a.bo 4
5.b even 2 1 9075.2.a.dc 4
11.b odd 2 1 inner 1815.2.a.s 4
33.d even 2 1 5445.2.a.bo 4
55.d odd 2 1 9075.2.a.dc 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1815.2.a.s 4 1.a even 1 1 trivial
1815.2.a.s 4 11.b odd 2 1 inner
5445.2.a.bo 4 3.b odd 2 1
5445.2.a.bo 4 33.d even 2 1
9075.2.a.dc 4 5.b even 2 1
9075.2.a.dc 4 55.d odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(1815))\):

\( T_{2}^{4} - 8T_{2}^{2} + 3 \) Copy content Toggle raw display
\( T_{7}^{4} - 20T_{7}^{2} + 48 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} - 8T^{2} + 3 \) Copy content Toggle raw display
$3$ \( (T + 1)^{4} \) Copy content Toggle raw display
$5$ \( (T - 1)^{4} \) Copy content Toggle raw display
$7$ \( T^{4} - 20T^{2} + 48 \) Copy content Toggle raw display
$11$ \( T^{4} \) Copy content Toggle raw display
$13$ \( T^{4} - 44T^{2} + 432 \) Copy content Toggle raw display
$17$ \( T^{4} - 20T^{2} + 48 \) Copy content Toggle raw display
$19$ \( T^{4} - 32T^{2} + 48 \) Copy content Toggle raw display
$23$ \( (T^{2} + 4 T - 48)^{2} \) Copy content Toggle raw display
$29$ \( T^{4} - 128T^{2} + 3888 \) Copy content Toggle raw display
$31$ \( (T - 4)^{4} \) Copy content Toggle raw display
$37$ \( (T^{2} - 52)^{2} \) Copy content Toggle raw display
$41$ \( T^{4} - 96T^{2} + 432 \) Copy content Toggle raw display
$43$ \( T^{4} - 132T^{2} + 3888 \) Copy content Toggle raw display
$47$ \( T^{4} \) Copy content Toggle raw display
$53$ \( (T^{2} - 8 T - 36)^{2} \) Copy content Toggle raw display
$59$ \( (T^{2} - 4 T - 48)^{2} \) Copy content Toggle raw display
$61$ \( T^{4} - 80T^{2} + 768 \) Copy content Toggle raw display
$67$ \( (T^{2} + 12 T - 16)^{2} \) Copy content Toggle raw display
$71$ \( (T^{2} + 4 T - 48)^{2} \) Copy content Toggle raw display
$73$ \( T^{4} - 60T^{2} + 432 \) Copy content Toggle raw display
$79$ \( T^{4} - 32T^{2} + 48 \) Copy content Toggle raw display
$83$ \( T^{4} - 188T^{2} + 48 \) Copy content Toggle raw display
$89$ \( (T - 6)^{4} \) Copy content Toggle raw display
$97$ \( (T^{2} - 24 T + 92)^{2} \) Copy content Toggle raw display
show more
show less