Properties

Label 1815.2.a.i.1.2
Level $1815$
Weight $2$
Character 1815.1
Self dual yes
Analytic conductor $14.493$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 1815 = 3 \cdot 5 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1815.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(14.4928479669\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{12})^+\)
Defining polynomial: \(x^{2} - 3\)
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 165)
Fricke sign: \(1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(1.73205\) of defining polynomial
Character \(\chi\) \(=\) 1815.1

$q$-expansion

\(f(q)\) \(=\) \(q+1.73205 q^{2} +1.00000 q^{3} +1.00000 q^{4} -1.00000 q^{5} +1.73205 q^{6} -2.00000 q^{7} -1.73205 q^{8} +1.00000 q^{9} +O(q^{10})\) \(q+1.73205 q^{2} +1.00000 q^{3} +1.00000 q^{4} -1.00000 q^{5} +1.73205 q^{6} -2.00000 q^{7} -1.73205 q^{8} +1.00000 q^{9} -1.73205 q^{10} +1.00000 q^{12} -5.46410 q^{13} -3.46410 q^{14} -1.00000 q^{15} -5.00000 q^{16} +1.73205 q^{18} -5.46410 q^{19} -1.00000 q^{20} -2.00000 q^{21} +6.92820 q^{23} -1.73205 q^{24} +1.00000 q^{25} -9.46410 q^{26} +1.00000 q^{27} -2.00000 q^{28} +3.46410 q^{29} -1.73205 q^{30} -10.9282 q^{31} -5.19615 q^{32} +2.00000 q^{35} +1.00000 q^{36} -4.92820 q^{37} -9.46410 q^{38} -5.46410 q^{39} +1.73205 q^{40} -3.46410 q^{41} -3.46410 q^{42} +4.92820 q^{43} -1.00000 q^{45} +12.0000 q^{46} -6.92820 q^{47} -5.00000 q^{48} -3.00000 q^{49} +1.73205 q^{50} -5.46410 q^{52} +0.928203 q^{53} +1.73205 q^{54} +3.46410 q^{56} -5.46410 q^{57} +6.00000 q^{58} -6.92820 q^{59} -1.00000 q^{60} -2.00000 q^{61} -18.9282 q^{62} -2.00000 q^{63} +1.00000 q^{64} +5.46410 q^{65} +8.00000 q^{67} +6.92820 q^{69} +3.46410 q^{70} +13.8564 q^{71} -1.73205 q^{72} +8.39230 q^{73} -8.53590 q^{74} +1.00000 q^{75} -5.46410 q^{76} -9.46410 q^{78} +6.53590 q^{79} +5.00000 q^{80} +1.00000 q^{81} -6.00000 q^{82} -8.53590 q^{83} -2.00000 q^{84} +8.53590 q^{86} +3.46410 q^{87} +0.928203 q^{89} -1.73205 q^{90} +10.9282 q^{91} +6.92820 q^{92} -10.9282 q^{93} -12.0000 q^{94} +5.46410 q^{95} -5.19615 q^{96} -10.0000 q^{97} -5.19615 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2q + 2q^{3} + 2q^{4} - 2q^{5} - 4q^{7} + 2q^{9} + O(q^{10}) \) \( 2q + 2q^{3} + 2q^{4} - 2q^{5} - 4q^{7} + 2q^{9} + 2q^{12} - 4q^{13} - 2q^{15} - 10q^{16} - 4q^{19} - 2q^{20} - 4q^{21} + 2q^{25} - 12q^{26} + 2q^{27} - 4q^{28} - 8q^{31} + 4q^{35} + 2q^{36} + 4q^{37} - 12q^{38} - 4q^{39} - 4q^{43} - 2q^{45} + 24q^{46} - 10q^{48} - 6q^{49} - 4q^{52} - 12q^{53} - 4q^{57} + 12q^{58} - 2q^{60} - 4q^{61} - 24q^{62} - 4q^{63} + 2q^{64} + 4q^{65} + 16q^{67} - 4q^{73} - 24q^{74} + 2q^{75} - 4q^{76} - 12q^{78} + 20q^{79} + 10q^{80} + 2q^{81} - 12q^{82} - 24q^{83} - 4q^{84} + 24q^{86} - 12q^{89} + 8q^{91} - 8q^{93} - 24q^{94} + 4q^{95} - 20q^{97} + O(q^{100}) \)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.73205 1.22474 0.612372 0.790569i \(-0.290215\pi\)
0.612372 + 0.790569i \(0.290215\pi\)
\(3\) 1.00000 0.577350
\(4\) 1.00000 0.500000
\(5\) −1.00000 −0.447214
\(6\) 1.73205 0.707107
\(7\) −2.00000 −0.755929 −0.377964 0.925820i \(-0.623376\pi\)
−0.377964 + 0.925820i \(0.623376\pi\)
\(8\) −1.73205 −0.612372
\(9\) 1.00000 0.333333
\(10\) −1.73205 −0.547723
\(11\) 0 0
\(12\) 1.00000 0.288675
\(13\) −5.46410 −1.51547 −0.757735 0.652563i \(-0.773694\pi\)
−0.757735 + 0.652563i \(0.773694\pi\)
\(14\) −3.46410 −0.925820
\(15\) −1.00000 −0.258199
\(16\) −5.00000 −1.25000
\(17\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(18\) 1.73205 0.408248
\(19\) −5.46410 −1.25355 −0.626775 0.779200i \(-0.715626\pi\)
−0.626775 + 0.779200i \(0.715626\pi\)
\(20\) −1.00000 −0.223607
\(21\) −2.00000 −0.436436
\(22\) 0 0
\(23\) 6.92820 1.44463 0.722315 0.691564i \(-0.243078\pi\)
0.722315 + 0.691564i \(0.243078\pi\)
\(24\) −1.73205 −0.353553
\(25\) 1.00000 0.200000
\(26\) −9.46410 −1.85606
\(27\) 1.00000 0.192450
\(28\) −2.00000 −0.377964
\(29\) 3.46410 0.643268 0.321634 0.946864i \(-0.395768\pi\)
0.321634 + 0.946864i \(0.395768\pi\)
\(30\) −1.73205 −0.316228
\(31\) −10.9282 −1.96276 −0.981382 0.192068i \(-0.938481\pi\)
−0.981382 + 0.192068i \(0.938481\pi\)
\(32\) −5.19615 −0.918559
\(33\) 0 0
\(34\) 0 0
\(35\) 2.00000 0.338062
\(36\) 1.00000 0.166667
\(37\) −4.92820 −0.810192 −0.405096 0.914274i \(-0.632762\pi\)
−0.405096 + 0.914274i \(0.632762\pi\)
\(38\) −9.46410 −1.53528
\(39\) −5.46410 −0.874957
\(40\) 1.73205 0.273861
\(41\) −3.46410 −0.541002 −0.270501 0.962720i \(-0.587189\pi\)
−0.270501 + 0.962720i \(0.587189\pi\)
\(42\) −3.46410 −0.534522
\(43\) 4.92820 0.751544 0.375772 0.926712i \(-0.377378\pi\)
0.375772 + 0.926712i \(0.377378\pi\)
\(44\) 0 0
\(45\) −1.00000 −0.149071
\(46\) 12.0000 1.76930
\(47\) −6.92820 −1.01058 −0.505291 0.862949i \(-0.668615\pi\)
−0.505291 + 0.862949i \(0.668615\pi\)
\(48\) −5.00000 −0.721688
\(49\) −3.00000 −0.428571
\(50\) 1.73205 0.244949
\(51\) 0 0
\(52\) −5.46410 −0.757735
\(53\) 0.928203 0.127499 0.0637493 0.997966i \(-0.479694\pi\)
0.0637493 + 0.997966i \(0.479694\pi\)
\(54\) 1.73205 0.235702
\(55\) 0 0
\(56\) 3.46410 0.462910
\(57\) −5.46410 −0.723738
\(58\) 6.00000 0.787839
\(59\) −6.92820 −0.901975 −0.450988 0.892530i \(-0.648928\pi\)
−0.450988 + 0.892530i \(0.648928\pi\)
\(60\) −1.00000 −0.129099
\(61\) −2.00000 −0.256074 −0.128037 0.991769i \(-0.540868\pi\)
−0.128037 + 0.991769i \(0.540868\pi\)
\(62\) −18.9282 −2.40388
\(63\) −2.00000 −0.251976
\(64\) 1.00000 0.125000
\(65\) 5.46410 0.677738
\(66\) 0 0
\(67\) 8.00000 0.977356 0.488678 0.872464i \(-0.337479\pi\)
0.488678 + 0.872464i \(0.337479\pi\)
\(68\) 0 0
\(69\) 6.92820 0.834058
\(70\) 3.46410 0.414039
\(71\) 13.8564 1.64445 0.822226 0.569160i \(-0.192732\pi\)
0.822226 + 0.569160i \(0.192732\pi\)
\(72\) −1.73205 −0.204124
\(73\) 8.39230 0.982245 0.491122 0.871091i \(-0.336587\pi\)
0.491122 + 0.871091i \(0.336587\pi\)
\(74\) −8.53590 −0.992278
\(75\) 1.00000 0.115470
\(76\) −5.46410 −0.626775
\(77\) 0 0
\(78\) −9.46410 −1.07160
\(79\) 6.53590 0.735346 0.367673 0.929955i \(-0.380155\pi\)
0.367673 + 0.929955i \(0.380155\pi\)
\(80\) 5.00000 0.559017
\(81\) 1.00000 0.111111
\(82\) −6.00000 −0.662589
\(83\) −8.53590 −0.936937 −0.468468 0.883480i \(-0.655194\pi\)
−0.468468 + 0.883480i \(0.655194\pi\)
\(84\) −2.00000 −0.218218
\(85\) 0 0
\(86\) 8.53590 0.920450
\(87\) 3.46410 0.371391
\(88\) 0 0
\(89\) 0.928203 0.0983893 0.0491947 0.998789i \(-0.484335\pi\)
0.0491947 + 0.998789i \(0.484335\pi\)
\(90\) −1.73205 −0.182574
\(91\) 10.9282 1.14559
\(92\) 6.92820 0.722315
\(93\) −10.9282 −1.13320
\(94\) −12.0000 −1.23771
\(95\) 5.46410 0.560605
\(96\) −5.19615 −0.530330
\(97\) −10.0000 −1.01535 −0.507673 0.861550i \(-0.669494\pi\)
−0.507673 + 0.861550i \(0.669494\pi\)
\(98\) −5.19615 −0.524891
\(99\) 0 0
\(100\) 1.00000 0.100000
\(101\) 10.3923 1.03407 0.517036 0.855963i \(-0.327035\pi\)
0.517036 + 0.855963i \(0.327035\pi\)
\(102\) 0 0
\(103\) 8.00000 0.788263 0.394132 0.919054i \(-0.371045\pi\)
0.394132 + 0.919054i \(0.371045\pi\)
\(104\) 9.46410 0.928032
\(105\) 2.00000 0.195180
\(106\) 1.60770 0.156153
\(107\) −8.53590 −0.825196 −0.412598 0.910913i \(-0.635379\pi\)
−0.412598 + 0.910913i \(0.635379\pi\)
\(108\) 1.00000 0.0962250
\(109\) 10.0000 0.957826 0.478913 0.877862i \(-0.341031\pi\)
0.478913 + 0.877862i \(0.341031\pi\)
\(110\) 0 0
\(111\) −4.92820 −0.467764
\(112\) 10.0000 0.944911
\(113\) −12.9282 −1.21618 −0.608092 0.793867i \(-0.708065\pi\)
−0.608092 + 0.793867i \(0.708065\pi\)
\(114\) −9.46410 −0.886394
\(115\) −6.92820 −0.646058
\(116\) 3.46410 0.321634
\(117\) −5.46410 −0.505156
\(118\) −12.0000 −1.10469
\(119\) 0 0
\(120\) 1.73205 0.158114
\(121\) 0 0
\(122\) −3.46410 −0.313625
\(123\) −3.46410 −0.312348
\(124\) −10.9282 −0.981382
\(125\) −1.00000 −0.0894427
\(126\) −3.46410 −0.308607
\(127\) −8.92820 −0.792250 −0.396125 0.918197i \(-0.629645\pi\)
−0.396125 + 0.918197i \(0.629645\pi\)
\(128\) 12.1244 1.07165
\(129\) 4.92820 0.433904
\(130\) 9.46410 0.830057
\(131\) −18.9282 −1.65376 −0.826882 0.562375i \(-0.809888\pi\)
−0.826882 + 0.562375i \(0.809888\pi\)
\(132\) 0 0
\(133\) 10.9282 0.947595
\(134\) 13.8564 1.19701
\(135\) −1.00000 −0.0860663
\(136\) 0 0
\(137\) −18.0000 −1.53784 −0.768922 0.639343i \(-0.779207\pi\)
−0.768922 + 0.639343i \(0.779207\pi\)
\(138\) 12.0000 1.02151
\(139\) −12.3923 −1.05110 −0.525551 0.850762i \(-0.676141\pi\)
−0.525551 + 0.850762i \(0.676141\pi\)
\(140\) 2.00000 0.169031
\(141\) −6.92820 −0.583460
\(142\) 24.0000 2.01404
\(143\) 0 0
\(144\) −5.00000 −0.416667
\(145\) −3.46410 −0.287678
\(146\) 14.5359 1.20300
\(147\) −3.00000 −0.247436
\(148\) −4.92820 −0.405096
\(149\) 15.4641 1.26687 0.633434 0.773796i \(-0.281645\pi\)
0.633434 + 0.773796i \(0.281645\pi\)
\(150\) 1.73205 0.141421
\(151\) 20.3923 1.65950 0.829751 0.558134i \(-0.188482\pi\)
0.829751 + 0.558134i \(0.188482\pi\)
\(152\) 9.46410 0.767640
\(153\) 0 0
\(154\) 0 0
\(155\) 10.9282 0.877774
\(156\) −5.46410 −0.437478
\(157\) −3.07180 −0.245156 −0.122578 0.992459i \(-0.539116\pi\)
−0.122578 + 0.992459i \(0.539116\pi\)
\(158\) 11.3205 0.900611
\(159\) 0.928203 0.0736113
\(160\) 5.19615 0.410792
\(161\) −13.8564 −1.09204
\(162\) 1.73205 0.136083
\(163\) 9.85641 0.772013 0.386007 0.922496i \(-0.373854\pi\)
0.386007 + 0.922496i \(0.373854\pi\)
\(164\) −3.46410 −0.270501
\(165\) 0 0
\(166\) −14.7846 −1.14751
\(167\) 10.3923 0.804181 0.402090 0.915600i \(-0.368284\pi\)
0.402090 + 0.915600i \(0.368284\pi\)
\(168\) 3.46410 0.267261
\(169\) 16.8564 1.29665
\(170\) 0 0
\(171\) −5.46410 −0.417850
\(172\) 4.92820 0.375772
\(173\) 12.0000 0.912343 0.456172 0.889892i \(-0.349220\pi\)
0.456172 + 0.889892i \(0.349220\pi\)
\(174\) 6.00000 0.454859
\(175\) −2.00000 −0.151186
\(176\) 0 0
\(177\) −6.92820 −0.520756
\(178\) 1.60770 0.120502
\(179\) 6.92820 0.517838 0.258919 0.965899i \(-0.416634\pi\)
0.258919 + 0.965899i \(0.416634\pi\)
\(180\) −1.00000 −0.0745356
\(181\) 15.8564 1.17860 0.589299 0.807915i \(-0.299404\pi\)
0.589299 + 0.807915i \(0.299404\pi\)
\(182\) 18.9282 1.40305
\(183\) −2.00000 −0.147844
\(184\) −12.0000 −0.884652
\(185\) 4.92820 0.362329
\(186\) −18.9282 −1.38788
\(187\) 0 0
\(188\) −6.92820 −0.505291
\(189\) −2.00000 −0.145479
\(190\) 9.46410 0.686598
\(191\) −18.9282 −1.36960 −0.684798 0.728733i \(-0.740110\pi\)
−0.684798 + 0.728733i \(0.740110\pi\)
\(192\) 1.00000 0.0721688
\(193\) −24.3923 −1.75580 −0.877898 0.478847i \(-0.841055\pi\)
−0.877898 + 0.478847i \(0.841055\pi\)
\(194\) −17.3205 −1.24354
\(195\) 5.46410 0.391292
\(196\) −3.00000 −0.214286
\(197\) 12.0000 0.854965 0.427482 0.904024i \(-0.359401\pi\)
0.427482 + 0.904024i \(0.359401\pi\)
\(198\) 0 0
\(199\) −24.7846 −1.75693 −0.878467 0.477803i \(-0.841433\pi\)
−0.878467 + 0.477803i \(0.841433\pi\)
\(200\) −1.73205 −0.122474
\(201\) 8.00000 0.564276
\(202\) 18.0000 1.26648
\(203\) −6.92820 −0.486265
\(204\) 0 0
\(205\) 3.46410 0.241943
\(206\) 13.8564 0.965422
\(207\) 6.92820 0.481543
\(208\) 27.3205 1.89434
\(209\) 0 0
\(210\) 3.46410 0.239046
\(211\) 8.39230 0.577750 0.288875 0.957367i \(-0.406719\pi\)
0.288875 + 0.957367i \(0.406719\pi\)
\(212\) 0.928203 0.0637493
\(213\) 13.8564 0.949425
\(214\) −14.7846 −1.01066
\(215\) −4.92820 −0.336101
\(216\) −1.73205 −0.117851
\(217\) 21.8564 1.48371
\(218\) 17.3205 1.17309
\(219\) 8.39230 0.567099
\(220\) 0 0
\(221\) 0 0
\(222\) −8.53590 −0.572892
\(223\) 9.85641 0.660034 0.330017 0.943975i \(-0.392946\pi\)
0.330017 + 0.943975i \(0.392946\pi\)
\(224\) 10.3923 0.694365
\(225\) 1.00000 0.0666667
\(226\) −22.3923 −1.48951
\(227\) −15.4641 −1.02639 −0.513194 0.858272i \(-0.671538\pi\)
−0.513194 + 0.858272i \(0.671538\pi\)
\(228\) −5.46410 −0.361869
\(229\) −23.8564 −1.57648 −0.788238 0.615371i \(-0.789006\pi\)
−0.788238 + 0.615371i \(0.789006\pi\)
\(230\) −12.0000 −0.791257
\(231\) 0 0
\(232\) −6.00000 −0.393919
\(233\) −12.0000 −0.786146 −0.393073 0.919507i \(-0.628588\pi\)
−0.393073 + 0.919507i \(0.628588\pi\)
\(234\) −9.46410 −0.618688
\(235\) 6.92820 0.451946
\(236\) −6.92820 −0.450988
\(237\) 6.53590 0.424552
\(238\) 0 0
\(239\) 12.0000 0.776215 0.388108 0.921614i \(-0.373129\pi\)
0.388108 + 0.921614i \(0.373129\pi\)
\(240\) 5.00000 0.322749
\(241\) −0.143594 −0.00924967 −0.00462484 0.999989i \(-0.501472\pi\)
−0.00462484 + 0.999989i \(0.501472\pi\)
\(242\) 0 0
\(243\) 1.00000 0.0641500
\(244\) −2.00000 −0.128037
\(245\) 3.00000 0.191663
\(246\) −6.00000 −0.382546
\(247\) 29.8564 1.89972
\(248\) 18.9282 1.20194
\(249\) −8.53590 −0.540941
\(250\) −1.73205 −0.109545
\(251\) −1.85641 −0.117175 −0.0585877 0.998282i \(-0.518660\pi\)
−0.0585877 + 0.998282i \(0.518660\pi\)
\(252\) −2.00000 −0.125988
\(253\) 0 0
\(254\) −15.4641 −0.970304
\(255\) 0 0
\(256\) 19.0000 1.18750
\(257\) −19.8564 −1.23861 −0.619304 0.785151i \(-0.712585\pi\)
−0.619304 + 0.785151i \(0.712585\pi\)
\(258\) 8.53590 0.531422
\(259\) 9.85641 0.612447
\(260\) 5.46410 0.338869
\(261\) 3.46410 0.214423
\(262\) −32.7846 −2.02544
\(263\) −20.5359 −1.26630 −0.633149 0.774030i \(-0.718238\pi\)
−0.633149 + 0.774030i \(0.718238\pi\)
\(264\) 0 0
\(265\) −0.928203 −0.0570191
\(266\) 18.9282 1.16056
\(267\) 0.928203 0.0568051
\(268\) 8.00000 0.488678
\(269\) 19.8564 1.21067 0.605333 0.795972i \(-0.293040\pi\)
0.605333 + 0.795972i \(0.293040\pi\)
\(270\) −1.73205 −0.105409
\(271\) 11.6077 0.705117 0.352559 0.935790i \(-0.385312\pi\)
0.352559 + 0.935790i \(0.385312\pi\)
\(272\) 0 0
\(273\) 10.9282 0.661405
\(274\) −31.1769 −1.88347
\(275\) 0 0
\(276\) 6.92820 0.417029
\(277\) −29.4641 −1.77033 −0.885163 0.465281i \(-0.845953\pi\)
−0.885163 + 0.465281i \(0.845953\pi\)
\(278\) −21.4641 −1.28733
\(279\) −10.9282 −0.654254
\(280\) −3.46410 −0.207020
\(281\) −3.46410 −0.206651 −0.103325 0.994648i \(-0.532948\pi\)
−0.103325 + 0.994648i \(0.532948\pi\)
\(282\) −12.0000 −0.714590
\(283\) 4.92820 0.292951 0.146476 0.989214i \(-0.453207\pi\)
0.146476 + 0.989214i \(0.453207\pi\)
\(284\) 13.8564 0.822226
\(285\) 5.46410 0.323665
\(286\) 0 0
\(287\) 6.92820 0.408959
\(288\) −5.19615 −0.306186
\(289\) −17.0000 −1.00000
\(290\) −6.00000 −0.352332
\(291\) −10.0000 −0.586210
\(292\) 8.39230 0.491122
\(293\) 13.8564 0.809500 0.404750 0.914427i \(-0.367359\pi\)
0.404750 + 0.914427i \(0.367359\pi\)
\(294\) −5.19615 −0.303046
\(295\) 6.92820 0.403376
\(296\) 8.53590 0.496139
\(297\) 0 0
\(298\) 26.7846 1.55159
\(299\) −37.8564 −2.18929
\(300\) 1.00000 0.0577350
\(301\) −9.85641 −0.568114
\(302\) 35.3205 2.03247
\(303\) 10.3923 0.597022
\(304\) 27.3205 1.56694
\(305\) 2.00000 0.114520
\(306\) 0 0
\(307\) −14.0000 −0.799022 −0.399511 0.916728i \(-0.630820\pi\)
−0.399511 + 0.916728i \(0.630820\pi\)
\(308\) 0 0
\(309\) 8.00000 0.455104
\(310\) 18.9282 1.07505
\(311\) 5.07180 0.287595 0.143798 0.989607i \(-0.454069\pi\)
0.143798 + 0.989607i \(0.454069\pi\)
\(312\) 9.46410 0.535799
\(313\) 20.9282 1.18293 0.591466 0.806330i \(-0.298549\pi\)
0.591466 + 0.806330i \(0.298549\pi\)
\(314\) −5.32051 −0.300254
\(315\) 2.00000 0.112687
\(316\) 6.53590 0.367673
\(317\) −24.9282 −1.40011 −0.700054 0.714090i \(-0.746841\pi\)
−0.700054 + 0.714090i \(0.746841\pi\)
\(318\) 1.60770 0.0901551
\(319\) 0 0
\(320\) −1.00000 −0.0559017
\(321\) −8.53590 −0.476427
\(322\) −24.0000 −1.33747
\(323\) 0 0
\(324\) 1.00000 0.0555556
\(325\) −5.46410 −0.303094
\(326\) 17.0718 0.945519
\(327\) 10.0000 0.553001
\(328\) 6.00000 0.331295
\(329\) 13.8564 0.763928
\(330\) 0 0
\(331\) 9.85641 0.541757 0.270879 0.962614i \(-0.412686\pi\)
0.270879 + 0.962614i \(0.412686\pi\)
\(332\) −8.53590 −0.468468
\(333\) −4.92820 −0.270064
\(334\) 18.0000 0.984916
\(335\) −8.00000 −0.437087
\(336\) 10.0000 0.545545
\(337\) −33.1769 −1.80726 −0.903631 0.428312i \(-0.859108\pi\)
−0.903631 + 0.428312i \(0.859108\pi\)
\(338\) 29.1962 1.58806
\(339\) −12.9282 −0.702164
\(340\) 0 0
\(341\) 0 0
\(342\) −9.46410 −0.511760
\(343\) 20.0000 1.07990
\(344\) −8.53590 −0.460225
\(345\) −6.92820 −0.373002
\(346\) 20.7846 1.11739
\(347\) −22.3923 −1.20208 −0.601041 0.799218i \(-0.705247\pi\)
−0.601041 + 0.799218i \(0.705247\pi\)
\(348\) 3.46410 0.185695
\(349\) 8.14359 0.435917 0.217958 0.975958i \(-0.430060\pi\)
0.217958 + 0.975958i \(0.430060\pi\)
\(350\) −3.46410 −0.185164
\(351\) −5.46410 −0.291652
\(352\) 0 0
\(353\) 12.9282 0.688099 0.344049 0.938952i \(-0.388201\pi\)
0.344049 + 0.938952i \(0.388201\pi\)
\(354\) −12.0000 −0.637793
\(355\) −13.8564 −0.735422
\(356\) 0.928203 0.0491947
\(357\) 0 0
\(358\) 12.0000 0.634220
\(359\) 20.7846 1.09697 0.548485 0.836160i \(-0.315205\pi\)
0.548485 + 0.836160i \(0.315205\pi\)
\(360\) 1.73205 0.0912871
\(361\) 10.8564 0.571390
\(362\) 27.4641 1.44348
\(363\) 0 0
\(364\) 10.9282 0.572793
\(365\) −8.39230 −0.439273
\(366\) −3.46410 −0.181071
\(367\) 20.0000 1.04399 0.521996 0.852948i \(-0.325188\pi\)
0.521996 + 0.852948i \(0.325188\pi\)
\(368\) −34.6410 −1.80579
\(369\) −3.46410 −0.180334
\(370\) 8.53590 0.443760
\(371\) −1.85641 −0.0963798
\(372\) −10.9282 −0.566601
\(373\) 20.3923 1.05587 0.527937 0.849284i \(-0.322966\pi\)
0.527937 + 0.849284i \(0.322966\pi\)
\(374\) 0 0
\(375\) −1.00000 −0.0516398
\(376\) 12.0000 0.618853
\(377\) −18.9282 −0.974852
\(378\) −3.46410 −0.178174
\(379\) −17.8564 −0.917222 −0.458611 0.888637i \(-0.651653\pi\)
−0.458611 + 0.888637i \(0.651653\pi\)
\(380\) 5.46410 0.280302
\(381\) −8.92820 −0.457406
\(382\) −32.7846 −1.67741
\(383\) −13.8564 −0.708029 −0.354015 0.935240i \(-0.615184\pi\)
−0.354015 + 0.935240i \(0.615184\pi\)
\(384\) 12.1244 0.618718
\(385\) 0 0
\(386\) −42.2487 −2.15040
\(387\) 4.92820 0.250515
\(388\) −10.0000 −0.507673
\(389\) 11.0718 0.561362 0.280681 0.959801i \(-0.409440\pi\)
0.280681 + 0.959801i \(0.409440\pi\)
\(390\) 9.46410 0.479233
\(391\) 0 0
\(392\) 5.19615 0.262445
\(393\) −18.9282 −0.954802
\(394\) 20.7846 1.04711
\(395\) −6.53590 −0.328857
\(396\) 0 0
\(397\) 2.00000 0.100377 0.0501886 0.998740i \(-0.484018\pi\)
0.0501886 + 0.998740i \(0.484018\pi\)
\(398\) −42.9282 −2.15180
\(399\) 10.9282 0.547094
\(400\) −5.00000 −0.250000
\(401\) −7.85641 −0.392330 −0.196165 0.980571i \(-0.562849\pi\)
−0.196165 + 0.980571i \(0.562849\pi\)
\(402\) 13.8564 0.691095
\(403\) 59.7128 2.97451
\(404\) 10.3923 0.517036
\(405\) −1.00000 −0.0496904
\(406\) −12.0000 −0.595550
\(407\) 0 0
\(408\) 0 0
\(409\) 6.78461 0.335477 0.167739 0.985831i \(-0.446354\pi\)
0.167739 + 0.985831i \(0.446354\pi\)
\(410\) 6.00000 0.296319
\(411\) −18.0000 −0.887875
\(412\) 8.00000 0.394132
\(413\) 13.8564 0.681829
\(414\) 12.0000 0.589768
\(415\) 8.53590 0.419011
\(416\) 28.3923 1.39205
\(417\) −12.3923 −0.606854
\(418\) 0 0
\(419\) 30.9282 1.51094 0.755471 0.655182i \(-0.227408\pi\)
0.755471 + 0.655182i \(0.227408\pi\)
\(420\) 2.00000 0.0975900
\(421\) 2.00000 0.0974740 0.0487370 0.998812i \(-0.484480\pi\)
0.0487370 + 0.998812i \(0.484480\pi\)
\(422\) 14.5359 0.707596
\(423\) −6.92820 −0.336861
\(424\) −1.60770 −0.0780766
\(425\) 0 0
\(426\) 24.0000 1.16280
\(427\) 4.00000 0.193574
\(428\) −8.53590 −0.412598
\(429\) 0 0
\(430\) −8.53590 −0.411638
\(431\) −8.78461 −0.423140 −0.211570 0.977363i \(-0.567858\pi\)
−0.211570 + 0.977363i \(0.567858\pi\)
\(432\) −5.00000 −0.240563
\(433\) 0.143594 0.00690067 0.00345033 0.999994i \(-0.498902\pi\)
0.00345033 + 0.999994i \(0.498902\pi\)
\(434\) 37.8564 1.81717
\(435\) −3.46410 −0.166091
\(436\) 10.0000 0.478913
\(437\) −37.8564 −1.81092
\(438\) 14.5359 0.694552
\(439\) −33.1769 −1.58345 −0.791724 0.610879i \(-0.790816\pi\)
−0.791724 + 0.610879i \(0.790816\pi\)
\(440\) 0 0
\(441\) −3.00000 −0.142857
\(442\) 0 0
\(443\) 12.0000 0.570137 0.285069 0.958507i \(-0.407984\pi\)
0.285069 + 0.958507i \(0.407984\pi\)
\(444\) −4.92820 −0.233882
\(445\) −0.928203 −0.0440011
\(446\) 17.0718 0.808373
\(447\) 15.4641 0.731427
\(448\) −2.00000 −0.0944911
\(449\) −26.7846 −1.26404 −0.632022 0.774950i \(-0.717775\pi\)
−0.632022 + 0.774950i \(0.717775\pi\)
\(450\) 1.73205 0.0816497
\(451\) 0 0
\(452\) −12.9282 −0.608092
\(453\) 20.3923 0.958114
\(454\) −26.7846 −1.25706
\(455\) −10.9282 −0.512322
\(456\) 9.46410 0.443197
\(457\) −12.3923 −0.579688 −0.289844 0.957074i \(-0.593603\pi\)
−0.289844 + 0.957074i \(0.593603\pi\)
\(458\) −41.3205 −1.93078
\(459\) 0 0
\(460\) −6.92820 −0.323029
\(461\) −36.2487 −1.68827 −0.844135 0.536130i \(-0.819886\pi\)
−0.844135 + 0.536130i \(0.819886\pi\)
\(462\) 0 0
\(463\) −28.0000 −1.30127 −0.650635 0.759390i \(-0.725497\pi\)
−0.650635 + 0.759390i \(0.725497\pi\)
\(464\) −17.3205 −0.804084
\(465\) 10.9282 0.506783
\(466\) −20.7846 −0.962828
\(467\) 5.07180 0.234695 0.117347 0.993091i \(-0.462561\pi\)
0.117347 + 0.993091i \(0.462561\pi\)
\(468\) −5.46410 −0.252578
\(469\) −16.0000 −0.738811
\(470\) 12.0000 0.553519
\(471\) −3.07180 −0.141541
\(472\) 12.0000 0.552345
\(473\) 0 0
\(474\) 11.3205 0.519968
\(475\) −5.46410 −0.250710
\(476\) 0 0
\(477\) 0.928203 0.0424995
\(478\) 20.7846 0.950666
\(479\) −12.0000 −0.548294 −0.274147 0.961688i \(-0.588395\pi\)
−0.274147 + 0.961688i \(0.588395\pi\)
\(480\) 5.19615 0.237171
\(481\) 26.9282 1.22782
\(482\) −0.248711 −0.0113285
\(483\) −13.8564 −0.630488
\(484\) 0 0
\(485\) 10.0000 0.454077
\(486\) 1.73205 0.0785674
\(487\) −31.7128 −1.43704 −0.718522 0.695504i \(-0.755181\pi\)
−0.718522 + 0.695504i \(0.755181\pi\)
\(488\) 3.46410 0.156813
\(489\) 9.85641 0.445722
\(490\) 5.19615 0.234738
\(491\) 30.9282 1.39577 0.697885 0.716210i \(-0.254125\pi\)
0.697885 + 0.716210i \(0.254125\pi\)
\(492\) −3.46410 −0.156174
\(493\) 0 0
\(494\) 51.7128 2.32667
\(495\) 0 0
\(496\) 54.6410 2.45345
\(497\) −27.7128 −1.24309
\(498\) −14.7846 −0.662514
\(499\) 28.7846 1.28858 0.644288 0.764783i \(-0.277154\pi\)
0.644288 + 0.764783i \(0.277154\pi\)
\(500\) −1.00000 −0.0447214
\(501\) 10.3923 0.464294
\(502\) −3.21539 −0.143510
\(503\) −31.1769 −1.39011 −0.695055 0.718957i \(-0.744620\pi\)
−0.695055 + 0.718957i \(0.744620\pi\)
\(504\) 3.46410 0.154303
\(505\) −10.3923 −0.462451
\(506\) 0 0
\(507\) 16.8564 0.748619
\(508\) −8.92820 −0.396125
\(509\) 19.8564 0.880120 0.440060 0.897968i \(-0.354957\pi\)
0.440060 + 0.897968i \(0.354957\pi\)
\(510\) 0 0
\(511\) −16.7846 −0.742507
\(512\) 8.66025 0.382733
\(513\) −5.46410 −0.241246
\(514\) −34.3923 −1.51698
\(515\) −8.00000 −0.352522
\(516\) 4.92820 0.216952
\(517\) 0 0
\(518\) 17.0718 0.750092
\(519\) 12.0000 0.526742
\(520\) −9.46410 −0.415028
\(521\) 6.00000 0.262865 0.131432 0.991325i \(-0.458042\pi\)
0.131432 + 0.991325i \(0.458042\pi\)
\(522\) 6.00000 0.262613
\(523\) 22.0000 0.961993 0.480996 0.876723i \(-0.340275\pi\)
0.480996 + 0.876723i \(0.340275\pi\)
\(524\) −18.9282 −0.826882
\(525\) −2.00000 −0.0872872
\(526\) −35.5692 −1.55089
\(527\) 0 0
\(528\) 0 0
\(529\) 25.0000 1.08696
\(530\) −1.60770 −0.0698338
\(531\) −6.92820 −0.300658
\(532\) 10.9282 0.473798
\(533\) 18.9282 0.819871
\(534\) 1.60770 0.0695718
\(535\) 8.53590 0.369039
\(536\) −13.8564 −0.598506
\(537\) 6.92820 0.298974
\(538\) 34.3923 1.48276
\(539\) 0 0
\(540\) −1.00000 −0.0430331
\(541\) −27.8564 −1.19764 −0.598820 0.800883i \(-0.704364\pi\)
−0.598820 + 0.800883i \(0.704364\pi\)
\(542\) 20.1051 0.863589
\(543\) 15.8564 0.680464
\(544\) 0 0
\(545\) −10.0000 −0.428353
\(546\) 18.9282 0.810052
\(547\) −2.00000 −0.0855138 −0.0427569 0.999086i \(-0.513614\pi\)
−0.0427569 + 0.999086i \(0.513614\pi\)
\(548\) −18.0000 −0.768922
\(549\) −2.00000 −0.0853579
\(550\) 0 0
\(551\) −18.9282 −0.806369
\(552\) −12.0000 −0.510754
\(553\) −13.0718 −0.555869
\(554\) −51.0333 −2.16820
\(555\) 4.92820 0.209191
\(556\) −12.3923 −0.525551
\(557\) −3.21539 −0.136240 −0.0681202 0.997677i \(-0.521700\pi\)
−0.0681202 + 0.997677i \(0.521700\pi\)
\(558\) −18.9282 −0.801295
\(559\) −26.9282 −1.13894
\(560\) −10.0000 −0.422577
\(561\) 0 0
\(562\) −6.00000 −0.253095
\(563\) −10.3923 −0.437983 −0.218992 0.975727i \(-0.570277\pi\)
−0.218992 + 0.975727i \(0.570277\pi\)
\(564\) −6.92820 −0.291730
\(565\) 12.9282 0.543894
\(566\) 8.53590 0.358791
\(567\) −2.00000 −0.0839921
\(568\) −24.0000 −1.00702
\(569\) −5.32051 −0.223047 −0.111524 0.993762i \(-0.535573\pi\)
−0.111524 + 0.993762i \(0.535573\pi\)
\(570\) 9.46410 0.396408
\(571\) −3.60770 −0.150977 −0.0754887 0.997147i \(-0.524052\pi\)
−0.0754887 + 0.997147i \(0.524052\pi\)
\(572\) 0 0
\(573\) −18.9282 −0.790737
\(574\) 12.0000 0.500870
\(575\) 6.92820 0.288926
\(576\) 1.00000 0.0416667
\(577\) −18.7846 −0.782014 −0.391007 0.920388i \(-0.627873\pi\)
−0.391007 + 0.920388i \(0.627873\pi\)
\(578\) −29.4449 −1.22474
\(579\) −24.3923 −1.01371
\(580\) −3.46410 −0.143839
\(581\) 17.0718 0.708257
\(582\) −17.3205 −0.717958
\(583\) 0 0
\(584\) −14.5359 −0.601500
\(585\) 5.46410 0.225913
\(586\) 24.0000 0.991431
\(587\) −18.9282 −0.781251 −0.390625 0.920550i \(-0.627741\pi\)
−0.390625 + 0.920550i \(0.627741\pi\)
\(588\) −3.00000 −0.123718
\(589\) 59.7128 2.46042
\(590\) 12.0000 0.494032
\(591\) 12.0000 0.493614
\(592\) 24.6410 1.01274
\(593\) −8.78461 −0.360741 −0.180370 0.983599i \(-0.557730\pi\)
−0.180370 + 0.983599i \(0.557730\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 15.4641 0.633434
\(597\) −24.7846 −1.01437
\(598\) −65.5692 −2.68132
\(599\) −37.8564 −1.54677 −0.773385 0.633936i \(-0.781438\pi\)
−0.773385 + 0.633936i \(0.781438\pi\)
\(600\) −1.73205 −0.0707107
\(601\) 32.6410 1.33145 0.665727 0.746195i \(-0.268121\pi\)
0.665727 + 0.746195i \(0.268121\pi\)
\(602\) −17.0718 −0.695794
\(603\) 8.00000 0.325785
\(604\) 20.3923 0.829751
\(605\) 0 0
\(606\) 18.0000 0.731200
\(607\) 18.7846 0.762444 0.381222 0.924484i \(-0.375503\pi\)
0.381222 + 0.924484i \(0.375503\pi\)
\(608\) 28.3923 1.15146
\(609\) −6.92820 −0.280745
\(610\) 3.46410 0.140257
\(611\) 37.8564 1.53151
\(612\) 0 0
\(613\) 20.3923 0.823637 0.411819 0.911266i \(-0.364894\pi\)
0.411819 + 0.911266i \(0.364894\pi\)
\(614\) −24.2487 −0.978598
\(615\) 3.46410 0.139686
\(616\) 0 0
\(617\) −36.9282 −1.48667 −0.743337 0.668917i \(-0.766758\pi\)
−0.743337 + 0.668917i \(0.766758\pi\)
\(618\) 13.8564 0.557386
\(619\) 20.0000 0.803868 0.401934 0.915669i \(-0.368338\pi\)
0.401934 + 0.915669i \(0.368338\pi\)
\(620\) 10.9282 0.438887
\(621\) 6.92820 0.278019
\(622\) 8.78461 0.352231
\(623\) −1.85641 −0.0743754
\(624\) 27.3205 1.09370
\(625\) 1.00000 0.0400000
\(626\) 36.2487 1.44879
\(627\) 0 0
\(628\) −3.07180 −0.122578
\(629\) 0 0
\(630\) 3.46410 0.138013
\(631\) −21.0718 −0.838855 −0.419427 0.907789i \(-0.637769\pi\)
−0.419427 + 0.907789i \(0.637769\pi\)
\(632\) −11.3205 −0.450306
\(633\) 8.39230 0.333564
\(634\) −43.1769 −1.71477
\(635\) 8.92820 0.354305
\(636\) 0.928203 0.0368057
\(637\) 16.3923 0.649487
\(638\) 0 0
\(639\) 13.8564 0.548151
\(640\) −12.1244 −0.479257
\(641\) −12.9282 −0.510633 −0.255317 0.966857i \(-0.582180\pi\)
−0.255317 + 0.966857i \(0.582180\pi\)
\(642\) −14.7846 −0.583502
\(643\) 37.5692 1.48159 0.740793 0.671734i \(-0.234450\pi\)
0.740793 + 0.671734i \(0.234450\pi\)
\(644\) −13.8564 −0.546019
\(645\) −4.92820 −0.194048
\(646\) 0 0
\(647\) 27.7128 1.08950 0.544752 0.838597i \(-0.316624\pi\)
0.544752 + 0.838597i \(0.316624\pi\)
\(648\) −1.73205 −0.0680414
\(649\) 0 0
\(650\) −9.46410 −0.371213
\(651\) 21.8564 0.856620
\(652\) 9.85641 0.386007
\(653\) 19.8564 0.777041 0.388521 0.921440i \(-0.372986\pi\)
0.388521 + 0.921440i \(0.372986\pi\)
\(654\) 17.3205 0.677285
\(655\) 18.9282 0.739586
\(656\) 17.3205 0.676252
\(657\) 8.39230 0.327415
\(658\) 24.0000 0.935617
\(659\) 15.7128 0.612084 0.306042 0.952018i \(-0.400995\pi\)
0.306042 + 0.952018i \(0.400995\pi\)
\(660\) 0 0
\(661\) 14.0000 0.544537 0.272268 0.962221i \(-0.412226\pi\)
0.272268 + 0.962221i \(0.412226\pi\)
\(662\) 17.0718 0.663514
\(663\) 0 0
\(664\) 14.7846 0.573754
\(665\) −10.9282 −0.423778
\(666\) −8.53590 −0.330759
\(667\) 24.0000 0.929284
\(668\) 10.3923 0.402090
\(669\) 9.85641 0.381071
\(670\) −13.8564 −0.535320
\(671\) 0 0
\(672\) 10.3923 0.400892
\(673\) 3.32051 0.127996 0.0639981 0.997950i \(-0.479615\pi\)
0.0639981 + 0.997950i \(0.479615\pi\)
\(674\) −57.4641 −2.21343
\(675\) 1.00000 0.0384900
\(676\) 16.8564 0.648323
\(677\) −8.78461 −0.337620 −0.168810 0.985649i \(-0.553992\pi\)
−0.168810 + 0.985649i \(0.553992\pi\)
\(678\) −22.3923 −0.859971
\(679\) 20.0000 0.767530
\(680\) 0 0
\(681\) −15.4641 −0.592586
\(682\) 0 0
\(683\) −32.7846 −1.25447 −0.627234 0.778831i \(-0.715813\pi\)
−0.627234 + 0.778831i \(0.715813\pi\)
\(684\) −5.46410 −0.208925
\(685\) 18.0000 0.687745
\(686\) 34.6410 1.32260
\(687\) −23.8564 −0.910179
\(688\) −24.6410 −0.939430
\(689\) −5.07180 −0.193220
\(690\) −12.0000 −0.456832
\(691\) 47.7128 1.81508 0.907540 0.419965i \(-0.137958\pi\)
0.907540 + 0.419965i \(0.137958\pi\)
\(692\) 12.0000 0.456172
\(693\) 0 0
\(694\) −38.7846 −1.47224
\(695\) 12.3923 0.470067
\(696\) −6.00000 −0.227429
\(697\) 0 0
\(698\) 14.1051 0.533887
\(699\) −12.0000 −0.453882
\(700\) −2.00000 −0.0755929
\(701\) −39.4641 −1.49054 −0.745269 0.666764i \(-0.767679\pi\)
−0.745269 + 0.666764i \(0.767679\pi\)
\(702\) −9.46410 −0.357199
\(703\) 26.9282 1.01562
\(704\) 0 0
\(705\) 6.92820 0.260931
\(706\) 22.3923 0.842746
\(707\) −20.7846 −0.781686
\(708\) −6.92820 −0.260378
\(709\) −11.8564 −0.445277 −0.222638 0.974901i \(-0.571467\pi\)
−0.222638 + 0.974901i \(0.571467\pi\)
\(710\) −24.0000 −0.900704
\(711\) 6.53590 0.245115
\(712\) −1.60770 −0.0602509
\(713\) −75.7128 −2.83547
\(714\) 0 0
\(715\) 0 0
\(716\) 6.92820 0.258919
\(717\) 12.0000 0.448148
\(718\) 36.0000 1.34351
\(719\) −5.07180 −0.189146 −0.0945731 0.995518i \(-0.530149\pi\)
−0.0945731 + 0.995518i \(0.530149\pi\)
\(720\) 5.00000 0.186339
\(721\) −16.0000 −0.595871
\(722\) 18.8038 0.699807
\(723\) −0.143594 −0.00534030
\(724\) 15.8564 0.589299
\(725\) 3.46410 0.128654
\(726\) 0 0
\(727\) 8.00000 0.296704 0.148352 0.988935i \(-0.452603\pi\)
0.148352 + 0.988935i \(0.452603\pi\)
\(728\) −18.9282 −0.701526
\(729\) 1.00000 0.0370370
\(730\) −14.5359 −0.537998
\(731\) 0 0
\(732\) −2.00000 −0.0739221
\(733\) −53.9615 −1.99311 −0.996557 0.0829082i \(-0.973579\pi\)
−0.996557 + 0.0829082i \(0.973579\pi\)
\(734\) 34.6410 1.27862
\(735\) 3.00000 0.110657
\(736\) −36.0000 −1.32698
\(737\) 0 0
\(738\) −6.00000 −0.220863
\(739\) −17.4641 −0.642427 −0.321214 0.947007i \(-0.604091\pi\)
−0.321214 + 0.947007i \(0.604091\pi\)
\(740\) 4.92820 0.181164
\(741\) 29.8564 1.09680
\(742\) −3.21539 −0.118041
\(743\) −25.6077 −0.939455 −0.469728 0.882811i \(-0.655648\pi\)
−0.469728 + 0.882811i \(0.655648\pi\)
\(744\) 18.9282 0.693942
\(745\) −15.4641 −0.566561
\(746\) 35.3205 1.29318
\(747\) −8.53590 −0.312312
\(748\) 0 0
\(749\) 17.0718 0.623790
\(750\) −1.73205 −0.0632456
\(751\) 26.9282 0.982624 0.491312 0.870984i \(-0.336517\pi\)
0.491312 + 0.870984i \(0.336517\pi\)
\(752\) 34.6410 1.26323
\(753\) −1.85641 −0.0676512
\(754\) −32.7846 −1.19395
\(755\) −20.3923 −0.742152
\(756\) −2.00000 −0.0727393
\(757\) 34.7846 1.26427 0.632134 0.774859i \(-0.282179\pi\)
0.632134 + 0.774859i \(0.282179\pi\)
\(758\) −30.9282 −1.12336
\(759\) 0 0
\(760\) −9.46410 −0.343299
\(761\) 32.5359 1.17943 0.589713 0.807613i \(-0.299241\pi\)
0.589713 + 0.807613i \(0.299241\pi\)
\(762\) −15.4641 −0.560205
\(763\) −20.0000 −0.724049
\(764\) −18.9282 −0.684798
\(765\) 0 0
\(766\) −24.0000 −0.867155
\(767\) 37.8564 1.36692
\(768\) 19.0000 0.685603
\(769\) −50.4974 −1.82098 −0.910492 0.413527i \(-0.864297\pi\)
−0.910492 + 0.413527i \(0.864297\pi\)
\(770\) 0 0
\(771\) −19.8564 −0.715111
\(772\) −24.3923 −0.877898
\(773\) −4.14359 −0.149035 −0.0745174 0.997220i \(-0.523742\pi\)
−0.0745174 + 0.997220i \(0.523742\pi\)
\(774\) 8.53590 0.306817
\(775\) −10.9282 −0.392553
\(776\) 17.3205 0.621770
\(777\) 9.85641 0.353597
\(778\) 19.1769 0.687526
\(779\) 18.9282 0.678173
\(780\) 5.46410 0.195646
\(781\) 0 0
\(782\) 0 0
\(783\) 3.46410 0.123797
\(784\) 15.0000 0.535714
\(785\) 3.07180 0.109637
\(786\) −32.7846 −1.16939
\(787\) −22.7846 −0.812184 −0.406092 0.913832i \(-0.633109\pi\)
−0.406092 + 0.913832i \(0.633109\pi\)
\(788\) 12.0000 0.427482
\(789\) −20.5359 −0.731097
\(790\) −11.3205 −0.402766
\(791\) 25.8564 0.919348
\(792\) 0 0
\(793\) 10.9282 0.388072
\(794\) 3.46410 0.122936
\(795\) −0.928203 −0.0329200
\(796\) −24.7846 −0.878467
\(797\) −52.6410 −1.86464 −0.932320 0.361634i \(-0.882219\pi\)
−0.932320 + 0.361634i \(0.882219\pi\)
\(798\) 18.9282 0.670051
\(799\) 0 0
\(800\) −5.19615 −0.183712
\(801\) 0.928203 0.0327964
\(802\) −13.6077 −0.480504
\(803\) 0 0
\(804\) 8.00000 0.282138
\(805\) 13.8564 0.488374
\(806\) 103.426 3.64301
\(807\) 19.8564 0.698979
\(808\) −18.0000 −0.633238
\(809\) 15.4641 0.543689 0.271844 0.962341i \(-0.412366\pi\)
0.271844 + 0.962341i \(0.412366\pi\)
\(810\) −1.73205 −0.0608581
\(811\) −12.3923 −0.435153 −0.217576 0.976043i \(-0.569815\pi\)
−0.217576 + 0.976043i \(0.569815\pi\)
\(812\) −6.92820 −0.243132
\(813\) 11.6077 0.407100
\(814\) 0 0
\(815\) −9.85641 −0.345255
\(816\) 0 0
\(817\) −26.9282 −0.942099
\(818\) 11.7513 0.410874
\(819\) 10.9282 0.381862
\(820\) 3.46410 0.120972
\(821\) −20.5359 −0.716708 −0.358354 0.933586i \(-0.616662\pi\)
−0.358354 + 0.933586i \(0.616662\pi\)
\(822\) −31.1769 −1.08742
\(823\) −33.5692 −1.17015 −0.585075 0.810979i \(-0.698935\pi\)
−0.585075 + 0.810979i \(0.698935\pi\)
\(824\) −13.8564 −0.482711
\(825\) 0 0
\(826\) 24.0000 0.835067
\(827\) −22.3923 −0.778657 −0.389328 0.921099i \(-0.627293\pi\)
−0.389328 + 0.921099i \(0.627293\pi\)
\(828\) 6.92820 0.240772
\(829\) 29.7128 1.03197 0.515984 0.856598i \(-0.327426\pi\)
0.515984 + 0.856598i \(0.327426\pi\)
\(830\) 14.7846 0.513181
\(831\) −29.4641 −1.02210
\(832\) −5.46410 −0.189434
\(833\) 0 0
\(834\) −21.4641 −0.743241
\(835\) −10.3923 −0.359641
\(836\) 0 0
\(837\) −10.9282 −0.377734
\(838\) 53.5692 1.85052
\(839\) 56.7846 1.96042 0.980211 0.197954i \(-0.0634298\pi\)
0.980211 + 0.197954i \(0.0634298\pi\)
\(840\) −3.46410 −0.119523
\(841\) −17.0000 −0.586207
\(842\) 3.46410 0.119381
\(843\) −3.46410 −0.119310
\(844\) 8.39230 0.288875
\(845\) −16.8564 −0.579878
\(846\) −12.0000 −0.412568
\(847\) 0 0
\(848\) −4.64102 −0.159373
\(849\) 4.92820 0.169135
\(850\) 0 0
\(851\) −34.1436 −1.17043
\(852\) 13.8564 0.474713
\(853\) −3.60770 −0.123525 −0.0617626 0.998091i \(-0.519672\pi\)
−0.0617626 + 0.998091i \(0.519672\pi\)
\(854\) 6.92820 0.237078
\(855\) 5.46410 0.186868
\(856\) 14.7846 0.505328
\(857\) 37.8564 1.29315 0.646575 0.762850i \(-0.276201\pi\)
0.646575 + 0.762850i \(0.276201\pi\)
\(858\) 0 0
\(859\) −7.71281 −0.263158 −0.131579 0.991306i \(-0.542005\pi\)
−0.131579 + 0.991306i \(0.542005\pi\)
\(860\) −4.92820 −0.168050
\(861\) 6.92820 0.236113
\(862\) −15.2154 −0.518238
\(863\) −37.8564 −1.28865 −0.644324 0.764753i \(-0.722861\pi\)
−0.644324 + 0.764753i \(0.722861\pi\)
\(864\) −5.19615 −0.176777
\(865\) −12.0000 −0.408012
\(866\) 0.248711 0.00845155
\(867\) −17.0000 −0.577350
\(868\) 21.8564 0.741855
\(869\) 0 0
\(870\) −6.00000 −0.203419
\(871\) −43.7128 −1.48115
\(872\) −17.3205 −0.586546
\(873\) −10.0000 −0.338449
\(874\) −65.5692 −2.21791
\(875\) 2.00000 0.0676123
\(876\) 8.39230 0.283550
\(877\) 34.2487 1.15650 0.578248 0.815861i \(-0.303736\pi\)
0.578248 + 0.815861i \(0.303736\pi\)
\(878\) −57.4641 −1.93932
\(879\) 13.8564 0.467365
\(880\) 0 0
\(881\) −0.928203 −0.0312720 −0.0156360 0.999878i \(-0.504977\pi\)
−0.0156360 + 0.999878i \(0.504977\pi\)
\(882\) −5.19615 −0.174964
\(883\) −4.00000 −0.134611 −0.0673054 0.997732i \(-0.521440\pi\)
−0.0673054 + 0.997732i \(0.521440\pi\)
\(884\) 0 0
\(885\) 6.92820 0.232889
\(886\) 20.7846 0.698273
\(887\) −12.2487 −0.411271 −0.205636 0.978629i \(-0.565926\pi\)
−0.205636 + 0.978629i \(0.565926\pi\)
\(888\) 8.53590 0.286446
\(889\) 17.8564 0.598885
\(890\) −1.60770 −0.0538901
\(891\) 0 0
\(892\) 9.85641 0.330017
\(893\) 37.8564 1.26682
\(894\) 26.7846 0.895811
\(895\) −6.92820 −0.231584
\(896\) −24.2487 −0.810093
\(897\) −37.8564 −1.26399
\(898\) −46.3923 −1.54813
\(899\) −37.8564 −1.26258
\(900\) 1.00000 0.0333333
\(901\) 0 0
\(902\) 0 0
\(903\) −9.85641 −0.328001
\(904\) 22.3923 0.744757
\(905\) −15.8564 −0.527085
\(906\) 35.3205 1.17345
\(907\) 18.1436 0.602448 0.301224 0.953553i \(-0.402605\pi\)
0.301224 + 0.953553i \(0.402605\pi\)
\(908\) −15.4641 −0.513194
\(909\) 10.3923 0.344691
\(910\) −18.9282 −0.627464
\(911\) 18.9282 0.627119 0.313560 0.949568i \(-0.398478\pi\)
0.313560 + 0.949568i \(0.398478\pi\)
\(912\) 27.3205 0.904672
\(913\) 0 0
\(914\) −21.4641 −0.709969
\(915\) 2.00000 0.0661180
\(916\) −23.8564 −0.788238
\(917\) 37.8564 1.25013
\(918\) 0 0
\(919\) 32.3923 1.06852 0.534262 0.845319i \(-0.320590\pi\)
0.534262 + 0.845319i \(0.320590\pi\)
\(920\) 12.0000 0.395628
\(921\) −14.0000 −0.461316
\(922\) −62.7846 −2.06770
\(923\) −75.7128 −2.49212
\(924\) 0 0
\(925\) −4.92820 −0.162038
\(926\) −48.4974 −1.59372
\(927\) 8.00000 0.262754
\(928\) −18.0000 −0.590879
\(929\) 2.78461 0.0913601 0.0456800 0.998956i \(-0.485455\pi\)
0.0456800 + 0.998956i \(0.485455\pi\)
\(930\) 18.9282 0.620680
\(931\) 16.3923 0.537236
\(932\) −12.0000 −0.393073
\(933\) 5.07180 0.166043
\(934\) 8.78461 0.287441
\(935\) 0 0
\(936\) 9.46410 0.309344
\(937\) 20.3923 0.666188 0.333094 0.942894i \(-0.391907\pi\)
0.333094 + 0.942894i \(0.391907\pi\)
\(938\) −27.7128 −0.904855
\(939\) 20.9282 0.682966
\(940\) 6.92820 0.225973
\(941\) −27.4641 −0.895304 −0.447652 0.894208i \(-0.647740\pi\)
−0.447652 + 0.894208i \(0.647740\pi\)
\(942\) −5.32051 −0.173352
\(943\) −24.0000 −0.781548
\(944\) 34.6410 1.12747
\(945\) 2.00000 0.0650600
\(946\) 0 0
\(947\) −18.9282 −0.615084 −0.307542 0.951535i \(-0.599506\pi\)
−0.307542 + 0.951535i \(0.599506\pi\)
\(948\) 6.53590 0.212276
\(949\) −45.8564 −1.48856
\(950\) −9.46410 −0.307056
\(951\) −24.9282 −0.808352
\(952\) 0 0
\(953\) 3.21539 0.104157 0.0520784 0.998643i \(-0.483415\pi\)
0.0520784 + 0.998643i \(0.483415\pi\)
\(954\) 1.60770 0.0520511
\(955\) 18.9282 0.612502
\(956\) 12.0000 0.388108
\(957\) 0 0
\(958\) −20.7846 −0.671520
\(959\) 36.0000 1.16250
\(960\) −1.00000 −0.0322749
\(961\) 88.4256 2.85244
\(962\) 46.6410 1.50377
\(963\) −8.53590 −0.275065
\(964\) −0.143594 −0.00462484
\(965\) 24.3923 0.785216
\(966\) −24.0000 −0.772187
\(967\) −22.7846 −0.732704 −0.366352 0.930476i \(-0.619393\pi\)
−0.366352 + 0.930476i \(0.619393\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 17.3205 0.556128
\(971\) 25.8564 0.829772 0.414886 0.909873i \(-0.363822\pi\)
0.414886 + 0.909873i \(0.363822\pi\)
\(972\) 1.00000 0.0320750
\(973\) 24.7846 0.794558
\(974\) −54.9282 −1.76001
\(975\) −5.46410 −0.174991
\(976\) 10.0000 0.320092
\(977\) 47.5692 1.52187 0.760937 0.648826i \(-0.224740\pi\)
0.760937 + 0.648826i \(0.224740\pi\)
\(978\) 17.0718 0.545896
\(979\) 0 0
\(980\) 3.00000 0.0958315
\(981\) 10.0000 0.319275
\(982\) 53.5692 1.70946
\(983\) 24.0000 0.765481 0.382741 0.923856i \(-0.374980\pi\)
0.382741 + 0.923856i \(0.374980\pi\)
\(984\) 6.00000 0.191273
\(985\) −12.0000 −0.382352
\(986\) 0 0
\(987\) 13.8564 0.441054
\(988\) 29.8564 0.949859
\(989\) 34.1436 1.08570
\(990\) 0 0
\(991\) −7.21539 −0.229204 −0.114602 0.993411i \(-0.536559\pi\)
−0.114602 + 0.993411i \(0.536559\pi\)
\(992\) 56.7846 1.80291
\(993\) 9.85641 0.312784
\(994\) −48.0000 −1.52247
\(995\) 24.7846 0.785725
\(996\) −8.53590 −0.270470
\(997\) −27.6077 −0.874344 −0.437172 0.899378i \(-0.644020\pi\)
−0.437172 + 0.899378i \(0.644020\pi\)
\(998\) 49.8564 1.57818
\(999\) −4.92820 −0.155921
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1815.2.a.i.1.2 2
3.2 odd 2 5445.2.a.s.1.1 2
5.4 even 2 9075.2.a.bh.1.1 2
11.10 odd 2 165.2.a.b.1.1 2
33.32 even 2 495.2.a.c.1.2 2
44.43 even 2 2640.2.a.x.1.2 2
55.32 even 4 825.2.c.c.199.1 4
55.43 even 4 825.2.c.c.199.4 4
55.54 odd 2 825.2.a.e.1.2 2
77.76 even 2 8085.2.a.bd.1.1 2
132.131 odd 2 7920.2.a.bz.1.2 2
165.32 odd 4 2475.2.c.n.199.4 4
165.98 odd 4 2475.2.c.n.199.1 4
165.164 even 2 2475.2.a.r.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
165.2.a.b.1.1 2 11.10 odd 2
495.2.a.c.1.2 2 33.32 even 2
825.2.a.e.1.2 2 55.54 odd 2
825.2.c.c.199.1 4 55.32 even 4
825.2.c.c.199.4 4 55.43 even 4
1815.2.a.i.1.2 2 1.1 even 1 trivial
2475.2.a.r.1.1 2 165.164 even 2
2475.2.c.n.199.1 4 165.98 odd 4
2475.2.c.n.199.4 4 165.32 odd 4
2640.2.a.x.1.2 2 44.43 even 2
5445.2.a.s.1.1 2 3.2 odd 2
7920.2.a.bz.1.2 2 132.131 odd 2
8085.2.a.bd.1.1 2 77.76 even 2
9075.2.a.bh.1.1 2 5.4 even 2