Properties

Label 1815.1.o.a
Level $1815$
Weight $1$
Character orbit 1815.o
Analytic conductor $0.906$
Analytic rank $0$
Dimension $4$
Projective image $D_{3}$
CM discriminant -15
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1815,1,Mod(269,1815)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1815.269"); S:= CuspForms(chi, 1); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1815, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([5, 5, 4])) B = ModularForms(chi, 1).cuspidal_submodule().basis() N = [B[i] for i in range(len(B))]
 
Level: \( N \) \(=\) \( 1815 = 3 \cdot 5 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 1815.o (of order \(10\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,-1,-1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.905802997929\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{10})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} + x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{3}\)
Projective field: Galois closure of 3.1.1815.1
Artin image: $C_{10}\times D_6$
Artin field: Galois closure of \(\mathbb{Q}[x]/(x^{60} - \cdots)\)

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

The \(q\)-expansion and trace form are shown below.

\(f(q)\) \(=\) \( q - \zeta_{10}^{3} q^{2} + \zeta_{10}^{4} q^{3} + \zeta_{10}^{2} q^{5} + \zeta_{10}^{2} q^{6} - \zeta_{10}^{4} q^{8} - \zeta_{10}^{3} q^{9} + q^{10} - \zeta_{10} q^{15} - \zeta_{10}^{2} q^{16} + \zeta_{10}^{2} q^{17} + \cdots + q^{98} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - q^{2} - q^{3} - q^{5} - q^{6} + q^{8} - q^{9} + 4 q^{10} - q^{15} + q^{16} - q^{17} - q^{18} + 2 q^{19} - 4 q^{23} + q^{24} - q^{25} - q^{27} - q^{30} + q^{31} + 4 q^{34} + 2 q^{38}+ \cdots + 4 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1815\mathbb{Z}\right)^\times\).

\(n\) \(727\) \(1211\) \(1696\)
\(\chi(n)\) \(-1\) \(-1\) \(-\zeta_{10}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
269.1
0.809017 0.587785i
0.809017 + 0.587785i
−0.309017 0.951057i
−0.309017 + 0.951057i
0.309017 + 0.951057i −0.809017 0.587785i 0 0.309017 0.951057i 0.309017 0.951057i 0 0.809017 + 0.587785i 0.309017 + 0.951057i 1.00000
614.1 0.309017 0.951057i −0.809017 + 0.587785i 0 0.309017 + 0.951057i 0.309017 + 0.951057i 0 0.809017 0.587785i 0.309017 0.951057i 1.00000
1049.1 −0.809017 0.587785i 0.309017 0.951057i 0 −0.809017 + 0.587785i −0.809017 + 0.587785i 0 −0.309017 + 0.951057i −0.809017 0.587785i 1.00000
1334.1 −0.809017 + 0.587785i 0.309017 + 0.951057i 0 −0.809017 0.587785i −0.809017 0.587785i 0 −0.309017 0.951057i −0.809017 + 0.587785i 1.00000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
15.d odd 2 1 CM by \(\Q(\sqrt{-15}) \)
11.c even 5 3 inner
165.o odd 10 3 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1815.1.o.a 4
3.b odd 2 1 1815.1.o.f 4
5.b even 2 1 1815.1.o.f 4
11.b odd 2 1 1815.1.o.e 4
11.c even 5 1 1815.1.g.f yes 1
11.c even 5 3 inner 1815.1.o.a 4
11.d odd 10 1 1815.1.g.b yes 1
11.d odd 10 3 1815.1.o.e 4
15.d odd 2 1 CM 1815.1.o.a 4
33.d even 2 1 1815.1.o.b 4
33.f even 10 1 1815.1.g.e yes 1
33.f even 10 3 1815.1.o.b 4
33.h odd 10 1 1815.1.g.a 1
33.h odd 10 3 1815.1.o.f 4
55.d odd 2 1 1815.1.o.b 4
55.h odd 10 1 1815.1.g.e yes 1
55.h odd 10 3 1815.1.o.b 4
55.j even 10 1 1815.1.g.a 1
55.j even 10 3 1815.1.o.f 4
165.d even 2 1 1815.1.o.e 4
165.o odd 10 1 1815.1.g.f yes 1
165.o odd 10 3 inner 1815.1.o.a 4
165.r even 10 1 1815.1.g.b yes 1
165.r even 10 3 1815.1.o.e 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1815.1.g.a 1 33.h odd 10 1
1815.1.g.a 1 55.j even 10 1
1815.1.g.b yes 1 11.d odd 10 1
1815.1.g.b yes 1 165.r even 10 1
1815.1.g.e yes 1 33.f even 10 1
1815.1.g.e yes 1 55.h odd 10 1
1815.1.g.f yes 1 11.c even 5 1
1815.1.g.f yes 1 165.o odd 10 1
1815.1.o.a 4 1.a even 1 1 trivial
1815.1.o.a 4 11.c even 5 3 inner
1815.1.o.a 4 15.d odd 2 1 CM
1815.1.o.a 4 165.o odd 10 3 inner
1815.1.o.b 4 33.d even 2 1
1815.1.o.b 4 33.f even 10 3
1815.1.o.b 4 55.d odd 2 1
1815.1.o.b 4 55.h odd 10 3
1815.1.o.e 4 11.b odd 2 1
1815.1.o.e 4 11.d odd 10 3
1815.1.o.e 4 165.d even 2 1
1815.1.o.e 4 165.r even 10 3
1815.1.o.f 4 3.b odd 2 1
1815.1.o.f 4 5.b even 2 1
1815.1.o.f 4 33.h odd 10 3
1815.1.o.f 4 55.j even 10 3

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{1}^{\mathrm{new}}(1815, [\chi])\):

\( T_{2}^{4} + T_{2}^{3} + T_{2}^{2} + T_{2} + 1 \) Copy content Toggle raw display
\( T_{19}^{4} - 2T_{19}^{3} + 4T_{19}^{2} - 8T_{19} + 16 \) Copy content Toggle raw display
\( T_{23} + 1 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} + T^{3} + T^{2} + \cdots + 1 \) Copy content Toggle raw display
$3$ \( T^{4} + T^{3} + T^{2} + \cdots + 1 \) Copy content Toggle raw display
$5$ \( T^{4} + T^{3} + T^{2} + \cdots + 1 \) Copy content Toggle raw display
$7$ \( T^{4} \) Copy content Toggle raw display
$11$ \( T^{4} \) Copy content Toggle raw display
$13$ \( T^{4} \) Copy content Toggle raw display
$17$ \( T^{4} + T^{3} + T^{2} + \cdots + 1 \) Copy content Toggle raw display
$19$ \( T^{4} - 2 T^{3} + \cdots + 16 \) Copy content Toggle raw display
$23$ \( (T + 1)^{4} \) Copy content Toggle raw display
$29$ \( T^{4} \) Copy content Toggle raw display
$31$ \( T^{4} - T^{3} + T^{2} + \cdots + 1 \) Copy content Toggle raw display
$37$ \( T^{4} \) Copy content Toggle raw display
$41$ \( T^{4} \) Copy content Toggle raw display
$43$ \( T^{4} \) Copy content Toggle raw display
$47$ \( T^{4} - T^{3} + T^{2} + \cdots + 1 \) Copy content Toggle raw display
$53$ \( T^{4} - T^{3} + T^{2} + \cdots + 1 \) Copy content Toggle raw display
$59$ \( T^{4} \) Copy content Toggle raw display
$61$ \( T^{4} + T^{3} + T^{2} + \cdots + 1 \) Copy content Toggle raw display
$67$ \( T^{4} \) Copy content Toggle raw display
$71$ \( T^{4} \) Copy content Toggle raw display
$73$ \( T^{4} \) Copy content Toggle raw display
$79$ \( T^{4} + T^{3} + T^{2} + \cdots + 1 \) Copy content Toggle raw display
$83$ \( T^{4} - 2 T^{3} + \cdots + 16 \) Copy content Toggle raw display
$89$ \( T^{4} \) Copy content Toggle raw display
$97$ \( T^{4} \) Copy content Toggle raw display
show more
show less