Properties

Label 1805.4.a
Level $1805$
Weight $4$
Character orbit 1805.a
Rep. character $\chi_{1805}(1,\cdot)$
Character field $\Q$
Dimension $341$
Newform subspaces $28$
Sturm bound $760$
Trace bound $8$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1805 = 5 \cdot 19^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1805.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 28 \)
Sturm bound: \(760\)
Trace bound: \(8\)
Distinguishing \(T_p\): \(2\), \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_0(1805))\).

Total New Old
Modular forms 590 341 249
Cusp forms 550 341 209
Eisenstein series 40 0 40

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(5\)\(19\)FrickeTotalCuspEisenstein
AllNewOldAllNewOldAllNewOld
\(+\)\(+\)\(+\)\(155\)\(90\)\(65\)\(145\)\(90\)\(55\)\(10\)\(0\)\(10\)
\(+\)\(-\)\(-\)\(140\)\(81\)\(59\)\(130\)\(81\)\(49\)\(10\)\(0\)\(10\)
\(-\)\(+\)\(-\)\(145\)\(80\)\(65\)\(135\)\(80\)\(55\)\(10\)\(0\)\(10\)
\(-\)\(-\)\(+\)\(150\)\(90\)\(60\)\(140\)\(90\)\(50\)\(10\)\(0\)\(10\)
Plus space\(+\)\(305\)\(180\)\(125\)\(285\)\(180\)\(105\)\(20\)\(0\)\(20\)
Minus space\(-\)\(285\)\(161\)\(124\)\(265\)\(161\)\(104\)\(20\)\(0\)\(20\)

Trace form

\( 341 q - 2 q^{3} + 1380 q^{4} - 5 q^{5} - 60 q^{6} - 34 q^{7} + 48 q^{8} + 3097 q^{9} - 20 q^{10} - 40 q^{11} - 80 q^{12} + 22 q^{13} + 48 q^{14} + 50 q^{15} + 5340 q^{16} - 130 q^{17} + 16 q^{18} - 40 q^{20}+ \cdots + 1400 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_0(1805))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 5 19
1805.4.a.a 1805.a 1.a $1$ $106.498$ \(\Q\) None 95.4.a.d \(-5\) \(-4\) \(5\) \(-32\) $-$ $-$ $\mathrm{SU}(2)$ \(q-5q^{2}-4q^{3}+17q^{4}+5q^{5}+20q^{6}+\cdots\)
1805.4.a.b 1805.a 1.a $1$ $106.498$ \(\Q\) None 1805.4.a.b \(-5\) \(5\) \(5\) \(-19\) $-$ $+$ $\mathrm{SU}(2)$ \(q-5q^{2}+5q^{3}+17q^{4}+5q^{5}-5^{2}q^{6}+\cdots\)
1805.4.a.c 1805.a 1.a $1$ $106.498$ \(\Q\) None 95.4.a.c \(-3\) \(-7\) \(5\) \(11\) $-$ $-$ $\mathrm{SU}(2)$ \(q-3q^{2}-7q^{3}+q^{4}+5q^{5}+21q^{6}+\cdots\)
1805.4.a.d 1805.a 1.a $1$ $106.498$ \(\Q\) None 95.4.a.b \(-3\) \(5\) \(-5\) \(-1\) $+$ $-$ $\mathrm{SU}(2)$ \(q-3q^{2}+5q^{3}+q^{4}-5q^{5}-15q^{6}+\cdots\)
1805.4.a.e 1805.a 1.a $1$ $106.498$ \(\Q\) None 95.4.e.a \(-1\) \(-5\) \(5\) \(22\) $-$ $+$ $\mathrm{SU}(2)$ \(q-q^{2}-5q^{3}-7q^{4}+5q^{5}+5q^{6}+\cdots\)
1805.4.a.f 1805.a 1.a $1$ $106.498$ \(\Q\) None 95.4.a.a \(0\) \(-4\) \(-5\) \(-22\) $+$ $-$ $\mathrm{SU}(2)$ \(q-4q^{3}-8q^{4}-5q^{5}-22q^{7}-11q^{9}+\cdots\)
1805.4.a.g 1805.a 1.a $1$ $106.498$ \(\Q\) None 95.4.e.a \(1\) \(5\) \(5\) \(22\) $-$ $-$ $\mathrm{SU}(2)$ \(q+q^{2}+5q^{3}-7q^{4}+5q^{5}+5q^{6}+\cdots\)
1805.4.a.h 1805.a 1.a $1$ $106.498$ \(\Q\) None 5.4.a.a \(4\) \(-2\) \(-5\) \(6\) $+$ $-$ $\mathrm{SU}(2)$ \(q+4q^{2}-2q^{3}+8q^{4}-5q^{5}-8q^{6}+\cdots\)
1805.4.a.i 1805.a 1.a $1$ $106.498$ \(\Q\) None 1805.4.a.b \(5\) \(-5\) \(5\) \(-19\) $-$ $+$ $\mathrm{SU}(2)$ \(q+5q^{2}-5q^{3}+17q^{4}+5q^{5}-5^{2}q^{6}+\cdots\)
1805.4.a.j 1805.a 1.a $3$ $106.498$ 3.3.1304.1 None 95.4.a.e \(3\) \(11\) \(15\) \(-5\) $-$ $-$ $\mathrm{SU}(2)$ \(q+(1+\beta _{1})q^{2}+(4+\beta _{1}+\beta _{2})q^{3}+(1+\cdots)q^{4}+\cdots\)
1805.4.a.k 1805.a 1.a $5$ $106.498$ \(\mathbb{Q}[x]/(x^{5} - \cdots)\) None 95.4.a.f \(3\) \(4\) \(25\) \(72\) $-$ $-$ $\mathrm{SU}(2)$ \(q+(1-\beta _{1})q^{2}+(\beta _{1}+\beta _{3})q^{3}+(4-\beta _{1}+\cdots)q^{4}+\cdots\)
1805.4.a.l 1805.a 1.a $6$ $106.498$ \(\mathbb{Q}[x]/(x^{6} - \cdots)\) None 1805.4.a.l \(0\) \(0\) \(30\) \(-8\) $-$ $+$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{2}+(\beta _{1}-\beta _{5})q^{3}+(-1+\beta _{3}+\cdots)q^{4}+\cdots\)
1805.4.a.m 1805.a 1.a $6$ $106.498$ \(\mathbb{Q}[x]/(x^{6} - \cdots)\) None 95.4.a.g \(1\) \(-5\) \(-30\) \(5\) $+$ $-$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{2}+(-1+\beta _{1}+\beta _{5})q^{3}+(4+\beta _{2}+\cdots)q^{4}+\cdots\)
1805.4.a.n 1805.a 1.a $9$ $106.498$ \(\mathbb{Q}[x]/(x^{9} - \cdots)\) None 95.4.e.b \(-6\) \(-2\) \(45\) \(-45\) $-$ $+$ $\mathrm{SU}(2)$ \(q+(-1+\beta _{1})q^{2}-\beta _{5}q^{3}+(6-\beta _{1}+\beta _{2}+\cdots)q^{4}+\cdots\)
1805.4.a.o 1805.a 1.a $9$ $106.498$ \(\mathbb{Q}[x]/(x^{9} - \cdots)\) None 95.4.e.b \(6\) \(2\) \(45\) \(-45\) $-$ $-$ $\mathrm{SU}(2)$ \(q+(1-\beta _{1})q^{2}+\beta _{5}q^{3}+(6-\beta _{1}+\beta _{2}+\cdots)q^{4}+\cdots\)
1805.4.a.p 1805.a 1.a $10$ $106.498$ \(\mathbb{Q}[x]/(x^{10} - \cdots)\) None 95.4.e.c \(-3\) \(-5\) \(-50\) \(3\) $+$ $-$ $\mathrm{SU}(2)$ \(q-\beta _{1}q^{2}-\beta _{4}q^{3}+(4+\beta _{2})q^{4}-5q^{5}+\cdots\)
1805.4.a.q 1805.a 1.a $10$ $106.498$ \(\mathbb{Q}[x]/(x^{10} - \cdots)\) None 1805.4.a.q \(0\) \(0\) \(-50\) \(18\) $+$ $+$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{2}-\beta _{4}q^{3}+(6+\beta _{2})q^{4}-5q^{5}+\cdots\)
1805.4.a.r 1805.a 1.a $10$ $106.498$ \(\mathbb{Q}[x]/(x^{10} - \cdots)\) None 95.4.e.c \(3\) \(5\) \(-50\) \(3\) $+$ $+$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{2}+\beta _{4}q^{3}+(4+\beta _{2})q^{4}-5q^{5}+\cdots\)
1805.4.a.s 1805.a 1.a $16$ $106.498$ \(\mathbb{Q}[x]/(x^{16} - \cdots)\) None 1805.4.a.s \(-1\) \(-2\) \(-80\) \(-26\) $+$ $-$ $\mathrm{SU}(2)$ \(q-\beta _{1}q^{2}+\beta _{9}q^{3}+(4+\beta _{2}+\beta _{3})q^{4}+\cdots\)
1805.4.a.t 1805.a 1.a $16$ $106.498$ \(\mathbb{Q}[x]/(x^{16} - \cdots)\) None 1805.4.a.s \(1\) \(2\) \(-80\) \(-26\) $+$ $-$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{2}-\beta _{9}q^{3}+(4+\beta _{2}+\beta _{3})q^{4}+\cdots\)
1805.4.a.u 1805.a 1.a $20$ $106.498$ \(\mathbb{Q}[x]/(x^{20} - \cdots)\) None 1805.4.a.u \(-1\) \(2\) \(100\) \(82\) $-$ $-$ $\mathrm{SU}(2)$ \(q-\beta _{1}q^{2}-\beta _{9}q^{3}+(5+\beta _{2})q^{4}+5q^{5}+\cdots\)
1805.4.a.v 1805.a 1.a $20$ $106.498$ \(\mathbb{Q}[x]/(x^{20} - \cdots)\) None 1805.4.a.u \(1\) \(-2\) \(100\) \(82\) $-$ $-$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{2}+\beta _{9}q^{3}+(5+\beta _{2})q^{4}+5q^{5}+\cdots\)
1805.4.a.w 1805.a 1.a $30$ $106.498$ None 95.4.k.a \(-12\) \(-36\) \(150\) \(0\) $-$ $+$ $\mathrm{SU}(2)$
1805.4.a.x 1805.a 1.a $30$ $106.498$ None 95.4.k.b \(0\) \(0\) \(-150\) \(0\) $+$ $+$ $\mathrm{SU}(2)$
1805.4.a.y 1805.a 1.a $30$ $106.498$ None 95.4.k.b \(0\) \(0\) \(-150\) \(0\) $+$ $-$ $\mathrm{SU}(2)$
1805.4.a.z 1805.a 1.a $30$ $106.498$ None 95.4.k.a \(12\) \(36\) \(150\) \(0\) $-$ $-$ $\mathrm{SU}(2)$
1805.4.a.ba 1805.a 1.a $32$ $106.498$ None 1805.4.a.ba \(0\) \(0\) \(160\) \(-164\) $-$ $+$ $\mathrm{SU}(2)$
1805.4.a.bb 1805.a 1.a $40$ $106.498$ None 1805.4.a.bb \(0\) \(0\) \(-200\) \(52\) $+$ $+$ $\mathrm{SU}(2)$

Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_0(1805))\) into lower level spaces

\( S_{4}^{\mathrm{old}}(\Gamma_0(1805)) \simeq \) \(S_{4}^{\mathrm{new}}(\Gamma_0(5))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(19))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(95))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(361))\)\(^{\oplus 2}\)