Defining parameters
| Level: | \( N \) | \(=\) | \( 1805 = 5 \cdot 19^{2} \) |
| Weight: | \( k \) | \(=\) | \( 4 \) |
| Character orbit: | \([\chi]\) | \(=\) | 1805.a (trivial) |
| Character field: | \(\Q\) | ||
| Newform subspaces: | \( 28 \) | ||
| Sturm bound: | \(760\) | ||
| Trace bound: | \(8\) | ||
| Distinguishing \(T_p\): | \(2\), \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_0(1805))\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 590 | 341 | 249 |
| Cusp forms | 550 | 341 | 209 |
| Eisenstein series | 40 | 0 | 40 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
| \(5\) | \(19\) | Fricke | Total | Cusp | Eisenstein | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| All | New | Old | All | New | Old | All | New | Old | ||||||
| \(+\) | \(+\) | \(+\) | \(155\) | \(90\) | \(65\) | \(145\) | \(90\) | \(55\) | \(10\) | \(0\) | \(10\) | |||
| \(+\) | \(-\) | \(-\) | \(140\) | \(81\) | \(59\) | \(130\) | \(81\) | \(49\) | \(10\) | \(0\) | \(10\) | |||
| \(-\) | \(+\) | \(-\) | \(145\) | \(80\) | \(65\) | \(135\) | \(80\) | \(55\) | \(10\) | \(0\) | \(10\) | |||
| \(-\) | \(-\) | \(+\) | \(150\) | \(90\) | \(60\) | \(140\) | \(90\) | \(50\) | \(10\) | \(0\) | \(10\) | |||
| Plus space | \(+\) | \(305\) | \(180\) | \(125\) | \(285\) | \(180\) | \(105\) | \(20\) | \(0\) | \(20\) | ||||
| Minus space | \(-\) | \(285\) | \(161\) | \(124\) | \(265\) | \(161\) | \(104\) | \(20\) | \(0\) | \(20\) | ||||
Trace form
Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_0(1805))\) into newform subspaces
Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_0(1805))\) into lower level spaces
\( S_{4}^{\mathrm{old}}(\Gamma_0(1805)) \simeq \) \(S_{4}^{\mathrm{new}}(\Gamma_0(5))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(19))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(95))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(361))\)\(^{\oplus 2}\)