Properties

Label 1805.2.b.e.1084.6
Level $1805$
Weight $2$
Character 1805.1084
Analytic conductor $14.413$
Analytic rank $0$
Dimension $6$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 1805 = 5 \cdot 19^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1805.b (of order \(2\), degree \(1\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(14.4129975648\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.0.16516096.1
Defining polynomial: \( x^{6} + 9x^{4} + 13x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 95)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1084.6
Root \(-1.30397i\) of defining polynomial
Character \(\chi\) \(=\) 1805.1084
Dual form 1805.2.b.e.1084.1

$q$-expansion

\(f(q)\) \(=\) \(q+2.41987i q^{2} +0.537080i q^{3} -3.85577 q^{4} +(-2.07772 + 0.826491i) q^{5} -1.29966 q^{6} -3.18676i q^{7} -4.49073i q^{8} +2.71155 q^{9} +O(q^{10})\) \(q+2.41987i q^{2} +0.537080i q^{3} -3.85577 q^{4} +(-2.07772 + 0.826491i) q^{5} -1.29966 q^{6} -3.18676i q^{7} -4.49073i q^{8} +2.71155 q^{9} +(-2.00000 - 5.02781i) q^{10} +4.15544 q^{11} -2.07086i q^{12} +2.07086i q^{13} +7.71155 q^{14} +(-0.443892 - 1.11590i) q^{15} +3.15544 q^{16} +5.79470i q^{17} +6.56159i q^{18} +(8.01121 - 3.18676i) q^{20} +1.71155 q^{21} +10.0556i q^{22} +2.60794i q^{23} +2.41188 q^{24} +(3.63383 - 3.43443i) q^{25} -5.01121 q^{26} +3.06756i q^{27} +12.2874i q^{28} +6.00000 q^{29} +(2.70034 - 1.07416i) q^{30} -2.59933 q^{31} -1.34571i q^{32} +2.23180i q^{33} -14.0224 q^{34} +(2.63383 + 6.62119i) q^{35} -10.4551 q^{36} -4.30266i q^{37} -1.11222 q^{39} +(3.71155 + 9.33047i) q^{40} +0.599328 q^{41} +4.14172i q^{42} -3.18676i q^{43} -16.0224 q^{44} +(-5.63383 + 2.24107i) q^{45} -6.31087 q^{46} +11.7086i q^{47} +1.69472i q^{48} -3.15544 q^{49} +(8.31087 + 8.79339i) q^{50} -3.11222 q^{51} -7.98476i q^{52} +11.7503i q^{53} -7.42309 q^{54} +(-8.63383 + 3.43443i) q^{55} -14.3109 q^{56} +14.5192i q^{58} -1.71155 q^{59} +(1.71155 + 4.30266i) q^{60} -8.75476 q^{61} -6.29004i q^{62} -8.64104i q^{63} +9.56732 q^{64} +(-1.71155 - 4.30266i) q^{65} -5.40067 q^{66} -4.76228i q^{67} -22.3430i q^{68} -1.40067 q^{69} +(-16.0224 + 6.37352i) q^{70} -13.7115 q^{71} -12.1768i q^{72} +2.72714i q^{73} +10.4119 q^{74} +(1.84456 + 1.95166i) q^{75} -13.2424i q^{77} -2.69142i q^{78} -1.40067 q^{79} +(-6.55611 + 2.60794i) q^{80} +6.48711 q^{81} +1.45030i q^{82} +7.07154i q^{83} -6.59933 q^{84} +(-4.78926 - 12.0398i) q^{85} +7.71155 q^{86} +3.22248i q^{87} -18.6609i q^{88} +16.5353 q^{89} +(-5.42309 - 13.6331i) q^{90} +6.59933 q^{91} -10.0556i q^{92} -1.39605i q^{93} -28.3333 q^{94} +0.722754 q^{96} -2.07086i q^{97} -7.63575i q^{98} +11.2677 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 8 q^{4} - q^{5} - 14 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 6 q - 8 q^{4} - q^{5} - 14 q^{9} - 12 q^{10} + 2 q^{11} + 16 q^{14} - 10 q^{15} - 4 q^{16} + 10 q^{20} - 20 q^{21} - 8 q^{24} + 3 q^{25} + 8 q^{26} + 36 q^{29} + 24 q^{30} - 8 q^{34} - 3 q^{35} - 32 q^{36} + 8 q^{39} - 8 q^{40} - 12 q^{41} - 20 q^{44} - 15 q^{45} + 8 q^{46} + 4 q^{49} + 4 q^{50} - 4 q^{51} + 16 q^{54} - 33 q^{55} - 40 q^{56} + 20 q^{59} - 20 q^{60} - 14 q^{61} + 12 q^{64} + 20 q^{65} - 48 q^{66} - 24 q^{69} - 20 q^{70} - 52 q^{71} + 40 q^{74} + 34 q^{75} - 24 q^{79} - 32 q^{80} + 38 q^{81} - 24 q^{84} + 13 q^{85} + 16 q^{86} + 24 q^{89} + 28 q^{90} + 24 q^{91} - 48 q^{94} - 64 q^{96} + 30 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1805\mathbb{Z}\right)^\times\).

\(n\) \(362\) \(1446\)
\(\chi(n)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.41987i 1.71111i 0.517715 + 0.855553i \(0.326783\pi\)
−0.517715 + 0.855553i \(0.673217\pi\)
\(3\) 0.537080i 0.310083i 0.987908 + 0.155042i \(0.0495512\pi\)
−0.987908 + 0.155042i \(0.950449\pi\)
\(4\) −3.85577 −1.92789
\(5\) −2.07772 + 0.826491i −0.929184 + 0.369618i
\(6\) −1.29966 −0.530586
\(7\) 3.18676i 1.20448i −0.798314 0.602241i \(-0.794275\pi\)
0.798314 0.602241i \(-0.205725\pi\)
\(8\) 4.49073i 1.58771i
\(9\) 2.71155 0.903848
\(10\) −2.00000 5.02781i −0.632456 1.58993i
\(11\) 4.15544 1.25291 0.626456 0.779457i \(-0.284505\pi\)
0.626456 + 0.779457i \(0.284505\pi\)
\(12\) 2.07086i 0.597805i
\(13\) 2.07086i 0.574353i 0.957878 + 0.287176i \(0.0927166\pi\)
−0.957878 + 0.287176i \(0.907283\pi\)
\(14\) 7.71155 2.06100
\(15\) −0.443892 1.11590i −0.114612 0.288124i
\(16\) 3.15544 0.788859
\(17\) 5.79470i 1.40542i 0.711476 + 0.702710i \(0.248027\pi\)
−0.711476 + 0.702710i \(0.751973\pi\)
\(18\) 6.56159i 1.54658i
\(19\) 0 0
\(20\) 8.01121 3.18676i 1.79136 0.712581i
\(21\) 1.71155 0.373490
\(22\) 10.0556i 2.14386i
\(23\) 2.60794i 0.543793i 0.962327 + 0.271896i \(0.0876508\pi\)
−0.962327 + 0.271896i \(0.912349\pi\)
\(24\) 2.41188 0.492323
\(25\) 3.63383 3.43443i 0.726765 0.686886i
\(26\) −5.01121 −0.982779
\(27\) 3.06756i 0.590352i
\(28\) 12.2874i 2.32210i
\(29\) 6.00000 1.11417 0.557086 0.830455i \(-0.311919\pi\)
0.557086 + 0.830455i \(0.311919\pi\)
\(30\) 2.70034 1.07416i 0.493012 0.196114i
\(31\) −2.59933 −0.466853 −0.233427 0.972374i \(-0.574994\pi\)
−0.233427 + 0.972374i \(0.574994\pi\)
\(32\) 1.34571i 0.237890i
\(33\) 2.23180i 0.388507i
\(34\) −14.0224 −2.40482
\(35\) 2.63383 + 6.62119i 0.445198 + 1.11919i
\(36\) −10.4551 −1.74252
\(37\) 4.30266i 0.707353i −0.935368 0.353677i \(-0.884931\pi\)
0.935368 0.353677i \(-0.115069\pi\)
\(38\) 0 0
\(39\) −1.11222 −0.178097
\(40\) 3.71155 + 9.33047i 0.586847 + 1.47528i
\(41\) 0.599328 0.0935993 0.0467997 0.998904i \(-0.485098\pi\)
0.0467997 + 0.998904i \(0.485098\pi\)
\(42\) 4.14172i 0.639081i
\(43\) 3.18676i 0.485976i −0.970029 0.242988i \(-0.921872\pi\)
0.970029 0.242988i \(-0.0781276\pi\)
\(44\) −16.0224 −2.41547
\(45\) −5.63383 + 2.24107i −0.839841 + 0.334078i
\(46\) −6.31087 −0.930487
\(47\) 11.7086i 1.70787i 0.520376 + 0.853937i \(0.325792\pi\)
−0.520376 + 0.853937i \(0.674208\pi\)
\(48\) 1.69472i 0.244612i
\(49\) −3.15544 −0.450777
\(50\) 8.31087 + 8.79339i 1.17533 + 1.24357i
\(51\) −3.11222 −0.435798
\(52\) 7.98476i 1.10729i
\(53\) 11.7503i 1.61403i 0.590529 + 0.807017i \(0.298919\pi\)
−0.590529 + 0.807017i \(0.701081\pi\)
\(54\) −7.42309 −1.01015
\(55\) −8.63383 + 3.43443i −1.16418 + 0.463098i
\(56\) −14.3109 −1.91237
\(57\) 0 0
\(58\) 14.5192i 1.90647i
\(59\) −1.71155 −0.222824 −0.111412 0.993774i \(-0.535537\pi\)
−0.111412 + 0.993774i \(0.535537\pi\)
\(60\) 1.71155 + 4.30266i 0.220960 + 0.555471i
\(61\) −8.75476 −1.12093 −0.560466 0.828177i \(-0.689378\pi\)
−0.560466 + 0.828177i \(0.689378\pi\)
\(62\) 6.29004i 0.798836i
\(63\) 8.64104i 1.08867i
\(64\) 9.56732 1.19591
\(65\) −1.71155 4.30266i −0.212291 0.533679i
\(66\) −5.40067 −0.664777
\(67\) 4.76228i 0.581805i −0.956753 0.290902i \(-0.906044\pi\)
0.956753 0.290902i \(-0.0939555\pi\)
\(68\) 22.3430i 2.70949i
\(69\) −1.40067 −0.168621
\(70\) −16.0224 + 6.37352i −1.91505 + 0.761781i
\(71\) −13.7115 −1.62726 −0.813631 0.581382i \(-0.802512\pi\)
−0.813631 + 0.581382i \(0.802512\pi\)
\(72\) 12.1768i 1.43505i
\(73\) 2.72714i 0.319188i 0.987183 + 0.159594i \(0.0510185\pi\)
−0.987183 + 0.159594i \(0.948982\pi\)
\(74\) 10.4119 1.21036
\(75\) 1.84456 + 1.95166i 0.212992 + 0.225358i
\(76\) 0 0
\(77\) 13.2424i 1.50911i
\(78\) 2.69142i 0.304743i
\(79\) −1.40067 −0.157588 −0.0787939 0.996891i \(-0.525107\pi\)
−0.0787939 + 0.996891i \(0.525107\pi\)
\(80\) −6.55611 + 2.60794i −0.732995 + 0.291576i
\(81\) 6.48711 0.720790
\(82\) 1.45030i 0.160158i
\(83\) 7.07154i 0.776203i 0.921617 + 0.388101i \(0.126869\pi\)
−0.921617 + 0.388101i \(0.873131\pi\)
\(84\) −6.59933 −0.720046
\(85\) −4.78926 12.0398i −0.519469 1.30589i
\(86\) 7.71155 0.831557
\(87\) 3.22248i 0.345486i
\(88\) 18.6609i 1.98926i
\(89\) 16.5353 1.75274 0.876370 0.481639i \(-0.159958\pi\)
0.876370 + 0.481639i \(0.159958\pi\)
\(90\) −5.42309 13.6331i −0.571644 1.43706i
\(91\) 6.59933 0.691798
\(92\) 10.0556i 1.04837i
\(93\) 1.39605i 0.144763i
\(94\) −28.3333 −2.92236
\(95\) 0 0
\(96\) 0.722754 0.0737658
\(97\) 2.07086i 0.210264i −0.994458 0.105132i \(-0.966474\pi\)
0.994458 0.105132i \(-0.0335265\pi\)
\(98\) 7.63575i 0.771327i
\(99\) 11.2677 1.13244
\(100\) −14.0112 + 13.2424i −1.40112 + 1.32424i
\(101\) −1.71155 −0.170305 −0.0851525 0.996368i \(-0.527138\pi\)
−0.0851525 + 0.996368i \(0.527138\pi\)
\(102\) 7.53116i 0.745696i
\(103\) 5.75296i 0.566856i 0.958994 + 0.283428i \(0.0914716\pi\)
−0.958994 + 0.283428i \(0.908528\pi\)
\(104\) 9.29966 0.911907
\(105\) −3.55611 + 1.41458i −0.347041 + 0.138048i
\(106\) −28.4343 −2.76178
\(107\) 15.4324i 1.49191i 0.665996 + 0.745955i \(0.268007\pi\)
−0.665996 + 0.745955i \(0.731993\pi\)
\(108\) 11.8278i 1.13813i
\(109\) 11.7115 1.12176 0.560881 0.827896i \(-0.310462\pi\)
0.560881 + 0.827896i \(0.310462\pi\)
\(110\) −8.31087 20.8927i −0.792411 1.99204i
\(111\) 2.31087 0.219338
\(112\) 10.0556i 0.950167i
\(113\) 10.5927i 0.996477i −0.867040 0.498239i \(-0.833980\pi\)
0.867040 0.498239i \(-0.166020\pi\)
\(114\) 0 0
\(115\) −2.15544 5.41856i −0.200996 0.505283i
\(116\) −23.1346 −2.14800
\(117\) 5.61523i 0.519128i
\(118\) 4.14172i 0.381276i
\(119\) 18.4663 1.69280
\(120\) −5.01121 + 1.99340i −0.457459 + 0.181971i
\(121\) 6.26765 0.569787
\(122\) 21.1854i 1.91804i
\(123\) 0.321887i 0.0290236i
\(124\) 10.0224 0.900040
\(125\) −4.71155 + 10.1391i −0.421413 + 0.906869i
\(126\) 20.9102 1.86283
\(127\) 6.07484i 0.539055i 0.962993 + 0.269528i \(0.0868676\pi\)
−0.962993 + 0.269528i \(0.913132\pi\)
\(128\) 20.4602i 1.80845i
\(129\) 1.71155 0.150693
\(130\) 10.4119 4.14172i 0.913182 0.363253i
\(131\) −13.5785 −1.18636 −0.593181 0.805069i \(-0.702128\pi\)
−0.593181 + 0.805069i \(0.702128\pi\)
\(132\) 8.60532i 0.748997i
\(133\) 0 0
\(134\) 11.5241 0.995530
\(135\) −2.53531 6.37352i −0.218204 0.548545i
\(136\) 26.0224 2.23140
\(137\) 7.94302i 0.678618i −0.940675 0.339309i \(-0.889807\pi\)
0.940675 0.339309i \(-0.110193\pi\)
\(138\) 3.38944i 0.288529i
\(139\) −3.26765 −0.277159 −0.138579 0.990351i \(-0.544254\pi\)
−0.138579 + 0.990351i \(0.544254\pi\)
\(140\) −10.1554 25.5298i −0.858291 2.15766i
\(141\) −6.28845 −0.529583
\(142\) 33.1802i 2.78442i
\(143\) 8.60532i 0.719613i
\(144\) 8.55611 0.713009
\(145\) −12.4663 + 4.95894i −1.03527 + 0.411818i
\(146\) −6.59933 −0.546164
\(147\) 1.69472i 0.139778i
\(148\) 16.5901i 1.36370i
\(149\) −8.44389 −0.691751 −0.345875 0.938280i \(-0.612418\pi\)
−0.345875 + 0.938280i \(0.612418\pi\)
\(150\) −4.72275 + 4.46360i −0.385611 + 0.364452i
\(151\) −0.887783 −0.0722468 −0.0361234 0.999347i \(-0.511501\pi\)
−0.0361234 + 0.999347i \(0.511501\pi\)
\(152\) 0 0
\(153\) 15.7126i 1.27029i
\(154\) 32.0448 2.58225
\(155\) 5.40067 2.14832i 0.433792 0.172557i
\(156\) 4.28845 0.343351
\(157\) 4.14172i 0.330545i 0.986248 + 0.165273i \(0.0528504\pi\)
−0.986248 + 0.165273i \(0.947150\pi\)
\(158\) 3.38944i 0.269650i
\(159\) −6.31087 −0.500485
\(160\) 1.11222 + 2.79601i 0.0879285 + 0.221044i
\(161\) 8.31087 0.654989
\(162\) 15.6980i 1.23335i
\(163\) 24.7126i 1.93564i 0.251647 + 0.967819i \(0.419028\pi\)
−0.251647 + 0.967819i \(0.580972\pi\)
\(164\) −2.31087 −0.180449
\(165\) −1.84456 4.63706i −0.143599 0.360994i
\(166\) −17.1122 −1.32817
\(167\) 3.60464i 0.278935i 0.990227 + 0.139468i \(0.0445391\pi\)
−0.990227 + 0.139468i \(0.955461\pi\)
\(168\) 7.68608i 0.592994i
\(169\) 8.71155 0.670119
\(170\) 29.1346 11.5894i 2.23452 0.888866i
\(171\) 0 0
\(172\) 12.2874i 0.936907i
\(173\) 22.4205i 1.70460i −0.523054 0.852300i \(-0.675207\pi\)
0.523054 0.852300i \(-0.324793\pi\)
\(174\) −7.79798 −0.591164
\(175\) −10.9447 11.5801i −0.827342 0.875376i
\(176\) 13.1122 0.988371
\(177\) 0.919237i 0.0690941i
\(178\) 40.0133i 2.99912i
\(179\) −5.13464 −0.383781 −0.191890 0.981416i \(-0.561462\pi\)
−0.191890 + 0.981416i \(0.561462\pi\)
\(180\) 21.7228 8.64104i 1.61912 0.644065i
\(181\) −20.8462 −1.54948 −0.774742 0.632277i \(-0.782120\pi\)
−0.774742 + 0.632277i \(0.782120\pi\)
\(182\) 15.9695i 1.18374i
\(183\) 4.70201i 0.347583i
\(184\) 11.7115 0.863387
\(185\) 3.55611 + 8.93972i 0.261450 + 0.657261i
\(186\) 3.37825 0.247706
\(187\) 24.0795i 1.76087i
\(188\) 45.1457i 3.29259i
\(189\) 9.77557 0.711068
\(190\) 0 0
\(191\) −5.26765 −0.381154 −0.190577 0.981672i \(-0.561036\pi\)
−0.190577 + 0.981672i \(0.561036\pi\)
\(192\) 5.13842i 0.370833i
\(193\) 2.07086i 0.149064i 0.997219 + 0.0745318i \(0.0237462\pi\)
−0.997219 + 0.0745318i \(0.976254\pi\)
\(194\) 5.01121 0.359784
\(195\) 2.31087 0.919237i 0.165485 0.0658279i
\(196\) 12.1666 0.869046
\(197\) 10.4318i 0.743232i 0.928387 + 0.371616i \(0.121196\pi\)
−0.928387 + 0.371616i \(0.878804\pi\)
\(198\) 27.2663i 1.93773i
\(199\) 2.73235 0.193691 0.0968455 0.995299i \(-0.469125\pi\)
0.0968455 + 0.995299i \(0.469125\pi\)
\(200\) −15.4231 16.3185i −1.09058 1.15389i
\(201\) 2.55773 0.180408
\(202\) 4.14172i 0.291410i
\(203\) 19.1206i 1.34200i
\(204\) 12.0000 0.840168
\(205\) −1.24524 + 0.495339i −0.0869710 + 0.0345960i
\(206\) −13.9214 −0.969951
\(207\) 7.07154i 0.491506i
\(208\) 6.53446i 0.453083i
\(209\) 0 0
\(210\) −3.42309 8.60532i −0.236216 0.593824i
\(211\) 15.7340 1.08317 0.541585 0.840646i \(-0.317824\pi\)
0.541585 + 0.840646i \(0.317824\pi\)
\(212\) 45.3066i 3.11167i
\(213\) 7.36420i 0.504586i
\(214\) −37.3445 −2.55282
\(215\) 2.63383 + 6.62119i 0.179625 + 0.451561i
\(216\) 13.7756 0.937309
\(217\) 8.28343i 0.562316i
\(218\) 28.3404i 1.91946i
\(219\) −1.46469 −0.0989748
\(220\) 33.2901 13.2424i 2.24442 0.892801i
\(221\) −12.0000 −0.807207
\(222\) 5.59201i 0.375311i
\(223\) 18.8219i 1.26041i 0.776430 + 0.630203i \(0.217028\pi\)
−0.776430 + 0.630203i \(0.782972\pi\)
\(224\) −4.28845 −0.286534
\(225\) 9.85328 9.31261i 0.656886 0.620841i
\(226\) 25.6330 1.70508
\(227\) 14.4418i 0.958533i 0.877669 + 0.479267i \(0.159097\pi\)
−0.877669 + 0.479267i \(0.840903\pi\)
\(228\) 0 0
\(229\) 4.17785 0.276080 0.138040 0.990427i \(-0.455920\pi\)
0.138040 + 0.990427i \(0.455920\pi\)
\(230\) 13.1122 5.21588i 0.864594 0.343925i
\(231\) 7.11222 0.467950
\(232\) 26.9444i 1.76898i
\(233\) 12.0847i 0.791697i −0.918316 0.395849i \(-0.870450\pi\)
0.918316 0.395849i \(-0.129550\pi\)
\(234\) −13.5881 −0.888283
\(235\) −9.67705 24.3272i −0.631261 1.58693i
\(236\) 6.59933 0.429580
\(237\) 0.752273i 0.0488654i
\(238\) 44.6861i 2.89657i
\(239\) 11.3541 0.734435 0.367218 0.930135i \(-0.380310\pi\)
0.367218 + 0.930135i \(0.380310\pi\)
\(240\) −1.40067 3.52116i −0.0904130 0.227290i
\(241\) 3.40067 0.219057 0.109528 0.993984i \(-0.465066\pi\)
0.109528 + 0.993984i \(0.465066\pi\)
\(242\) 15.1669i 0.974966i
\(243\) 12.6868i 0.813857i
\(244\) 33.7564 2.16103
\(245\) 6.55611 2.60794i 0.418854 0.166615i
\(246\) −0.778925 −0.0496625
\(247\) 0 0
\(248\) 11.6729i 0.741229i
\(249\) −3.79798 −0.240687
\(250\) −24.5353 11.4013i −1.55175 0.721083i
\(251\) 3.04322 0.192086 0.0960432 0.995377i \(-0.469381\pi\)
0.0960432 + 0.995377i \(0.469381\pi\)
\(252\) 33.3179i 2.09883i
\(253\) 10.8371i 0.681324i
\(254\) −14.7003 −0.922381
\(255\) 6.46631 2.57222i 0.404936 0.161079i
\(256\) −30.3765 −1.89853
\(257\) 17.2881i 1.07840i −0.842177 0.539201i \(-0.818726\pi\)
0.842177 0.539201i \(-0.181274\pi\)
\(258\) 4.14172i 0.257852i
\(259\) −13.7115 −0.851994
\(260\) 6.59933 + 16.5901i 0.409273 + 1.02887i
\(261\) 16.2693 1.00704
\(262\) 32.8583i 2.02999i
\(263\) 1.19336i 0.0735859i 0.999323 + 0.0367930i \(0.0117142\pi\)
−0.999323 + 0.0367930i \(0.988286\pi\)
\(264\) 10.0224 0.616837
\(265\) −9.71155 24.4139i −0.596575 1.49973i
\(266\) 0 0
\(267\) 8.88078i 0.543495i
\(268\) 18.3623i 1.12165i
\(269\) 22.1089 1.34800 0.674000 0.738731i \(-0.264575\pi\)
0.674000 + 0.738731i \(0.264575\pi\)
\(270\) 15.4231 6.13511i 0.938619 0.373371i
\(271\) −4.08644 −0.248234 −0.124117 0.992268i \(-0.539610\pi\)
−0.124117 + 0.992268i \(0.539610\pi\)
\(272\) 18.2848i 1.10868i
\(273\) 3.54437i 0.214515i
\(274\) 19.2211 1.16119
\(275\) 15.1001 14.2716i 0.910572 0.860607i
\(276\) 5.40067 0.325082
\(277\) 10.0199i 0.602037i −0.953618 0.301019i \(-0.902673\pi\)
0.953618 0.301019i \(-0.0973266\pi\)
\(278\) 7.90730i 0.474248i
\(279\) −7.04820 −0.421964
\(280\) 29.7340 11.8278i 1.77694 0.706846i
\(281\) −0.599328 −0.0357529 −0.0178765 0.999840i \(-0.505691\pi\)
−0.0178765 + 0.999840i \(0.505691\pi\)
\(282\) 15.2172i 0.906174i
\(283\) 5.41856i 0.322100i −0.986946 0.161050i \(-0.948512\pi\)
0.986946 0.161050i \(-0.0514880\pi\)
\(284\) 52.8686 3.13717
\(285\) 0 0
\(286\) −20.8238 −1.23133
\(287\) 1.90991i 0.112739i
\(288\) 3.64895i 0.215017i
\(289\) −16.5785 −0.975207
\(290\) −12.0000 30.1669i −0.704664 1.77146i
\(291\) 1.11222 0.0651993
\(292\) 10.5152i 0.615358i
\(293\) 3.46691i 0.202539i 0.994859 + 0.101269i \(0.0322904\pi\)
−0.994859 + 0.101269i \(0.967710\pi\)
\(294\) 4.10101 0.239176
\(295\) 3.55611 1.41458i 0.207045 0.0823598i
\(296\) −19.3221 −1.12307
\(297\) 12.7470i 0.739658i
\(298\) 20.4331i 1.18366i
\(299\) −5.40067 −0.312329
\(300\) −7.11222 7.52514i −0.410624 0.434464i
\(301\) −10.1554 −0.585350
\(302\) 2.14832i 0.123622i
\(303\) 0.919237i 0.0528088i
\(304\) 0 0
\(305\) 18.1899 7.23573i 1.04155 0.414317i
\(306\) −38.0224 −2.17360
\(307\) 16.5901i 0.946846i 0.880835 + 0.473423i \(0.156982\pi\)
−0.880835 + 0.473423i \(0.843018\pi\)
\(308\) 51.0596i 2.90939i
\(309\) −3.08980 −0.175772
\(310\) 5.19866 + 13.0689i 0.295264 + 0.742265i
\(311\) −4.15544 −0.235633 −0.117817 0.993035i \(-0.537589\pi\)
−0.117817 + 0.993035i \(0.537589\pi\)
\(312\) 4.99466i 0.282767i
\(313\) 0.919237i 0.0519583i 0.999662 + 0.0259792i \(0.00827036\pi\)
−0.999662 + 0.0259792i \(0.991730\pi\)
\(314\) −10.0224 −0.565598
\(315\) 7.14174 + 17.9537i 0.402391 + 1.01157i
\(316\) 5.40067 0.303812
\(317\) 26.7292i 1.50126i 0.660723 + 0.750630i \(0.270250\pi\)
−0.660723 + 0.750630i \(0.729750\pi\)
\(318\) 15.2715i 0.856383i
\(319\) 24.9326 1.39596
\(320\) −19.8782 + 7.90730i −1.11122 + 0.442031i
\(321\) −8.28845 −0.462616
\(322\) 20.1112i 1.12076i
\(323\) 0 0
\(324\) −25.0128 −1.38960
\(325\) 7.11222 + 7.52514i 0.394515 + 0.417420i
\(326\) −59.8012 −3.31208
\(327\) 6.29004i 0.347840i
\(328\) 2.69142i 0.148609i
\(329\) 37.3125 2.05710
\(330\) 11.2211 4.46360i 0.617700 0.245713i
\(331\) −8.00000 −0.439720 −0.219860 0.975531i \(-0.570560\pi\)
−0.219860 + 0.975531i \(0.570560\pi\)
\(332\) 27.2663i 1.49643i
\(333\) 11.6669i 0.639340i
\(334\) −8.72275 −0.477288
\(335\) 3.93598 + 9.89467i 0.215045 + 0.540604i
\(336\) 5.40067 0.294631
\(337\) 22.5040i 1.22587i −0.790133 0.612935i \(-0.789989\pi\)
0.790133 0.612935i \(-0.210011\pi\)
\(338\) 21.0808i 1.14664i
\(339\) 5.68913 0.308991
\(340\) 18.4663 + 46.4225i 1.00148 + 2.51762i
\(341\) −10.8013 −0.584926
\(342\) 0 0
\(343\) 12.2517i 0.661530i
\(344\) −14.3109 −0.771591
\(345\) 2.91020 1.15764i 0.156680 0.0623254i
\(346\) 54.2547 2.91675
\(347\) 14.4543i 0.775946i −0.921671 0.387973i \(-0.873175\pi\)
0.921671 0.387973i \(-0.126825\pi\)
\(348\) 12.4252i 0.666058i
\(349\) 13.3541 0.714828 0.357414 0.933946i \(-0.383658\pi\)
0.357414 + 0.933946i \(0.383658\pi\)
\(350\) 28.0224 26.4848i 1.49786 1.41567i
\(351\) −6.35248 −0.339070
\(352\) 5.59201i 0.298055i
\(353\) 17.6410i 0.938937i −0.882949 0.469469i \(-0.844446\pi\)
0.882949 0.469469i \(-0.155554\pi\)
\(354\) 2.22443 0.118227
\(355\) 28.4887 11.3325i 1.51202 0.601465i
\(356\) −63.7564 −3.37908
\(357\) 9.91789i 0.524910i
\(358\) 12.4252i 0.656690i
\(359\) −12.4663 −0.657947 −0.328973 0.944339i \(-0.606703\pi\)
−0.328973 + 0.944339i \(0.606703\pi\)
\(360\) 10.0640 + 25.3000i 0.530420 + 1.33343i
\(361\) 0 0
\(362\) 50.4451i 2.65133i
\(363\) 3.36623i 0.176681i
\(364\) −25.4455 −1.33371
\(365\) −2.25396 5.66623i −0.117977 0.296584i
\(366\) 11.3783 0.594751
\(367\) 16.4291i 0.857594i −0.903401 0.428797i \(-0.858938\pi\)
0.903401 0.428797i \(-0.141062\pi\)
\(368\) 8.22918i 0.428976i
\(369\) 1.62511 0.0845996
\(370\) −21.6330 + 8.60532i −1.12464 + 0.447369i
\(371\) 37.4455 1.94407
\(372\) 5.38284i 0.279087i
\(373\) 5.29334i 0.274079i −0.990566 0.137039i \(-0.956241\pi\)
0.990566 0.137039i \(-0.0437587\pi\)
\(374\) −58.2693 −3.01303
\(375\) −5.44551 2.53048i −0.281205 0.130673i
\(376\) 52.5801 2.71161
\(377\) 12.4252i 0.639928i
\(378\) 23.6556i 1.21671i
\(379\) 14.5353 0.746629 0.373314 0.927705i \(-0.378221\pi\)
0.373314 + 0.927705i \(0.378221\pi\)
\(380\) 0 0
\(381\) −3.26268 −0.167152
\(382\) 12.7470i 0.652195i
\(383\) 0.453598i 0.0231778i 0.999933 + 0.0115889i \(0.00368894\pi\)
−0.999933 + 0.0115889i \(0.996311\pi\)
\(384\) −10.9888 −0.560769
\(385\) 10.9447 + 27.5139i 0.557794 + 1.40224i
\(386\) −5.01121 −0.255064
\(387\) 8.64104i 0.439249i
\(388\) 7.98476i 0.405365i
\(389\) −16.1554 −0.819113 −0.409557 0.912285i \(-0.634317\pi\)
−0.409557 + 0.912285i \(0.634317\pi\)
\(390\) 2.22443 + 5.59201i 0.112639 + 0.283163i
\(391\) −15.1122 −0.764258
\(392\) 14.1702i 0.715704i
\(393\) 7.29276i 0.367871i
\(394\) −25.2435 −1.27175
\(395\) 2.91020 1.15764i 0.146428 0.0582473i
\(396\) −43.4455 −2.18322
\(397\) 32.7563i 1.64399i 0.569495 + 0.821995i \(0.307139\pi\)
−0.569495 + 0.821995i \(0.692861\pi\)
\(398\) 6.61192i 0.331426i
\(399\) 0 0
\(400\) 11.4663 10.8371i 0.573315 0.541856i
\(401\) −12.0864 −0.603568 −0.301784 0.953376i \(-0.597582\pi\)
−0.301784 + 0.953376i \(0.597582\pi\)
\(402\) 6.18936i 0.308697i
\(403\) 5.38284i 0.268138i
\(404\) 6.59933 0.328329
\(405\) −13.4784 + 5.36154i −0.669747 + 0.266417i
\(406\) 46.2693 2.29631
\(407\) 17.8794i 0.886251i
\(408\) 13.9761i 0.691921i
\(409\) −19.1346 −0.946147 −0.473073 0.881023i \(-0.656855\pi\)
−0.473073 + 0.881023i \(0.656855\pi\)
\(410\) −1.19866 3.01331i −0.0591974 0.148817i
\(411\) 4.26604 0.210428
\(412\) 22.1821i 1.09283i
\(413\) 5.45428i 0.268388i
\(414\) −17.1122 −0.841020
\(415\) −5.84456 14.6927i −0.286898 0.721235i
\(416\) 2.78678 0.136633
\(417\) 1.75499i 0.0859423i
\(418\) 0 0
\(419\) −8.04484 −0.393016 −0.196508 0.980502i \(-0.562960\pi\)
−0.196508 + 0.980502i \(0.562960\pi\)
\(420\) 13.7115 5.45428i 0.669055 0.266142i
\(421\) 29.3591 1.43087 0.715437 0.698678i \(-0.246228\pi\)
0.715437 + 0.698678i \(0.246228\pi\)
\(422\) 38.0742i 1.85342i
\(423\) 31.7484i 1.54366i
\(424\) 52.7676 2.56262
\(425\) 19.9015 + 21.0569i 0.965364 + 1.02141i
\(426\) 17.8204 0.863401
\(427\) 27.8993i 1.35014i
\(428\) 59.5040i 2.87623i
\(429\) −4.62175 −0.223140
\(430\) −16.0224 + 6.37352i −0.772670 + 0.307358i
\(431\) 32.0448 1.54355 0.771773 0.635898i \(-0.219370\pi\)
0.771773 + 0.635898i \(0.219370\pi\)
\(432\) 9.67948i 0.465704i
\(433\) 0.482831i 0.0232034i 0.999933 + 0.0116017i \(0.00369301\pi\)
−0.999933 + 0.0116017i \(0.996307\pi\)
\(434\) −20.0448 −0.962183
\(435\) −2.66335 6.69541i −0.127698 0.321020i
\(436\) −45.1571 −2.16263
\(437\) 0 0
\(438\) 3.54437i 0.169356i
\(439\) −27.3591 −1.30578 −0.652889 0.757454i \(-0.726443\pi\)
−0.652889 + 0.757454i \(0.726443\pi\)
\(440\) 15.4231 + 38.7722i 0.735267 + 1.84839i
\(441\) −8.55611 −0.407434
\(442\) 29.0384i 1.38122i
\(443\) 23.3815i 1.11089i −0.831554 0.555444i \(-0.812548\pi\)
0.831554 0.555444i \(-0.187452\pi\)
\(444\) −8.91020 −0.422859
\(445\) −34.3557 + 13.6663i −1.62862 + 0.647844i
\(446\) −45.5465 −2.15669
\(447\) 4.53505i 0.214500i
\(448\) 30.4887i 1.44046i
\(449\) 23.1346 1.09179 0.545895 0.837853i \(-0.316190\pi\)
0.545895 + 0.837853i \(0.316190\pi\)
\(450\) 22.5353 + 23.8437i 1.06232 + 1.12400i
\(451\) 2.49047 0.117272
\(452\) 40.8430i 1.92109i
\(453\) 0.476811i 0.0224025i
\(454\) −34.9472 −1.64015
\(455\) −13.7115 + 5.45428i −0.642807 + 0.255701i
\(456\) 0 0
\(457\) 21.2503i 0.994049i 0.867736 + 0.497025i \(0.165574\pi\)
−0.867736 + 0.497025i \(0.834426\pi\)
\(458\) 10.1099i 0.472403i
\(459\) −17.7756 −0.829692
\(460\) 8.31087 + 20.8927i 0.387496 + 0.974129i
\(461\) 31.5785 1.47076 0.735379 0.677656i \(-0.237004\pi\)
0.735379 + 0.677656i \(0.237004\pi\)
\(462\) 17.2106i 0.800712i
\(463\) 15.6119i 0.725547i 0.931877 + 0.362774i \(0.118170\pi\)
−0.931877 + 0.362774i \(0.881830\pi\)
\(464\) 18.9326 0.878925
\(465\) 1.15382 + 2.90059i 0.0535071 + 0.134512i
\(466\) 29.2435 1.35468
\(467\) 29.8264i 1.38020i −0.723713 0.690101i \(-0.757566\pi\)
0.723713 0.690101i \(-0.242434\pi\)
\(468\) 21.6510i 1.00082i
\(469\) −15.1762 −0.700774
\(470\) 58.8686 23.4172i 2.71541 1.08015i
\(471\) −2.22443 −0.102496
\(472\) 7.68608i 0.353781i
\(473\) 13.2424i 0.608885i
\(474\) 1.82040 0.0836139
\(475\) 0 0
\(476\) −71.2019 −3.26353
\(477\) 31.8616i 1.45884i
\(478\) 27.4754i 1.25670i
\(479\) −4.53531 −0.207223 −0.103612 0.994618i \(-0.533040\pi\)
−0.103612 + 0.994618i \(0.533040\pi\)
\(480\) −1.50168 + 0.597349i −0.0685420 + 0.0272651i
\(481\) 8.91020 0.406270
\(482\) 8.22918i 0.374829i
\(483\) 4.46360i 0.203101i
\(484\) −24.1666 −1.09848
\(485\) 1.71155 + 4.30266i 0.0777173 + 0.195374i
\(486\) −30.7003 −1.39260
\(487\) 39.2550i 1.77881i −0.457116 0.889407i \(-0.651118\pi\)
0.457116 0.889407i \(-0.348882\pi\)
\(488\) 39.3153i 1.77972i
\(489\) −13.2726 −0.600209
\(490\) 6.31087 + 15.8649i 0.285096 + 0.716705i
\(491\) 38.8910 1.75513 0.877564 0.479460i \(-0.159168\pi\)
0.877564 + 0.479460i \(0.159168\pi\)
\(492\) 1.24112i 0.0559542i
\(493\) 34.7682i 1.56588i
\(494\) 0 0
\(495\) −23.4110 + 9.31261i −1.05225 + 0.418571i
\(496\) −8.20202 −0.368281
\(497\) 43.6954i 1.96001i
\(498\) 9.19063i 0.411842i
\(499\) −4.73235 −0.211849 −0.105924 0.994374i \(-0.533780\pi\)
−0.105924 + 0.994374i \(0.533780\pi\)
\(500\) 18.1666 39.0941i 0.812437 1.74834i
\(501\) −1.93598 −0.0864931
\(502\) 7.36420i 0.328680i
\(503\) 1.85567i 0.0827400i −0.999144 0.0413700i \(-0.986828\pi\)
0.999144 0.0413700i \(-0.0131722\pi\)
\(504\) −38.8046 −1.72849
\(505\) 3.55611 1.41458i 0.158245 0.0629478i
\(506\) −26.2244 −1.16582
\(507\) 4.67880i 0.207793i
\(508\) 23.4232i 1.03924i
\(509\) 22.8878 1.01448 0.507242 0.861804i \(-0.330665\pi\)
0.507242 + 0.861804i \(0.330665\pi\)
\(510\) 6.22443 + 15.6476i 0.275623 + 0.692889i
\(511\) 8.69074 0.384456
\(512\) 32.5867i 1.44014i
\(513\) 0 0
\(514\) 41.8350 1.84526
\(515\) −4.75476 11.9530i −0.209520 0.526713i
\(516\) −6.59933 −0.290519
\(517\) 48.6543i 2.13982i
\(518\) 33.1802i 1.45785i
\(519\) 12.0416 0.528568
\(520\) −19.3221 + 7.68608i −0.847329 + 0.337057i
\(521\) 29.7340 1.30267 0.651334 0.758791i \(-0.274210\pi\)
0.651334 + 0.758791i \(0.274210\pi\)
\(522\) 39.3695i 1.72316i
\(523\) 30.6497i 1.34022i 0.742263 + 0.670109i \(0.233752\pi\)
−0.742263 + 0.670109i \(0.766248\pi\)
\(524\) 52.3557 2.28717
\(525\) 6.21946 5.87818i 0.271439 0.256545i
\(526\) −2.88778 −0.125913
\(527\) 15.0623i 0.656125i
\(528\) 7.04231i 0.306477i
\(529\) 16.1987 0.704289
\(530\) 59.0785 23.5007i 2.56620 1.02080i
\(531\) −4.64093 −0.201399
\(532\) 0 0
\(533\) 1.24112i 0.0537590i
\(534\) −21.4903 −0.929978
\(535\) −12.7548 32.0643i −0.551437 1.38626i
\(536\) −21.3861 −0.923739
\(537\) 2.75771i 0.119004i
\(538\) 53.5006i 2.30657i
\(539\) −13.1122 −0.564783
\(540\) 9.77557 + 24.5748i 0.420673 + 1.05753i
\(541\) 2.21946 0.0954220 0.0477110 0.998861i \(-0.484807\pi\)
0.0477110 + 0.998861i \(0.484807\pi\)
\(542\) 9.88865i 0.424754i
\(543\) 11.1961i 0.480469i
\(544\) 7.79798 0.334336
\(545\) −24.3333 + 9.67948i −1.04232 + 0.414623i
\(546\) −8.57691 −0.367058
\(547\) 14.4297i 0.616970i 0.951229 + 0.308485i \(0.0998220\pi\)
−0.951229 + 0.308485i \(0.900178\pi\)
\(548\) 30.6265i 1.30830i
\(549\) −23.7389 −1.01315
\(550\) 34.5353 + 36.5404i 1.47259 + 1.55809i
\(551\) 0 0
\(552\) 6.29004i 0.267722i
\(553\) 4.46360i 0.189812i
\(554\) 24.2469 1.03015
\(555\) −4.80134 + 1.90991i −0.203806 + 0.0810714i
\(556\) 12.5993 0.534331
\(557\) 19.4610i 0.824588i 0.911051 + 0.412294i \(0.135272\pi\)
−0.911051 + 0.412294i \(0.864728\pi\)
\(558\) 17.0557i 0.722026i
\(559\) 6.59933 0.279122
\(560\) 8.31087 + 20.8927i 0.351198 + 0.882879i
\(561\) −12.9326 −0.546016
\(562\) 1.45030i 0.0611771i
\(563\) 12.3649i 0.521118i −0.965458 0.260559i \(-0.916093\pi\)
0.965458 0.260559i \(-0.0839068\pi\)
\(564\) 24.2469 1.02098
\(565\) 8.75476 + 22.0086i 0.368316 + 0.925911i
\(566\) 13.1122 0.551148
\(567\) 20.6729i 0.868179i
\(568\) 61.5748i 2.58362i
\(569\) 15.0898 0.632597 0.316299 0.948660i \(-0.397560\pi\)
0.316299 + 0.948660i \(0.397560\pi\)
\(570\) 0 0
\(571\) 17.1571 0.718000 0.359000 0.933337i \(-0.383118\pi\)
0.359000 + 0.933337i \(0.383118\pi\)
\(572\) 33.1802i 1.38733i
\(573\) 2.82915i 0.118190i
\(574\) 4.62175 0.192908
\(575\) 8.95678 + 9.47680i 0.373524 + 0.395210i
\(576\) 25.9422 1.08093
\(577\) 22.5165i 0.937374i −0.883364 0.468687i \(-0.844727\pi\)
0.883364 0.468687i \(-0.155273\pi\)
\(578\) 40.1179i 1.66868i
\(579\) −1.11222 −0.0462222
\(580\) 48.0673 19.1206i 1.99588 0.793938i
\(581\) 22.5353 0.934922
\(582\) 2.69142i 0.111563i
\(583\) 48.8278i 2.02224i
\(584\) 12.2469 0.506778
\(585\) −4.64093 11.6669i −0.191879 0.482365i
\(586\) −8.38946 −0.346566
\(587\) 7.49544i 0.309370i 0.987964 + 0.154685i \(0.0494363\pi\)
−0.987964 + 0.154685i \(0.950564\pi\)
\(588\) 6.53446i 0.269477i
\(589\) 0 0
\(590\) 3.42309 + 8.60532i 0.140926 + 0.354275i
\(591\) −5.60269 −0.230464
\(592\) 13.5768i 0.558002i
\(593\) 27.8094i 1.14199i −0.820952 0.570997i \(-0.806557\pi\)
0.820952 0.570997i \(-0.193443\pi\)
\(594\) −30.8462 −1.26563
\(595\) −38.3678 + 15.2622i −1.57293 + 0.625690i
\(596\) 32.5577 1.33362
\(597\) 1.46749i 0.0600603i
\(598\) 13.0689i 0.534428i
\(599\) −45.4903 −1.85869 −0.929343 0.369219i \(-0.879625\pi\)
−0.929343 + 0.369219i \(0.879625\pi\)
\(600\) 8.76436 8.28343i 0.357803 0.338170i
\(601\) 16.5993 0.677101 0.338550 0.940948i \(-0.390063\pi\)
0.338550 + 0.940948i \(0.390063\pi\)
\(602\) 24.5748i 1.00160i
\(603\) 12.9131i 0.525863i
\(604\) 3.42309 0.139284
\(605\) −13.0224 + 5.18016i −0.529437 + 0.210603i
\(606\) 2.22443 0.0903614
\(607\) 5.08417i 0.206360i 0.994663 + 0.103180i \(0.0329018\pi\)
−0.994663 + 0.103180i \(0.967098\pi\)
\(608\) 0 0
\(609\) 10.2693 0.416132
\(610\) 17.5095 + 44.0173i 0.708940 + 1.78221i
\(611\) −24.2469 −0.980923
\(612\) 60.5842i 2.44897i
\(613\) 4.63706i 0.187289i −0.995606 0.0936445i \(-0.970148\pi\)
0.995606 0.0936445i \(-0.0298517\pi\)
\(614\) −40.1458 −1.62015
\(615\) −0.266037 0.668791i −0.0107276 0.0269683i
\(616\) −59.4679 −2.39603
\(617\) 40.2874i 1.62191i 0.585108 + 0.810955i \(0.301052\pi\)
−0.585108 + 0.810955i \(0.698948\pi\)
\(618\) 7.47691i 0.300766i
\(619\) 43.3815 1.74365 0.871825 0.489818i \(-0.162937\pi\)
0.871825 + 0.489818i \(0.162937\pi\)
\(620\) −20.8238 + 8.28343i −0.836302 + 0.332671i
\(621\) −8.00000 −0.321029
\(622\) 10.0556i 0.403194i
\(623\) 52.6940i 2.11114i
\(624\) −3.50953 −0.140494
\(625\) 1.40939 24.9602i 0.0563757 0.998410i
\(626\) −2.22443 −0.0889062
\(627\) 0 0
\(628\) 15.9695i 0.637253i
\(629\) 24.9326 0.994129
\(630\) −43.4455 + 17.2821i −1.73091 + 0.688535i
\(631\) 7.53369 0.299911 0.149956 0.988693i \(-0.452087\pi\)
0.149956 + 0.988693i \(0.452087\pi\)
\(632\) 6.29004i 0.250204i
\(633\) 8.45040i 0.335873i
\(634\) −64.6812 −2.56882
\(635\) −5.02080 12.6218i −0.199244 0.500881i
\(636\) 24.3333 0.964878
\(637\) 6.53446i 0.258905i
\(638\) 60.3337i 2.38863i
\(639\) −37.1795 −1.47080
\(640\) −16.9102 42.5106i −0.668434 1.68038i
\(641\) 23.3075 0.920591 0.460296 0.887766i \(-0.347743\pi\)
0.460296 + 0.887766i \(0.347743\pi\)
\(642\) 20.0570i 0.791586i
\(643\) 1.87419i 0.0739110i −0.999317 0.0369555i \(-0.988234\pi\)
0.999317 0.0369555i \(-0.0117660\pi\)
\(644\) −32.0448 −1.26274
\(645\) −3.55611 + 1.41458i −0.140022 + 0.0556989i
\(646\) 0 0
\(647\) 47.0371i 1.84922i −0.380917 0.924609i \(-0.624392\pi\)
0.380917 0.924609i \(-0.375608\pi\)
\(648\) 29.1319i 1.14441i
\(649\) −7.11222 −0.279179
\(650\) −18.2099 + 17.2106i −0.714250 + 0.675057i
\(651\) −4.44887 −0.174365
\(652\) 95.2861i 3.73169i
\(653\) 24.1630i 0.945571i −0.881178 0.472785i \(-0.843249\pi\)
0.881178 0.472785i \(-0.156751\pi\)
\(654\) −15.2211 −0.595191
\(655\) 28.2124 11.2225i 1.10235 0.438500i
\(656\) 1.89114 0.0738367
\(657\) 7.39477i 0.288497i
\(658\) 90.2914i 3.51992i
\(659\) 10.2885 0.400781 0.200391 0.979716i \(-0.435779\pi\)
0.200391 + 0.979716i \(0.435779\pi\)
\(660\) 7.11222 + 17.8794i 0.276843 + 0.695956i
\(661\) −5.93598 −0.230883 −0.115441 0.993314i \(-0.536828\pi\)
−0.115441 + 0.993314i \(0.536828\pi\)
\(662\) 19.3590i 0.752407i
\(663\) 6.44496i 0.250302i
\(664\) 31.7564 1.23239
\(665\) 0 0
\(666\) 28.2323 1.09398
\(667\) 15.6476i 0.605879i
\(668\) 13.8987i 0.537755i
\(669\) −10.1089 −0.390831
\(670\) −23.9438 + 9.52456i −0.925031 + 0.367966i
\(671\) −36.3799 −1.40443
\(672\) 2.30324i 0.0888496i
\(673\) 40.7053i 1.56907i −0.620082 0.784537i \(-0.712901\pi\)
0.620082 0.784537i \(-0.287099\pi\)
\(674\) 54.4567 2.09759
\(675\) 10.5353 + 11.1470i 0.405504 + 0.429047i
\(676\) −33.5897 −1.29191
\(677\) 18.8761i 0.725469i −0.931893 0.362734i \(-0.881843\pi\)
0.931893 0.362734i \(-0.118157\pi\)
\(678\) 13.7669i 0.528716i
\(679\) −6.59933 −0.253259
\(680\) −54.0673 + 21.5073i −2.07338 + 0.824767i
\(681\) −7.75638 −0.297225
\(682\) 26.1379i 1.00087i
\(683\) 19.6576i 0.752179i −0.926583 0.376089i \(-0.877269\pi\)
0.926583 0.376089i \(-0.122731\pi\)
\(684\) 0 0
\(685\) 6.56483 + 16.5034i 0.250829 + 0.630561i
\(686\) 29.6475 1.13195
\(687\) 2.24384i 0.0856079i
\(688\) 10.0556i 0.383367i
\(689\) −24.3333 −0.927025
\(690\) 2.80134 + 7.04231i 0.106645 + 0.268096i
\(691\) −48.2451 −1.83533 −0.917665 0.397354i \(-0.869928\pi\)
−0.917665 + 0.397354i \(0.869928\pi\)
\(692\) 86.4483i 3.28627i
\(693\) 35.9073i 1.36401i
\(694\) 34.9775 1.32773
\(695\) 6.78926 2.70068i 0.257531 0.102443i
\(696\) 14.4713 0.548533
\(697\) 3.47293i 0.131546i
\(698\) 32.3152i 1.22315i
\(699\) 6.49047 0.245492
\(700\) 42.2003 + 44.6504i 1.59502 + 1.68762i
\(701\) 0.512889 0.0193715 0.00968577 0.999953i \(-0.496917\pi\)
0.00968577 + 0.999953i \(0.496917\pi\)
\(702\) 15.3722i 0.580185i
\(703\) 0 0
\(704\) 39.7564 1.49838
\(705\) 13.0656 5.19735i 0.492080 0.195743i
\(706\) 42.6890 1.60662
\(707\) 5.45428i 0.205129i
\(708\) 3.54437i 0.133205i
\(709\) 8.84618 0.332225 0.166113 0.986107i \(-0.446878\pi\)
0.166113 + 0.986107i \(0.446878\pi\)
\(710\) 27.4231 + 68.9390i 1.02917 + 2.58724i
\(711\) −3.79798 −0.142436
\(712\) 74.2556i 2.78285i
\(713\) 6.77889i 0.253871i
\(714\) −24.0000 −0.898177
\(715\) −7.11222 17.8794i −0.265982 0.668653i
\(716\) 19.7980 0.739885
\(717\) 6.09806i 0.227736i
\(718\) 30.1669i 1.12582i
\(719\) −7.84456 −0.292553 −0.146276 0.989244i \(-0.546729\pi\)
−0.146276 + 0.989244i \(0.546729\pi\)
\(720\) −17.7772 + 7.07154i −0.662516 + 0.263541i
\(721\) 18.3333 0.682767
\(722\) 0 0
\(723\) 1.82643i 0.0679258i
\(724\) 80.3781 2.98723
\(725\) 21.8030 20.6066i 0.809742 0.765309i
\(726\) −8.14584 −0.302321
\(727\) 2.91130i 0.107974i −0.998542 0.0539870i \(-0.982807\pi\)
0.998542 0.0539870i \(-0.0171930\pi\)
\(728\) 29.6358i 1.09838i
\(729\) 12.6475 0.468427
\(730\) 13.7115 5.45428i 0.507487 0.201872i
\(731\) 18.4663 0.683001
\(732\) 18.1299i 0.670100i
\(733\) 33.7775i 1.24760i 0.781584 + 0.623800i \(0.214412\pi\)
−0.781584 + 0.623800i \(0.785588\pi\)
\(734\) 39.7564 1.46743
\(735\) 1.40067 + 3.52116i 0.0516646 + 0.129880i
\(736\) 3.50953 0.129363
\(737\) 19.7893i 0.728950i
\(738\) 3.93254i 0.144759i
\(739\) 35.8030 1.31703 0.658517 0.752566i \(-0.271184\pi\)
0.658517 + 0.752566i \(0.271184\pi\)
\(740\) −13.7115 34.4695i −0.504046 1.26712i
\(741\) 0 0
\(742\) 90.6133i 3.32652i
\(743\) 5.66948i 0.207993i −0.994578 0.103996i \(-0.966837\pi\)
0.994578 0.103996i \(-0.0331631\pi\)
\(744\) −6.26927 −0.229843
\(745\) 17.5440 6.97880i 0.642763 0.255683i
\(746\) 12.8092 0.468978
\(747\) 19.1748i 0.701569i
\(748\) 92.8451i 3.39475i
\(749\) 49.1795 1.79698
\(750\) 6.12343 13.1774i 0.223596 0.481171i
\(751\) 27.4679 1.00232 0.501159 0.865355i \(-0.332907\pi\)
0.501159 + 0.865355i \(0.332907\pi\)
\(752\) 36.9457i 1.34727i
\(753\) 1.63445i 0.0595628i
\(754\) −30.0673 −1.09498
\(755\) 1.84456 0.733744i 0.0671305 0.0267037i
\(756\) −37.6924 −1.37086
\(757\) 41.6370i 1.51332i −0.653806 0.756662i \(-0.726829\pi\)
0.653806 0.756662i \(-0.273171\pi\)
\(758\) 35.1736i 1.27756i
\(759\) −5.82040 −0.211267
\(760\) 0 0
\(761\) −9.46967 −0.343275 −0.171638 0.985160i \(-0.554906\pi\)
−0.171638 + 0.985160i \(0.554906\pi\)
\(762\) 7.89526i 0.286015i
\(763\) 37.3219i 1.35114i
\(764\) 20.3109 0.734822
\(765\) −12.9863 32.6463i −0.469521 1.18033i
\(766\) −1.09765 −0.0396597
\(767\) 3.54437i 0.127980i
\(768\) 16.3146i 0.588703i
\(769\) −1.90858 −0.0688253 −0.0344127 0.999408i \(-0.510956\pi\)
−0.0344127 + 0.999408i \(0.510956\pi\)
\(770\) −66.5801 + 26.4848i −2.39938 + 0.954444i
\(771\) 9.28510 0.334395
\(772\) 7.98476i 0.287378i
\(773\) 28.4007i 1.02150i −0.859729 0.510751i \(-0.829367\pi\)
0.859729 0.510751i \(-0.170633\pi\)
\(774\) 20.9102 0.751602
\(775\) −9.44551 + 8.92721i −0.339293 + 0.320675i
\(776\) −9.29966 −0.333838
\(777\) 7.36420i 0.264189i
\(778\) 39.0941i 1.40159i
\(779\) 0 0
\(780\) −8.91020 + 3.54437i −0.319036 + 0.126909i
\(781\) −56.9775 −2.03881
\(782\) 36.5696i 1.30773i
\(783\) 18.4053i 0.657753i
\(784\) −9.95678 −0.355599
\(785\) −3.42309 8.60532i −0.122175 0.307137i
\(786\) 17.6475 0.629466
\(787\) 15.6708i 0.558605i −0.960203