Properties

Label 1805.2.b.e.1084.5
Level $1805$
Weight $2$
Character 1805.1084
Analytic conductor $14.413$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1805,2,Mod(1084,1805)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1805, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1805.1084");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1805 = 5 \cdot 19^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1805.b (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(14.4129975648\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.0.16516096.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} + 9x^{4} + 13x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 95)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1084.5
Root \(2.68667i\) of defining polynomial
Character \(\chi\) \(=\) 1805.1084
Dual form 1805.2.b.e.1084.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.82254i q^{2} -2.31446i q^{3} -1.32164 q^{4} +(1.94827 + 1.09737i) q^{5} +4.21819 q^{6} -1.45033i q^{7} +1.23634i q^{8} -2.35673 q^{9} +(-2.00000 + 3.55080i) q^{10} -3.89655 q^{11} +3.05888i q^{12} -3.05888i q^{13} +2.64327 q^{14} +(2.53982 - 4.50920i) q^{15} -4.89655 q^{16} -3.92301i q^{17} -4.29522i q^{18} +(-2.57491 - 1.45033i) q^{20} -3.35673 q^{21} -7.10160i q^{22} -5.37334i q^{23} +2.86146 q^{24} +(2.59155 + 4.27596i) q^{25} +5.57491 q^{26} -1.48883i q^{27} +1.91681i q^{28} +6.00000 q^{29} +(8.21819 + 4.62892i) q^{30} +8.43637 q^{31} -6.45146i q^{32} +9.01841i q^{33} +7.14982 q^{34} +(1.59155 - 2.82564i) q^{35} +3.11474 q^{36} -5.95953i q^{37} -7.07965 q^{39} +(-1.35673 + 2.40873i) q^{40} -10.4364 q^{41} -6.11775i q^{42} -1.45033i q^{43} +5.14982 q^{44} +(-4.59155 - 2.58620i) q^{45} +9.79310 q^{46} -4.90686i q^{47} +11.3329i q^{48} +4.89655 q^{49} +(-7.79310 + 4.72319i) q^{50} -9.07965 q^{51} +4.04272i q^{52} +4.23127i q^{53} +2.71345 q^{54} +(-7.59155 - 4.27596i) q^{55} +1.79310 q^{56} +10.9352i q^{58} +3.35673 q^{59} +(-3.35673 + 5.95953i) q^{60} +10.3329 q^{61} +15.3756i q^{62} +3.41802i q^{63} +1.96491 q^{64} +(3.35673 - 5.95953i) q^{65} -16.4364 q^{66} -9.84404i q^{67} +5.18479i q^{68} -12.4364 q^{69} +(5.14982 + 2.90066i) q^{70} -8.64327 q^{71} -2.91372i q^{72} -2.43418i q^{73} +10.8615 q^{74} +(9.89655 - 5.99804i) q^{75} +5.65127i q^{77} -12.9029i q^{78} -12.4364 q^{79} +(-9.53982 - 5.37334i) q^{80} -10.5160 q^{81} -19.0207i q^{82} +12.6635i q^{83} +4.43637 q^{84} +(4.30500 - 7.64310i) q^{85} +2.64327 q^{86} -13.8868i q^{87} -4.81746i q^{88} +12.3662 q^{89} +(4.71345 - 8.36826i) q^{90} -4.43637 q^{91} +7.10160i q^{92} -19.5256i q^{93} +8.94292 q^{94} -14.9316 q^{96} +3.05888i q^{97} +8.92414i q^{98} +9.18310 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 8 q^{4} - q^{5} - 14 q^{9} - 12 q^{10} + 2 q^{11} + 16 q^{14} - 10 q^{15} - 4 q^{16} + 10 q^{20} - 20 q^{21} - 8 q^{24} + 3 q^{25} + 8 q^{26} + 36 q^{29} + 24 q^{30} - 8 q^{34} - 3 q^{35} - 32 q^{36}+ \cdots + 30 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1805\mathbb{Z}\right)^\times\).

\(n\) \(362\) \(1446\)
\(\chi(n)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.82254i 1.28873i 0.764719 + 0.644364i \(0.222878\pi\)
−0.764719 + 0.644364i \(0.777122\pi\)
\(3\) 2.31446i 1.33625i −0.744047 0.668127i \(-0.767096\pi\)
0.744047 0.668127i \(-0.232904\pi\)
\(4\) −1.32164 −0.660819
\(5\) 1.94827 + 1.09737i 0.871295 + 0.490760i
\(6\) 4.21819 1.72207
\(7\) 1.45033i 0.548172i −0.961705 0.274086i \(-0.911625\pi\)
0.961705 0.274086i \(-0.0883754\pi\)
\(8\) 1.23634i 0.437112i
\(9\) −2.35673 −0.785575
\(10\) −2.00000 + 3.55080i −0.632456 + 1.12286i
\(11\) −3.89655 −1.17485 −0.587427 0.809277i \(-0.699859\pi\)
−0.587427 + 0.809277i \(0.699859\pi\)
\(12\) 3.05888i 0.883022i
\(13\) 3.05888i 0.848380i −0.905573 0.424190i \(-0.860559\pi\)
0.905573 0.424190i \(-0.139441\pi\)
\(14\) 2.64327 0.706445
\(15\) 2.53982 4.50920i 0.655780 1.16427i
\(16\) −4.89655 −1.22414
\(17\) 3.92301i 0.951469i −0.879589 0.475735i \(-0.842182\pi\)
0.879589 0.475735i \(-0.157818\pi\)
\(18\) 4.29522i 1.01239i
\(19\) 0 0
\(20\) −2.57491 1.45033i −0.575768 0.324303i
\(21\) −3.35673 −0.732498
\(22\) 7.10160i 1.51407i
\(23\) 5.37334i 1.12042i −0.828351 0.560209i \(-0.810721\pi\)
0.828351 0.560209i \(-0.189279\pi\)
\(24\) 2.86146 0.584093
\(25\) 2.59155 + 4.27596i 0.518310 + 0.855193i
\(26\) 5.57491 1.09333
\(27\) 1.48883i 0.286526i
\(28\) 1.91681i 0.362242i
\(29\) 6.00000 1.11417 0.557086 0.830455i \(-0.311919\pi\)
0.557086 + 0.830455i \(0.311919\pi\)
\(30\) 8.21819 + 4.62892i 1.50043 + 0.845121i
\(31\) 8.43637 1.51522 0.757609 0.652709i \(-0.226368\pi\)
0.757609 + 0.652709i \(0.226368\pi\)
\(32\) 6.45146i 1.14047i
\(33\) 9.01841i 1.56990i
\(34\) 7.14982 1.22618
\(35\) 1.59155 2.82564i 0.269021 0.477620i
\(36\) 3.11474 0.519123
\(37\) 5.95953i 0.979741i −0.871795 0.489871i \(-0.837044\pi\)
0.871795 0.489871i \(-0.162956\pi\)
\(38\) 0 0
\(39\) −7.07965 −1.13365
\(40\) −1.35673 + 2.40873i −0.214517 + 0.380854i
\(41\) −10.4364 −1.62989 −0.814944 0.579540i \(-0.803232\pi\)
−0.814944 + 0.579540i \(0.803232\pi\)
\(42\) 6.11775i 0.943990i
\(43\) 1.45033i 0.221173i −0.993867 0.110586i \(-0.964727\pi\)
0.993867 0.110586i \(-0.0352729\pi\)
\(44\) 5.14982 0.776365
\(45\) −4.59155 2.58620i −0.684468 0.385529i
\(46\) 9.79310 1.44391
\(47\) 4.90686i 0.715739i −0.933772 0.357869i \(-0.883503\pi\)
0.933772 0.357869i \(-0.116497\pi\)
\(48\) 11.3329i 1.63576i
\(49\) 4.89655 0.699507
\(50\) −7.79310 + 4.72319i −1.10211 + 0.667960i
\(51\) −9.07965 −1.27140
\(52\) 4.04272i 0.560625i
\(53\) 4.23127i 0.581209i 0.956843 + 0.290605i \(0.0938564\pi\)
−0.956843 + 0.290605i \(0.906144\pi\)
\(54\) 2.71345 0.369254
\(55\) −7.59155 4.27596i −1.02364 0.576571i
\(56\) 1.79310 0.239613
\(57\) 0 0
\(58\) 10.9352i 1.43586i
\(59\) 3.35673 0.437008 0.218504 0.975836i \(-0.429882\pi\)
0.218504 + 0.975836i \(0.429882\pi\)
\(60\) −3.35673 + 5.95953i −0.433351 + 0.769372i
\(61\) 10.3329 1.32300 0.661498 0.749947i \(-0.269921\pi\)
0.661498 + 0.749947i \(0.269921\pi\)
\(62\) 15.3756i 1.95270i
\(63\) 3.41802i 0.430631i
\(64\) 1.96491 0.245614
\(65\) 3.35673 5.95953i 0.416351 0.739189i
\(66\) −16.4364 −2.02318
\(67\) 9.84404i 1.20264i −0.799008 0.601320i \(-0.794642\pi\)
0.799008 0.601320i \(-0.205358\pi\)
\(68\) 5.18479i 0.628749i
\(69\) −12.4364 −1.49716
\(70\) 5.14982 + 2.90066i 0.615522 + 0.346695i
\(71\) −8.64327 −1.02577 −0.512884 0.858458i \(-0.671423\pi\)
−0.512884 + 0.858458i \(0.671423\pi\)
\(72\) 2.91372i 0.343385i
\(73\) 2.43418i 0.284899i −0.989802 0.142449i \(-0.954502\pi\)
0.989802 0.142449i \(-0.0454978\pi\)
\(74\) 10.8615 1.26262
\(75\) 9.89655 5.99804i 1.14276 0.692594i
\(76\) 0 0
\(77\) 5.65127i 0.644022i
\(78\) 12.9029i 1.46097i
\(79\) −12.4364 −1.39920 −0.699601 0.714534i \(-0.746639\pi\)
−0.699601 + 0.714534i \(0.746639\pi\)
\(80\) −9.53982 5.37334i −1.06658 0.600757i
\(81\) −10.5160 −1.16845
\(82\) 19.0207i 2.10048i
\(83\) 12.6635i 1.39000i 0.719011 + 0.694999i \(0.244595\pi\)
−0.719011 + 0.694999i \(0.755405\pi\)
\(84\) 4.43637 0.484048
\(85\) 4.30500 7.64310i 0.466943 0.829011i
\(86\) 2.64327 0.285032
\(87\) 13.8868i 1.48882i
\(88\) 4.81746i 0.513543i
\(89\) 12.3662 1.31081 0.655407 0.755276i \(-0.272497\pi\)
0.655407 + 0.755276i \(0.272497\pi\)
\(90\) 4.71345 8.36826i 0.496841 0.882092i
\(91\) −4.43637 −0.465058
\(92\) 7.10160i 0.740393i
\(93\) 19.5256i 2.02472i
\(94\) 8.94292 0.922392
\(95\) 0 0
\(96\) −14.9316 −1.52395
\(97\) 3.05888i 0.310582i 0.987869 + 0.155291i \(0.0496315\pi\)
−0.987869 + 0.155291i \(0.950369\pi\)
\(98\) 8.92414i 0.901474i
\(99\) 9.18310 0.922936
\(100\) −3.42509 5.65127i −0.342509 0.565127i
\(101\) 3.35673 0.334007 0.167003 0.985956i \(-0.446591\pi\)
0.167003 + 0.985956i \(0.446591\pi\)
\(102\) 16.5480i 1.63849i
\(103\) 13.0611i 1.28695i −0.765466 0.643476i \(-0.777492\pi\)
0.765466 0.643476i \(-0.222508\pi\)
\(104\) 3.78181 0.370837
\(105\) −6.53982 3.68358i −0.638221 0.359480i
\(106\) −7.71164 −0.749020
\(107\) 5.77099i 0.557903i −0.960305 0.278951i \(-0.910013\pi\)
0.960305 0.278951i \(-0.0899868\pi\)
\(108\) 1.96770i 0.189342i
\(109\) 6.64327 0.636310 0.318155 0.948039i \(-0.396937\pi\)
0.318155 + 0.948039i \(0.396937\pi\)
\(110\) 7.79310 13.8359i 0.743043 1.31920i
\(111\) −13.7931 −1.30918
\(112\) 7.10160i 0.671038i
\(113\) 9.41606i 0.885789i 0.896574 + 0.442894i \(0.146048\pi\)
−0.896574 + 0.442894i \(0.853952\pi\)
\(114\) 0 0
\(115\) 5.89655 10.4687i 0.549856 0.976215i
\(116\) −7.92982 −0.736266
\(117\) 7.20893i 0.666466i
\(118\) 6.11775i 0.563185i
\(119\) −5.68965 −0.521569
\(120\) 5.57491 + 3.14009i 0.508918 + 0.286649i
\(121\) 4.18310 0.380282
\(122\) 18.8321i 1.70498i
\(123\) 24.1546i 2.17794i
\(124\) −11.1498 −1.00128
\(125\) 0.356726 + 11.1746i 0.0319065 + 0.999491i
\(126\) −6.22947 −0.554966
\(127\) 11.0934i 0.984383i 0.870487 + 0.492192i \(0.163804\pi\)
−0.870487 + 0.492192i \(0.836196\pi\)
\(128\) 9.32179i 0.823938i
\(129\) −3.35673 −0.295543
\(130\) 10.8615 + 6.11775i 0.952613 + 0.536562i
\(131\) 4.61000 0.402778 0.201389 0.979511i \(-0.435455\pi\)
0.201389 + 0.979511i \(0.435455\pi\)
\(132\) 11.9191i 1.03742i
\(133\) 0 0
\(134\) 17.9411 1.54988
\(135\) 1.63380 2.90066i 0.140615 0.249649i
\(136\) 4.85018 0.415899
\(137\) 13.1808i 1.12612i 0.826417 + 0.563058i \(0.190375\pi\)
−0.826417 + 0.563058i \(0.809625\pi\)
\(138\) 22.6657i 1.92944i
\(139\) −1.18310 −0.100349 −0.0501745 0.998740i \(-0.515978\pi\)
−0.0501745 + 0.998740i \(0.515978\pi\)
\(140\) −2.10345 + 3.73447i −0.177774 + 0.315620i
\(141\) −11.3567 −0.956409
\(142\) 15.7527i 1.32194i
\(143\) 11.9191i 0.996722i
\(144\) 11.5398 0.961652
\(145\) 11.6896 + 6.58423i 0.970772 + 0.546791i
\(146\) 4.43637 0.367157
\(147\) 11.3329i 0.934719i
\(148\) 7.87634i 0.647431i
\(149\) −5.46018 −0.447315 −0.223658 0.974668i \(-0.571800\pi\)
−0.223658 + 0.974668i \(0.571800\pi\)
\(150\) 10.9316 + 18.0368i 0.892565 + 1.47270i
\(151\) 5.07965 0.413376 0.206688 0.978407i \(-0.433732\pi\)
0.206688 + 0.978407i \(0.433732\pi\)
\(152\) 0 0
\(153\) 9.24546i 0.747451i
\(154\) −10.2996 −0.829969
\(155\) 16.4364 + 9.25784i 1.32020 + 0.743608i
\(156\) 9.35673 0.749138
\(157\) 6.11775i 0.488250i −0.969744 0.244125i \(-0.921499\pi\)
0.969744 0.244125i \(-0.0785007\pi\)
\(158\) 22.6657i 1.80319i
\(159\) 9.79310 0.776643
\(160\) 7.07965 12.5692i 0.559695 0.993683i
\(161\) −7.79310 −0.614182
\(162\) 19.1658i 1.50581i
\(163\) 16.4365i 1.28740i −0.765277 0.643701i \(-0.777398\pi\)
0.765277 0.643701i \(-0.222602\pi\)
\(164\) 13.7931 1.07706
\(165\) −9.89655 + 17.5703i −0.770445 + 1.36785i
\(166\) −23.0796 −1.79133
\(167\) 3.80329i 0.294308i −0.989114 0.147154i \(-0.952989\pi\)
0.989114 0.147154i \(-0.0470112\pi\)
\(168\) 4.15006i 0.320184i
\(169\) 3.64327 0.280252
\(170\) 13.9298 + 7.84602i 1.06837 + 0.601762i
\(171\) 0 0
\(172\) 1.91681i 0.146155i
\(173\) 11.3838i 0.865491i 0.901516 + 0.432746i \(0.142455\pi\)
−0.901516 + 0.432746i \(0.857545\pi\)
\(174\) 25.3091 1.91868
\(175\) 6.20155 3.75860i 0.468793 0.284123i
\(176\) 19.0796 1.43818
\(177\) 7.76901i 0.583954i
\(178\) 22.5378i 1.68928i
\(179\) 10.0702 0.752680 0.376340 0.926482i \(-0.377182\pi\)
0.376340 + 0.926482i \(0.377182\pi\)
\(180\) 6.06836 + 3.41802i 0.452309 + 0.254765i
\(181\) −0.573097 −0.0425980 −0.0212990 0.999773i \(-0.506780\pi\)
−0.0212990 + 0.999773i \(0.506780\pi\)
\(182\) 8.08545i 0.599333i
\(183\) 23.9151i 1.76786i
\(184\) 6.64327 0.489749
\(185\) 6.53982 11.6108i 0.480817 0.853643i
\(186\) 35.5862 2.60931
\(187\) 15.2862i 1.11784i
\(188\) 6.48509i 0.472973i
\(189\) −2.15930 −0.157066
\(190\) 0 0
\(191\) −3.18310 −0.230321 −0.115160 0.993347i \(-0.536738\pi\)
−0.115160 + 0.993347i \(0.536738\pi\)
\(192\) 4.54771i 0.328203i
\(193\) 3.05888i 0.220183i −0.993921 0.110091i \(-0.964886\pi\)
0.993921 0.110091i \(-0.0351143\pi\)
\(194\) −5.57491 −0.400255
\(195\) −13.7931 7.76901i −0.987744 0.556350i
\(196\) −6.47146 −0.462247
\(197\) 21.4933i 1.53134i −0.643235 0.765669i \(-0.722408\pi\)
0.643235 0.765669i \(-0.277592\pi\)
\(198\) 16.7365i 1.18941i
\(199\) 4.81690 0.341461 0.170731 0.985318i \(-0.445387\pi\)
0.170731 + 0.985318i \(0.445387\pi\)
\(200\) −5.28655 + 3.20404i −0.373815 + 0.226560i
\(201\) −22.7836 −1.60703
\(202\) 6.11775i 0.430444i
\(203\) 8.70197i 0.610758i
\(204\) 12.0000 0.840168
\(205\) −20.3329 11.4526i −1.42011 0.799883i
\(206\) 23.8044 1.65853
\(207\) 12.6635i 0.880173i
\(208\) 14.9779i 1.03853i
\(209\) 0 0
\(210\) 6.71345 11.9191i 0.463272 0.822494i
\(211\) −10.5066 −0.723301 −0.361650 0.932314i \(-0.617787\pi\)
−0.361650 + 0.932314i \(0.617787\pi\)
\(212\) 5.59220i 0.384074i
\(213\) 20.0045i 1.37069i
\(214\) 10.5178 0.718984
\(215\) 1.59155 2.82564i 0.108543 0.192707i
\(216\) 1.84070 0.125244
\(217\) 12.2355i 0.830600i
\(218\) 12.1076i 0.820031i
\(219\) −5.63380 −0.380697
\(220\) 10.0333 + 5.65127i 0.676443 + 0.381009i
\(221\) −12.0000 −0.807207
\(222\) 25.1384i 1.68718i
\(223\) 16.8947i 1.13136i 0.824626 + 0.565678i \(0.191385\pi\)
−0.824626 + 0.565678i \(0.808615\pi\)
\(224\) −9.35673 −0.625173
\(225\) −6.10757 10.0773i −0.407171 0.671818i
\(226\) −17.1611 −1.14154
\(227\) 17.1342i 1.13724i 0.822602 + 0.568618i \(0.192522\pi\)
−0.822602 + 0.568618i \(0.807478\pi\)
\(228\) 0 0
\(229\) −25.0464 −1.65511 −0.827555 0.561384i \(-0.810269\pi\)
−0.827555 + 0.561384i \(0.810269\pi\)
\(230\) 19.0796 + 10.7467i 1.25807 + 0.708615i
\(231\) 13.0796 0.860578
\(232\) 7.41804i 0.487018i
\(233\) 19.2986i 1.26429i 0.774849 + 0.632147i \(0.217826\pi\)
−0.774849 + 0.632147i \(0.782174\pi\)
\(234\) −13.1385 −0.858893
\(235\) 5.38465 9.55991i 0.351256 0.623620i
\(236\) −4.43637 −0.288783
\(237\) 28.7835i 1.86969i
\(238\) 10.3696i 0.672161i
\(239\) −18.7693 −1.21408 −0.607042 0.794669i \(-0.707644\pi\)
−0.607042 + 0.794669i \(0.707644\pi\)
\(240\) −12.4364 + 22.0795i −0.802764 + 1.42523i
\(241\) 14.4364 0.929929 0.464964 0.885329i \(-0.346067\pi\)
0.464964 + 0.885329i \(0.346067\pi\)
\(242\) 7.62385i 0.490079i
\(243\) 19.8724i 1.27482i
\(244\) −13.6564 −0.874260
\(245\) 9.53982 + 5.37334i 0.609477 + 0.343290i
\(246\) −44.0226 −2.80678
\(247\) 0 0
\(248\) 10.4302i 0.662320i
\(249\) 29.3091 1.85739
\(250\) −20.3662 + 0.650145i −1.28807 + 0.0411188i
\(251\) −10.9762 −0.692811 −0.346406 0.938085i \(-0.612598\pi\)
−0.346406 + 0.938085i \(0.612598\pi\)
\(252\) 4.51739i 0.284569i
\(253\) 20.9375i 1.31633i
\(254\) −20.2182 −1.26860
\(255\) −17.6896 9.96375i −1.10777 0.623954i
\(256\) 20.9191 1.30745
\(257\) 17.6392i 1.10030i −0.835066 0.550150i \(-0.814570\pi\)
0.835066 0.550150i \(-0.185430\pi\)
\(258\) 6.11775i 0.380875i
\(259\) −8.64327 −0.537067
\(260\) −4.43637 + 7.87634i −0.275132 + 0.488470i
\(261\) −14.1404 −0.875266
\(262\) 8.40189i 0.519071i
\(263\) 1.68976i 0.104195i −0.998642 0.0520975i \(-0.983409\pi\)
0.998642 0.0520975i \(-0.0165907\pi\)
\(264\) −11.1498 −0.686224
\(265\) −4.64327 + 8.24367i −0.285234 + 0.506405i
\(266\) 0 0
\(267\) 28.6211i 1.75158i
\(268\) 13.0102i 0.794727i
\(269\) −27.1022 −1.65245 −0.826226 0.563339i \(-0.809516\pi\)
−0.826226 + 0.563339i \(0.809516\pi\)
\(270\) 5.28655 + 2.97767i 0.321729 + 0.181215i
\(271\) 23.9524 1.45500 0.727502 0.686105i \(-0.240681\pi\)
0.727502 + 0.686105i \(0.240681\pi\)
\(272\) 19.2092i 1.16473i
\(273\) 10.2678i 0.621436i
\(274\) −24.0226 −1.45126
\(275\) −10.0981 16.6615i −0.608938 1.00473i
\(276\) 16.4364 0.989353
\(277\) 8.23549i 0.494822i −0.968911 0.247411i \(-0.920420\pi\)
0.968911 0.247411i \(-0.0795799\pi\)
\(278\) 2.15624i 0.129323i
\(279\) −19.8822 −1.19032
\(280\) 3.49345 + 1.96770i 0.208774 + 0.117592i
\(281\) 10.4364 0.622582 0.311291 0.950315i \(-0.399239\pi\)
0.311291 + 0.950315i \(0.399239\pi\)
\(282\) 20.6980i 1.23255i
\(283\) 10.4687i 0.622302i −0.950361 0.311151i \(-0.899286\pi\)
0.950361 0.311151i \(-0.100714\pi\)
\(284\) 11.4233 0.677847
\(285\) 0 0
\(286\) −21.7229 −1.28450
\(287\) 15.1362i 0.893459i
\(288\) 15.2043i 0.895923i
\(289\) 1.61000 0.0947059
\(290\) −12.0000 + 21.3048i −0.704664 + 1.25106i
\(291\) 7.07965 0.415016
\(292\) 3.21710i 0.188266i
\(293\) 16.4668i 0.961999i 0.876721 + 0.481000i \(0.159726\pi\)
−0.876721 + 0.481000i \(0.840274\pi\)
\(294\) 20.6546 1.20460
\(295\) 6.53982 + 3.68358i 0.380763 + 0.214466i
\(296\) 7.36801 0.428257
\(297\) 5.80131i 0.336626i
\(298\) 9.95137i 0.576467i
\(299\) −16.4364 −0.950540
\(300\) −13.0796 + 7.92723i −0.755154 + 0.457679i
\(301\) −2.10345 −0.121241
\(302\) 9.25784i 0.532729i
\(303\) 7.76901i 0.446318i
\(304\) 0 0
\(305\) 20.1314 + 11.3391i 1.15272 + 0.649273i
\(306\) −16.8502 −0.963260
\(307\) 7.87634i 0.449526i 0.974413 + 0.224763i \(0.0721609\pi\)
−0.974413 + 0.224763i \(0.927839\pi\)
\(308\) 7.46893i 0.425582i
\(309\) −30.2295 −1.71969
\(310\) −16.8727 + 29.9559i −0.958308 + 1.70138i
\(311\) 3.89655 0.220953 0.110477 0.993879i \(-0.464762\pi\)
0.110477 + 0.993879i \(0.464762\pi\)
\(312\) 8.75286i 0.495533i
\(313\) 7.76901i 0.439130i 0.975598 + 0.219565i \(0.0704638\pi\)
−0.975598 + 0.219565i \(0.929536\pi\)
\(314\) 11.1498 0.629221
\(315\) −3.75084 + 6.65925i −0.211336 + 0.375206i
\(316\) 16.4364 0.924618
\(317\) 19.0510i 1.07001i 0.844849 + 0.535005i \(0.179690\pi\)
−0.844849 + 0.535005i \(0.820310\pi\)
\(318\) 17.8483i 1.00088i
\(319\) −23.3793 −1.30899
\(320\) 3.82819 + 2.15624i 0.214002 + 0.120537i
\(321\) −13.3567 −0.745500
\(322\) 14.2032i 0.791514i
\(323\) 0 0
\(324\) 13.8984 0.772131
\(325\) 13.0796 7.92723i 0.725528 0.439724i
\(326\) 29.9560 1.65911
\(327\) 15.3756i 0.850272i
\(328\) 12.9029i 0.712444i
\(329\) −7.11655 −0.392348
\(330\) −32.0226 18.0368i −1.76278 0.992894i
\(331\) −8.00000 −0.439720 −0.219860 0.975531i \(-0.570560\pi\)
−0.219860 + 0.975531i \(0.570560\pi\)
\(332\) 16.7365i 0.918536i
\(333\) 14.0450i 0.769660i
\(334\) 6.93164 0.379282
\(335\) 10.8026 19.1789i 0.590207 1.04785i
\(336\) 16.4364 0.896678
\(337\) 6.89249i 0.375458i −0.982221 0.187729i \(-0.939887\pi\)
0.982221 0.187729i \(-0.0601127\pi\)
\(338\) 6.64000i 0.361168i
\(339\) 21.7931 1.18364
\(340\) −5.68965 + 10.1014i −0.308565 + 0.547826i
\(341\) −32.8727 −1.78016
\(342\) 0 0
\(343\) 17.2539i 0.931623i
\(344\) 1.79310 0.0966774
\(345\) −24.2295 13.6473i −1.30447 0.734747i
\(346\) −20.7473 −1.11538
\(347\) 30.5503i 1.64002i 0.572346 + 0.820012i \(0.306033\pi\)
−0.572346 + 0.820012i \(0.693967\pi\)
\(348\) 18.3533i 0.983838i
\(349\) −16.7693 −0.897640 −0.448820 0.893622i \(-0.648156\pi\)
−0.448820 + 0.893622i \(0.648156\pi\)
\(350\) 6.85018 + 11.3025i 0.366157 + 0.604147i
\(351\) −4.55416 −0.243083
\(352\) 25.1384i 1.33988i
\(353\) 29.0999i 1.54883i 0.632676 + 0.774417i \(0.281956\pi\)
−0.632676 + 0.774417i \(0.718044\pi\)
\(354\) 14.1593 0.752558
\(355\) −16.8395 9.48489i −0.893746 0.503406i
\(356\) −16.3436 −0.866210
\(357\) 13.1685i 0.696949i
\(358\) 18.3533i 0.970000i
\(359\) 11.6896 0.616956 0.308478 0.951231i \(-0.400180\pi\)
0.308478 + 0.951231i \(0.400180\pi\)
\(360\) 3.19743 5.67672i 0.168519 0.299189i
\(361\) 0 0
\(362\) 1.04449i 0.0548972i
\(363\) 9.68161i 0.508153i
\(364\) 5.86328 0.307319
\(365\) 2.67120 4.74244i 0.139817 0.248231i
\(366\) 43.5862 2.27829
\(367\) 4.20095i 0.219288i 0.993971 + 0.109644i \(0.0349710\pi\)
−0.993971 + 0.109644i \(0.965029\pi\)
\(368\) 26.3108i 1.37155i
\(369\) 24.5957 1.28040
\(370\) 21.1611 + 11.9191i 1.10011 + 0.619643i
\(371\) 6.13672 0.318603
\(372\) 25.8058i 1.33797i
\(373\) 16.9456i 0.877412i 0.898631 + 0.438706i \(0.144563\pi\)
−0.898631 + 0.438706i \(0.855437\pi\)
\(374\) −27.8596 −1.44059
\(375\) 25.8633 0.825627i 1.33557 0.0426352i
\(376\) 6.06655 0.312858
\(377\) 18.3533i 0.945241i
\(378\) 3.93539i 0.202415i
\(379\) 10.3662 0.532476 0.266238 0.963907i \(-0.414219\pi\)
0.266238 + 0.963907i \(0.414219\pi\)
\(380\) 0 0
\(381\) 25.6753 1.31539
\(382\) 5.80131i 0.296821i
\(383\) 20.5907i 1.05214i −0.850442 0.526068i \(-0.823666\pi\)
0.850442 0.526068i \(-0.176334\pi\)
\(384\) −21.5749 −1.10099
\(385\) −6.20155 + 11.0102i −0.316060 + 0.561133i
\(386\) 5.57491 0.283756
\(387\) 3.41802i 0.173748i
\(388\) 4.04272i 0.205238i
\(389\) −8.10345 −0.410861 −0.205431 0.978672i \(-0.565859\pi\)
−0.205431 + 0.978672i \(0.565859\pi\)
\(390\) 14.1593 25.1384i 0.716984 1.27293i
\(391\) −21.0796 −1.06604
\(392\) 6.05380i 0.305763i
\(393\) 10.6697i 0.538213i
\(394\) 39.1724 1.97348
\(395\) −24.2295 13.6473i −1.21912 0.686672i
\(396\) −12.1367 −0.609893
\(397\) 3.46891i 0.174100i −0.996204 0.0870499i \(-0.972256\pi\)
0.996204 0.0870499i \(-0.0277440\pi\)
\(398\) 8.77898i 0.440050i
\(399\) 0 0
\(400\) −12.6896 20.9375i −0.634482 1.04687i
\(401\) 15.9524 0.796625 0.398312 0.917250i \(-0.369596\pi\)
0.398312 + 0.917250i \(0.369596\pi\)
\(402\) 41.5240i 2.07103i
\(403\) 25.8058i 1.28548i
\(404\) −4.43637 −0.220718
\(405\) −20.4881 11.5400i −1.01806 0.573427i
\(406\) 15.8596 0.787101
\(407\) 23.2216i 1.15105i
\(408\) 11.2255i 0.555747i
\(409\) −3.92982 −0.194317 −0.0971586 0.995269i \(-0.530975\pi\)
−0.0971586 + 0.995269i \(0.530975\pi\)
\(410\) 20.8727 37.0575i 1.03083 1.83014i
\(411\) 30.5066 1.50478
\(412\) 17.2621i 0.850442i
\(413\) 4.86835i 0.239556i
\(414\) −23.0796 −1.13430
\(415\) −13.8965 + 24.6719i −0.682155 + 1.21110i
\(416\) −19.7342 −0.967549
\(417\) 2.73823i 0.134092i
\(418\) 0 0
\(419\) 34.2996 1.67565 0.837824 0.545941i \(-0.183828\pi\)
0.837824 + 0.545941i \(0.183828\pi\)
\(420\) 8.64327 + 4.86835i 0.421749 + 0.237551i
\(421\) 26.0891 1.27151 0.635753 0.771893i \(-0.280690\pi\)
0.635753 + 0.771893i \(0.280690\pi\)
\(422\) 19.1486i 0.932138i
\(423\) 11.5641i 0.562267i
\(424\) −5.23129 −0.254054
\(425\) 16.7746 10.1667i 0.813690 0.493156i
\(426\) −36.4589 −1.76644
\(427\) 14.9861i 0.725229i
\(428\) 7.62715i 0.368672i
\(429\) 27.5862 1.33187
\(430\) 5.14982 + 2.90066i 0.248347 + 0.139882i
\(431\) −10.2996 −0.496117 −0.248058 0.968745i \(-0.579792\pi\)
−0.248058 + 0.968745i \(0.579792\pi\)
\(432\) 7.29014i 0.350747i
\(433\) 36.2319i 1.74119i 0.491999 + 0.870596i \(0.336266\pi\)
−0.491999 + 0.870596i \(0.663734\pi\)
\(434\) 22.2996 1.07042
\(435\) 15.2389 27.0552i 0.730651 1.29720i
\(436\) −8.78000 −0.420486
\(437\) 0 0
\(438\) 10.2678i 0.490615i
\(439\) −24.0891 −1.14971 −0.574855 0.818255i \(-0.694942\pi\)
−0.574855 + 0.818255i \(0.694942\pi\)
\(440\) 5.28655 9.38574i 0.252026 0.447448i
\(441\) −11.5398 −0.549515
\(442\) 21.8704i 1.04027i
\(443\) 5.52337i 0.262423i −0.991354 0.131212i \(-0.958113\pi\)
0.991354 0.131212i \(-0.0418868\pi\)
\(444\) 18.2295 0.865132
\(445\) 24.0927 + 13.5703i 1.14211 + 0.643295i
\(446\) −30.7913 −1.45801
\(447\) 12.6374i 0.597727i
\(448\) 2.84977i 0.134639i
\(449\) 7.92982 0.374231 0.187116 0.982338i \(-0.440086\pi\)
0.187116 + 0.982338i \(0.440086\pi\)
\(450\) 18.3662 11.1313i 0.865791 0.524733i
\(451\) 40.6658 1.91488
\(452\) 12.4446i 0.585346i
\(453\) 11.7566i 0.552375i
\(454\) −31.2277 −1.46559
\(455\) −8.64327 4.86835i −0.405203 0.228232i
\(456\) 0 0
\(457\) 22.6534i 1.05968i 0.848098 + 0.529840i \(0.177748\pi\)
−0.848098 + 0.529840i \(0.822252\pi\)
\(458\) 45.6479i 2.13299i
\(459\) −5.84070 −0.272621
\(460\) −7.79310 + 13.8359i −0.363355 + 0.645101i
\(461\) 13.3900 0.623634 0.311817 0.950142i \(-0.399062\pi\)
0.311817 + 0.950142i \(0.399062\pi\)
\(462\) 23.8381i 1.10905i
\(463\) 16.9029i 0.785546i −0.919635 0.392773i \(-0.871516\pi\)
0.919635 0.392773i \(-0.128484\pi\)
\(464\) −29.3793 −1.36390
\(465\) 21.4269 38.0413i 0.993649 1.76412i
\(466\) −35.1724 −1.62933
\(467\) 22.2501i 1.02961i 0.857306 + 0.514807i \(0.172136\pi\)
−0.857306 + 0.514807i \(0.827864\pi\)
\(468\) 9.52759i 0.440413i
\(469\) −14.2771 −0.659254
\(470\) 17.4233 + 9.81371i 0.803676 + 0.452673i
\(471\) −14.1593 −0.652426
\(472\) 4.15006i 0.191022i
\(473\) 5.65127i 0.259846i
\(474\) −52.4589 −2.40952
\(475\) 0 0
\(476\) 7.51965 0.344663
\(477\) 9.97194i 0.456584i
\(478\) 34.2077i 1.56462i
\(479\) −0.366196 −0.0167319 −0.00836597 0.999965i \(-0.502663\pi\)
−0.00836597 + 0.999965i \(0.502663\pi\)
\(480\) −29.0909 16.3856i −1.32781 0.747895i
\(481\) −18.2295 −0.831192
\(482\) 26.3108i 1.19842i
\(483\) 18.0368i 0.820704i
\(484\) −5.52854 −0.251297
\(485\) −3.35673 + 5.95953i −0.152421 + 0.270608i
\(486\) −36.2182 −1.64289
\(487\) 26.8461i 1.21651i −0.793740 0.608257i \(-0.791869\pi\)
0.793740 0.608257i \(-0.208131\pi\)
\(488\) 12.7750i 0.578298i
\(489\) −38.0415 −1.72030
\(490\) −9.79310 + 17.3867i −0.442407 + 0.785450i
\(491\) −23.7266 −1.07076 −0.535382 0.844610i \(-0.679832\pi\)
−0.535382 + 0.844610i \(0.679832\pi\)
\(492\) 31.9236i 1.43923i
\(493\) 23.5381i 1.06010i
\(494\) 0 0
\(495\) 17.8912 + 10.0773i 0.804150 + 0.452940i
\(496\) −41.3091 −1.85483
\(497\) 12.5356i 0.562298i
\(498\) 53.4169i 2.39367i
\(499\) −6.81690 −0.305166 −0.152583 0.988291i \(-0.548759\pi\)
−0.152583 + 0.988291i \(0.548759\pi\)
\(500\) −0.471462 14.7688i −0.0210844 0.660482i
\(501\) −8.80257 −0.393270
\(502\) 20.0045i 0.892845i
\(503\) 23.4102i 1.04381i −0.853004 0.521904i \(-0.825222\pi\)
0.853004 0.521904i \(-0.174778\pi\)
\(504\) −4.22584 −0.188234
\(505\) 6.53982 + 3.68358i 0.291018 + 0.163917i
\(506\) −38.1593 −1.69639
\(507\) 8.43221i 0.374488i
\(508\) 14.6615i 0.650499i
\(509\) 16.9204 0.749981 0.374991 0.927029i \(-0.377646\pi\)
0.374991 + 0.927029i \(0.377646\pi\)
\(510\) 18.1593 32.2400i 0.804107 1.42761i
\(511\) −3.53035 −0.156174
\(512\) 19.4823i 0.861003i
\(513\) 0 0
\(514\) 32.1480 1.41799
\(515\) 14.3329 25.4467i 0.631584 1.12131i
\(516\) 4.43637 0.195300
\(517\) 19.1198i 0.840888i
\(518\) 15.7527i 0.692133i
\(519\) 26.3473 1.15652
\(520\) 7.36801 + 4.15006i 0.323109 + 0.181992i
\(521\) 3.49345 0.153051 0.0765254 0.997068i \(-0.475617\pi\)
0.0765254 + 0.997068i \(0.475617\pi\)
\(522\) 25.7713i 1.12798i
\(523\) 14.9271i 0.652714i 0.945247 + 0.326357i \(0.105821\pi\)
−0.945247 + 0.326357i \(0.894179\pi\)
\(524\) −6.09275 −0.266163
\(525\) −8.69912 14.3532i −0.379661 0.626427i
\(526\) 3.07965 0.134279
\(527\) 33.0960i 1.44168i
\(528\) 44.1591i 1.92178i
\(529\) −5.87275 −0.255337
\(530\) −15.0244 8.46253i −0.652618 0.367589i
\(531\) −7.91088 −0.343303
\(532\) 0 0
\(533\) 31.9236i 1.38276i
\(534\) 52.1629 2.25731
\(535\) 6.33292 11.2435i 0.273796 0.486098i
\(536\) 12.1706 0.525689
\(537\) 23.3070i 1.00577i
\(538\) 49.3948i 2.12956i
\(539\) −19.0796 −0.821819
\(540\) −2.15930 + 3.83361i −0.0929213 + 0.164972i
\(541\) −12.6991 −0.545978 −0.272989 0.962017i \(-0.588012\pi\)
−0.272989 + 0.962017i \(0.588012\pi\)
\(542\) 43.6541i 1.87510i
\(543\) 1.32641i 0.0569217i
\(544\) −25.3091 −1.08512
\(545\) 12.9429 + 7.29014i 0.554414 + 0.312275i
\(546\) −18.7135 −0.800862
\(547\) 31.8162i 1.36036i −0.733043 0.680182i \(-0.761901\pi\)
0.733043 0.680182i \(-0.238099\pi\)
\(548\) 17.4203i 0.744158i
\(549\) −24.3519 −1.03931
\(550\) 30.3662 18.4041i 1.29482 0.784756i
\(551\) 0 0
\(552\) 15.3756i 0.654429i
\(553\) 18.0368i 0.767003i
\(554\) 15.0095 0.637691
\(555\) −26.8727 15.1362i −1.14068 0.642494i
\(556\) 1.56363 0.0663125
\(557\) 9.64731i 0.408770i 0.978891 + 0.204385i \(0.0655194\pi\)
−0.978891 + 0.204385i \(0.934481\pi\)
\(558\) 36.2361i 1.53399i
\(559\) −4.43637 −0.187639
\(560\) −7.79310 + 13.8359i −0.329319 + 0.584672i
\(561\) 35.3793 1.49372
\(562\) 19.0207i 0.802338i
\(563\) 4.28216i 0.180471i 0.995920 + 0.0902357i \(0.0287620\pi\)
−0.995920 + 0.0902357i \(0.971238\pi\)
\(564\) 15.0095 0.632013
\(565\) −10.3329 + 18.3451i −0.434709 + 0.771783i
\(566\) 19.0796 0.801977
\(567\) 15.2517i 0.640510i
\(568\) 10.6860i 0.448376i
\(569\) 42.2295 1.77035 0.885176 0.465257i \(-0.154038\pi\)
0.885176 + 0.465257i \(0.154038\pi\)
\(570\) 0 0
\(571\) −19.2200 −0.804332 −0.402166 0.915567i \(-0.631743\pi\)
−0.402166 + 0.915567i \(0.631743\pi\)
\(572\) 15.7527i 0.658653i
\(573\) 7.36715i 0.307767i
\(574\) −27.5862 −1.15143
\(575\) 22.9762 13.9253i 0.958174 0.580724i
\(576\) −4.63076 −0.192948
\(577\) 40.7919i 1.69819i 0.528239 + 0.849096i \(0.322852\pi\)
−0.528239 + 0.849096i \(0.677148\pi\)
\(578\) 2.93428i 0.122050i
\(579\) −7.07965 −0.294220
\(580\) −15.4495 8.70197i −0.641504 0.361329i
\(581\) 18.3662 0.761958
\(582\) 12.9029i 0.534843i
\(583\) 16.4873i 0.682836i
\(584\) 3.00947 0.124533
\(585\) −7.91088 + 14.0450i −0.327075 + 0.580689i
\(586\) −30.0113 −1.23975
\(587\) 31.8851i 1.31604i 0.753001 + 0.658019i \(0.228605\pi\)
−0.753001 + 0.658019i \(0.771395\pi\)
\(588\) 14.9779i 0.617680i
\(589\) 0 0
\(590\) −6.71345 + 11.9191i −0.276388 + 0.490700i
\(591\) −49.7455 −2.04626
\(592\) 29.1811i 1.19934i
\(593\) 38.8973i 1.59732i −0.601783 0.798660i \(-0.705543\pi\)
0.601783 0.798660i \(-0.294457\pi\)
\(594\) −10.5731 −0.433819
\(595\) −11.0850 6.24366i −0.454441 0.255965i
\(596\) 7.21637 0.295594
\(597\) 11.1485i 0.456279i
\(598\) 29.9559i 1.22499i
\(599\) 28.1629 1.15071 0.575353 0.817905i \(-0.304865\pi\)
0.575353 + 0.817905i \(0.304865\pi\)
\(600\) 7.41562 + 12.2355i 0.302741 + 0.499512i
\(601\) 5.56363 0.226945 0.113473 0.993541i \(-0.463803\pi\)
0.113473 + 0.993541i \(0.463803\pi\)
\(602\) 3.83361i 0.156246i
\(603\) 23.1997i 0.944764i
\(604\) −6.71345 −0.273166
\(605\) 8.14982 + 4.59042i 0.331337 + 0.186627i
\(606\) 14.1593 0.575182
\(607\) 33.9986i 1.37996i 0.723828 + 0.689980i \(0.242381\pi\)
−0.723828 + 0.689980i \(0.757619\pi\)
\(608\) 0 0
\(609\) −20.1404 −0.816128
\(610\) −20.6658 + 36.6902i −0.836736 + 1.48554i
\(611\) −15.0095 −0.607218
\(612\) 12.2191i 0.493929i
\(613\) 17.5703i 0.709659i 0.934931 + 0.354830i \(0.115461\pi\)
−0.934931 + 0.354830i \(0.884539\pi\)
\(614\) −14.3549 −0.579317
\(615\) −26.5066 + 47.0597i −1.06885 + 1.89763i
\(616\) −6.98690 −0.281510
\(617\) 13.0791i 0.526544i 0.964722 + 0.263272i \(0.0848016\pi\)
−0.964722 + 0.263272i \(0.915198\pi\)
\(618\) 55.0943i 2.21622i
\(619\) 18.9393 0.761234 0.380617 0.924733i \(-0.375712\pi\)
0.380617 + 0.924733i \(0.375712\pi\)
\(620\) −21.7229 12.2355i −0.872414 0.491390i
\(621\) −8.00000 −0.321029
\(622\) 7.10160i 0.284748i
\(623\) 17.9350i 0.718552i
\(624\) 34.6658 1.38774
\(625\) −11.5677 + 22.1627i −0.462710 + 0.886510i
\(626\) −14.1593 −0.565919
\(627\) 0 0
\(628\) 8.08545i 0.322645i
\(629\) −23.3793 −0.932194
\(630\) −12.1367 6.83605i −0.483539 0.272355i
\(631\) 31.6896 1.26154 0.630772 0.775968i \(-0.282738\pi\)
0.630772 + 0.775968i \(0.282738\pi\)
\(632\) 15.3756i 0.611608i
\(633\) 24.3170i 0.966514i
\(634\) −34.7211 −1.37895
\(635\) −12.1736 + 21.6131i −0.483096 + 0.857688i
\(636\) −12.9429 −0.513220
\(637\) 14.9779i 0.593448i
\(638\) 42.6096i 1.68693i
\(639\) 20.3698 0.805818
\(640\) 10.2295 18.1614i 0.404355 0.717893i
\(641\) −47.9750 −1.89490 −0.947449 0.319908i \(-0.896348\pi\)
−0.947449 + 0.319908i \(0.896348\pi\)
\(642\) 24.3431i 0.960746i
\(643\) 0.200927i 0.00792378i −0.999992 0.00396189i \(-0.998739\pi\)
0.999992 0.00396189i \(-0.00126111\pi\)
\(644\) 10.2996 0.405863
\(645\) −6.53982 3.68358i −0.257505 0.145041i
\(646\) 0 0
\(647\) 1.58798i 0.0624299i −0.999513 0.0312150i \(-0.990062\pi\)
0.999513 0.0312150i \(-0.00993765\pi\)
\(648\) 13.0014i 0.510743i
\(649\) −13.0796 −0.513421
\(650\) 14.4477 + 23.8381i 0.566684 + 0.935008i
\(651\) −28.3186 −1.10989
\(652\) 21.7230i 0.850739i
\(653\) 33.5624i 1.31340i −0.754152 0.656700i \(-0.771952\pi\)
0.754152 0.656700i \(-0.228048\pi\)
\(654\) 28.0226 1.09577
\(655\) 8.98155 + 5.05889i 0.350938 + 0.197667i
\(656\) 51.1022 1.99521
\(657\) 5.73669i 0.223809i
\(658\) 12.9702i 0.505630i
\(659\) 15.3567 0.598213 0.299107 0.954220i \(-0.403311\pi\)
0.299107 + 0.954220i \(0.403311\pi\)
\(660\) 13.0796 23.2216i 0.509125 0.903900i
\(661\) −12.8026 −0.497962 −0.248981 0.968508i \(-0.580096\pi\)
−0.248981 + 0.968508i \(0.580096\pi\)
\(662\) 14.5803i 0.566679i
\(663\) 27.7735i 1.07863i
\(664\) −15.6564 −0.607585
\(665\) 0 0
\(666\) −25.5975 −0.991882
\(667\) 32.2400i 1.24834i
\(668\) 5.02657i 0.194484i
\(669\) 39.1022 1.51178
\(670\) 34.9542 + 19.6881i 1.35040 + 0.760617i
\(671\) −40.2627 −1.55433
\(672\) 21.6558i 0.835389i
\(673\) 7.82545i 0.301649i −0.988561 0.150824i \(-0.951807\pi\)
0.988561 0.150824i \(-0.0481928\pi\)
\(674\) 12.5618 0.483863
\(675\) 6.36620 3.85838i 0.245035 0.148509i
\(676\) −4.81509 −0.185196
\(677\) 21.6516i 0.832137i 0.909333 + 0.416069i \(0.136592\pi\)
−0.909333 + 0.416069i \(0.863408\pi\)
\(678\) 39.7187i 1.52539i
\(679\) 4.43637 0.170252
\(680\) 9.44947 + 5.32245i 0.362371 + 0.204107i
\(681\) 39.6564 1.51964
\(682\) 59.9118i 2.29414i
\(683\) 6.38751i 0.244411i −0.992505 0.122206i \(-0.961003\pi\)
0.992505 0.122206i \(-0.0389967\pi\)
\(684\) 0 0
\(685\) −14.4643 + 25.6799i −0.552652 + 0.981179i
\(686\) 31.4458 1.20061
\(687\) 57.9688i 2.21165i
\(688\) 7.10160i 0.270746i
\(689\) 12.9429 0.493086
\(690\) 24.8727 44.1591i 0.946889 1.68111i
\(691\) 44.4958 1.69270 0.846351 0.532626i \(-0.178795\pi\)
0.846351 + 0.532626i \(0.178795\pi\)
\(692\) 15.0452i 0.571933i
\(693\) 13.3185i 0.505928i
\(694\) −55.6789 −2.11354
\(695\) −2.30500 1.29830i −0.0874336 0.0492473i
\(696\) 17.1688 0.650780
\(697\) 40.9420i 1.55079i
\(698\) 30.5626i 1.15681i
\(699\) 44.6658 1.68942
\(700\) −8.19620 + 4.96750i −0.309787 + 0.187754i
\(701\) 17.5160 0.661571 0.330785 0.943706i \(-0.392686\pi\)
0.330785 + 0.943706i \(0.392686\pi\)
\(702\) 8.30011i 0.313268i
\(703\) 0 0
\(704\) −7.65638 −0.288560
\(705\) −22.1260 12.4626i −0.833314 0.469367i
\(706\) −53.0357 −1.99602
\(707\) 4.86835i 0.183093i
\(708\) 10.2678i 0.385888i
\(709\) −11.4269 −0.429146 −0.214573 0.976708i \(-0.568836\pi\)
−0.214573 + 0.976708i \(0.568836\pi\)
\(710\) 17.2865 30.6905i 0.648753 1.15180i
\(711\) 29.3091 1.09918
\(712\) 15.2888i 0.572973i
\(713\) 45.3315i 1.69768i
\(714\) −24.0000 −0.898177
\(715\) −13.0796 + 23.2216i −0.489151 + 0.868439i
\(716\) −13.3091 −0.497385
\(717\) 43.4408i 1.62233i
\(718\) 21.3048i 0.795088i
\(719\) −15.8965 −0.592841 −0.296421 0.955057i \(-0.595793\pi\)
−0.296421 + 0.955057i \(0.595793\pi\)
\(720\) 22.4827 + 12.6635i 0.837883 + 0.471940i
\(721\) −18.9429 −0.705471
\(722\) 0 0
\(723\) 33.4124i 1.24262i
\(724\) 0.757427 0.0281495
\(725\) 15.5493 + 25.6558i 0.577486 + 0.952832i
\(726\) 17.6451 0.654871
\(727\) 41.9905i 1.55734i −0.627434 0.778670i \(-0.715895\pi\)
0.627434 0.778670i \(-0.284105\pi\)
\(728\) 5.48487i 0.203283i
\(729\) 14.4458 0.535031
\(730\) 8.64327 + 4.86835i 0.319902 + 0.180186i
\(731\) −5.68965 −0.210439
\(732\) 31.6071i 1.16823i
\(733\) 0.632884i 0.0233761i −0.999932 0.0116881i \(-0.996279\pi\)
0.999932 0.0116881i \(-0.00372051\pi\)
\(734\) −7.65638 −0.282602
\(735\) 12.4364 22.0795i 0.458723 0.814416i
\(736\) −34.6658 −1.27780
\(737\) 38.3578i 1.41293i
\(738\) 44.8265i 1.65009i
\(739\) 29.5493 1.08699 0.543494 0.839413i \(-0.317101\pi\)
0.543494 + 0.839413i \(0.317101\pi\)
\(740\) −8.64327 + 15.3453i −0.317733 + 0.564103i
\(741\) 0 0
\(742\) 11.1844i 0.410592i
\(743\) 31.3374i 1.14966i 0.818274 + 0.574829i \(0.194931\pi\)
−0.818274 + 0.574829i \(0.805069\pi\)
\(744\) 24.1404 0.885028
\(745\) −10.6379 5.99184i −0.389743 0.219524i
\(746\) −30.8840 −1.13074
\(747\) 29.8443i 1.09195i
\(748\) 20.2028i 0.738688i
\(749\) −8.36983 −0.305827
\(750\) 1.50474 + 47.1367i 0.0549452 + 1.72119i
\(751\) −25.0131 −0.912741 −0.456371 0.889790i \(-0.650851\pi\)
−0.456371 + 0.889790i \(0.650851\pi\)
\(752\) 24.0267i 0.876163i
\(753\) 25.4040i 0.925772i
\(754\) 33.4495 1.21816
\(755\) 9.89655 + 5.57426i 0.360172 + 0.202868i
\(756\) 2.85381 0.103792
\(757\) 32.0900i 1.16633i 0.812354 + 0.583165i \(0.198186\pi\)
−0.812354 + 0.583165i \(0.801814\pi\)
\(758\) 18.8928i 0.686216i
\(759\) 48.4589 1.75895
\(760\) 0 0
\(761\) −40.4922 −1.46784 −0.733921 0.679235i \(-0.762312\pi\)
−0.733921 + 0.679235i \(0.762312\pi\)
\(762\) 46.7942i 1.69517i
\(763\) 9.63492i 0.348808i
\(764\) 4.20690 0.152200
\(765\) −10.1457 + 18.0127i −0.366819 + 0.651250i
\(766\) 37.5273 1.35592
\(767\) 10.2678i 0.370749i
\(768\) 48.4165i 1.74708i
\(769\) −3.09398 −0.111572 −0.0557859 0.998443i \(-0.517766\pi\)
−0.0557859 + 0.998443i \(0.517766\pi\)
\(770\) −20.0665 11.3025i −0.723148 0.407316i
\(771\) −40.8251 −1.47028
\(772\) 4.04272i 0.145501i
\(773\) 1.96350i 0.0706220i 0.999376 + 0.0353110i \(0.0112422\pi\)
−0.999376 + 0.0353110i \(0.988758\pi\)
\(774\) −6.22947 −0.223914
\(775\) 21.8633 + 36.0736i 0.785352 + 1.29580i
\(776\) −3.78181 −0.135759
\(777\) 20.0045i 0.717658i
\(778\) 14.7688i 0.529488i
\(779\) 0 0
\(780\) 18.2295 + 10.2678i 0.652720 + 0.367647i
\(781\) 33.6789 1.20513
\(782\) 38.4184i 1.37384i
\(783\) 8.93300i 0.319239i
\(784\) −23.9762 −0.856293
\(785\) 6.71345 11.9191i 0.239613 0.425410i
\(786\) 19.4458 0.693610
\(787\) 0.107331i 0.00382595i −0.999998 0.00191297i \(-0.999391\pi\)
0.999998 0.00191297i \(-0.000608919\pi\)
\(788\) 28.4064i 1.01194i
\(789\) −3.91088 −0.139231
\(790\) 24.8727 44.1591i 0.884933 1.57111i
\(791\) 13.6564 0.485565
\(792\) 11.3534i 0.403427i
\(793\) 31.6071i 1.12240i
\(794\) 6.32222 0.224367
\(795\) 19.0796 + 10.7467i 0.676685 + 0.381145i
\(796\) −6.36620 −0.225644
\(797\) 8.32068i 0.294734i −0.989082 0.147367i \(-0.952920\pi\)
0.989082 0.147367i \(-0.0470798\pi\)
\(798\) 0 0
\(799\) −19.2496 −0.681003
\(800\) 27.5862 16.7193i 0.975319 0.591115i
\(801\) −29.1437 −1.02974
\(802\) 29.0738i 1.02663i
\(803\) 9.48489i 0.334714i
\(804\) 30.1117 1.06196
\(805\) −15.1831 8.55193i −0.535134 0.301416i
\(806\) 47.0320 1.65663
\(807\) 62.7270i 2.20810i
\(808\) 4.15006i 0.145998i
\(809\) 27.6231 0.971177 0.485588 0.874188i \(-0.338605\pi\)
0.485588 + 0.874188i \(0.338605\pi\)
\(810\) 21.0320 37.3403i 0.738991 1.31200i
\(811\) −23.0095 −0.807972 −0.403986 0.914765i \(-0.632376\pi\)
−0.403986 + 0.914765i \(0.632376\pi\)
\(812\) 11.5008i 0.403600i
\(813\) 55.4369i 1.94426i
\(814\) −42.3222 −1.48339
\(815\) 18.0369 32.0227i 0.631805 1.12171i
\(816\) 44.4589 1.55637
\(817\) 0 0
\(818\) 7.16224i 0.250422i
\(819\) 10.4553 0.365338
\(820\) 26.8727 + 15.1362i 0.938437 + 0.528578i
\(821\) 31.1355 1.08664 0.543318 0.839527i \(-0.317168\pi\)
0.543318 + 0.839527i \(0.317168\pi\)
\(822\) 55.5993i 1.93925i
\(823\) 20.4201i 0.711800i 0.934524 + 0.355900i \(0.115826\pi\)
−0.934524 + 0.355900i \(0.884174\pi\)
\(824\) 16.1480 0.562543
\(825\) −38.5624 + 23.3716i −1.34257 + 0.813696i
\(826\) 8.87275 0.308722
\(827\) 0.902638i 0.0313878i −0.999877 0.0156939i \(-0.995004\pi\)
0.999877 0.0156939i \(-0.00499573\pi\)
\(828\) 16.7365i 0.581634i
\(829\) −13.4971 −0.468773 −0.234386 0.972143i \(-0.575308\pi\)
−0.234386 + 0.972143i \(0.575308\pi\)
\(830\) −44.9655 25.3270i −1.56078 0.879112i
\(831\) −19.0607 −0.661209
\(832\) 6.01042i 0.208374i
\(833\) 19.2092i 0.665560i
\(834\) −4.99053 −0.172808
\(835\) 4.17363 7.40986i 0.144434 0.256429i
\(836\) 0 0
\(837\) 12.5603i 0.434149i
\(838\) 62.5123i 2.15945i
\(839\) 33.1022 1.14282 0.571408 0.820666i \(-0.306397\pi\)
0.571408 + 0.820666i \(0.306397\pi\)
\(840\) 4.55416 8.08545i 0.157133 0.278975i
\(841\) 7.00000 0.241379
\(842\) 47.5484i 1.63862i
\(843\) 24.1546i 0.831928i
\(844\) 13.8858 0.477971
\(845\) 7.09810 + 3.99803i 0.244182 + 0.137536i
\(846\) −21.0760 −0.724608
\(847\) 6.06686i 0.208460i
\(848\) 20.7186i 0.711480i
\(849\) −24.2295 −0.831553
\(850\) 18.5291 + 30.5724i 0.635544 + 1.04862i
\(851\) −32.0226 −1.09772
\(852\) 26.4387i 0.905775i
\(853\) 50.9097i 1.74312i 0.490293 + 0.871558i \(0.336890\pi\)
−0.490293 + 0.871558i \(0.663110\pi\)
\(854\) 27.3128 0.934623
\(855\) 0 0
\(856\) 7.13491 0.243866
\(857\) 21.2333i 0.725317i 0.931922 + 0.362659i \(0.118131\pi\)
−0.931922 + 0.362659i \(0.881869\pi\)
\(858\) 50.2768i 1.71642i
\(859\) −29.4827 −1.00594 −0.502969 0.864304i \(-0.667759\pi\)
−0.502969 + 0.864304i \(0.667759\pi\)
\(860\) −2.10345 + 3.73447i −0.0717271 + 0.127344i
\(861\) 35.0320 1.19389
\(862\) 18.7715i 0.639359i
\(863\) 25.7755i 0.877408i −0.898632 0.438704i \(-0.855438\pi\)
0.898632 0.438704i \(-0.144562\pi\)
\(864\) −9.60514 −0.326773
\(865\) −12.4922 + 22.1787i −0.424748 + 0.754098i
\(866\) −66.0339 −2.24392
\(867\) 3.72628i 0.126551i
\(868\) 16.1709i 0.548876i
\(869\) 48.4589 1.64386
\(870\) 49.3091 + 27.7735i 1.67174 + 0.941611i
\(871\) −30.1117 −1.02030
\(872\) 8.21335i 0.278139i
\(873\) 7.20893i 0.243985i
\(874\) 0 0
\(875\) 16.2069 0.517369i 0.547893 0.0174903i
\(876\) 7.44584 0.251572
\(877\) 54.2687i 1.83252i 0.400581 + 0.916261i \(0.368808\pi\)
−0.400581 + 0.916261i \(0.631192\pi\)
\(878\) 43.9033i 1.48166i
\(879\) 38.1117 1.28548
\(880\) 37.1724 + 20.9375i 1.25308 + 0.705802i
\(881\) −28.4922 −0.959927 −0.479964 0.877288i \(-0.659350\pi\)
−0.479964 + 0.877288i \(0.659350\pi\)
\(882\) 21.0317i 0.708176i
\(883\) 40.5264i 1.36382i 0.731435 + 0.681911i \(0.238851\pi\)
−0.731435 + 0.681911i \(0.761149\pi\)
\(884\) 15.8596 0.533418
\(885\) 8.52549 15.1362i 0.286581 0.508797i
\(886\) 10.0665 0.338192
\(887\) 11.4705i 0.385142i −0.981283 0.192571i \(-0.938317\pi\)
0.981283 0.192571i \(-0.0616826\pi\)
\(888\) 17.0530i 0.572260i
\(889\) 16.0891 0.539612
\(890\) −24.7324 + 43.9099i −0.829032 + 1.47186i
\(891\) 40.9762 1.37275
\(892\) 22.3287i 0.747621i
\(893\) 0 0
\(894\) −23.0320 −0.770307
\(895\) 19.6195 + 11.0507i 0.655807 + 0.369385i
\(896\) −13.5197 −0.451660
\(897\) 38.0413i 1.27016i
\(898\) 14.4524i 0.482282i
\(899\) 50.6182 1.68821
\(900\) 8.07199 + 13.3185i 0.269066 + 0.443950i
\(901\) 16.5993 0.553003
\(902\) 74.1150i 2.46776i
\(903\) 4.86835i 0.162009i
\(904\) −11.6415 −0.387189
\(905\) −1.11655 0.628901i −0.0371154 0.0209054i
\(906\) 21.4269 0.711861
\(907\) 48.1000i 1.59714i −0.601905 0.798568i \(-0.705591\pi\)
0.601905 0.798568i \(-0.294409\pi\)
\(908\) 22.6452i 0.751506i
\(909\) −7.91088 −0.262387
\(910\) 8.87275 15.7527i 0.294129 0.522196i
\(911\) 12.8062 0.424288 0.212144 0.977238i \(-0.431955\pi\)
0.212144 + 0.977238i \(0.431955\pi\)
\(912\) 0 0
\(913\) 49.3439i 1.63304i
\(914\) −41.2865 −1.36564
\(915\) 26.2438 46.5933i 0.867593 1.54033i
\(916\) 33.1022 1.09373
\(917\) 6.68601i 0.220792i
\(918\) 10.6449i 0.351334i
\(919\) 38.7135 1.27704 0.638519 0.769606i \(-0.279547\pi\)
0.638519 + 0.769606i \(0.279547\pi\)
\(920\) 12.9429 + 7.29014i 0.426716 + 0.240349i
\(921\) 18.2295 0.600682
\(922\) 24.4038i 0.803695i
\(923\) 26.4387i 0.870241i
\(924\) −17.2865 −0.568686
\(925\) 25.4827 15.4444i 0.837868 0.507809i
\(926\) 30.8062 1.01235
\(927\) 30.7815i 1.01100i
\(928\) 38.7087i 1.27068i
\(929\) 36.0189 1.18174 0.590872 0.806766i \(-0.298784\pi\)
0.590872 + 0.806766i \(0.298784\pi\)
\(930\) 69.3317 + 39.0513i 2.27348 + 1.28054i
\(931\) 0 0
\(932\) 25.5058i 0.835469i
\(933\) 9.01841i 0.295249i
\(934\) −40.5517 −1.32689
\(935\) −16.7746 + 29.7817i −0.548590 + 0.973966i
\(936\) −8.91270 −0.291321
\(937\) 45.2421i 1.47799i −0.673709 0.738997i \(-0.735300\pi\)
0.673709 0.738997i \(-0.264700\pi\)
\(938\) 26.0205i 0.849599i
\(939\) 17.9811 0.586790
\(940\) −7.11655 + 12.6347i −0.232116 + 0.412099i
\(941\) 11.7455 0.382892 0.191446 0.981503i \(-0.438682\pi\)
0.191446 + 0.981503i \(0.438682\pi\)
\(942\) 25.8058i 0.840799i
\(943\) 56.0781i 1.82616i
\(944\) −16.4364 −0.534958
\(945\) −4.20690 2.36955i −0.136850 0.0770815i
\(946\) −10.2996 −0.334870
\(947\) 13.7752i 0.447635i −0.974631 0.223817i \(-0.928148\pi\)
0.974631 0.223817i \(-0.0718519\pi\)
\(948\) 38.0413i 1.23552i
\(949\) −7.44584 −0.241702
\(950\) 0 0
\(951\) 44.0927 1.42981
\(952\) 7.03434i 0.227984i
\(953\) 9.01421i 0.291999i 0.989285 + 0.145999i \(0.0466398\pi\)
−0.989285 + 0.145999i \(0.953360\pi\)
\(954\) 18.1742 0.588412
\(955\) −6.20155 3.49304i −0.200677 0.113032i
\(956\) 24.8062 0.802290
\(957\) 54.1105i 1.74914i
\(958\) 0.667406i 0.0215629i
\(959\) 19.1166 0.617306
\(960\) 4.99053 8.86019i 0.161069 0.285961i
\(961\) 40.1724 1.29588
\(962\) 33.2239i 1.07118i
\(963\) 13.6006i 0.438274i
\(964\) −19.0796 −0.614514
\(965\) 3.35673 5.95953i 0.108057 0.191844i
\(966\) −32.8727 −1.05766
\(967\) 30.3232i 0.975129i 0.873087 + 0.487564i \(0.162115\pi\)
−0.873087 + 0.487564i \(0.837885\pi\)
\(968\) 5.17173i 0.166226i
\(969\) 0 0
\(970\) −10.8615 6.11775i −0.348740 0.196429i
\(971\) 31.5636 1.01292 0.506462 0.862262i \(-0.330953\pi\)
0.506462 + 0.862262i \(0.330953\pi\)
\(972\) 26.2641i 0.842422i
\(973\) 1.71588i 0.0550086i
\(974\) 48.9280 1.56775
\(975\) −18.3473 30.2723i −0.587582 0.969490i
\(976\) −50.5957 −1.61953
\(977\) 43.1285i 1.37980i −0.723903 0.689902i \(-0.757654\pi\)
0.723903 0.689902i \(-0.242346\pi\)
\(978\) 69.3320i 2.21699i
\(979\) −48.1855 −1.54002
\(980\) −12.6082 7.10160i −0.402754 0.226852i
\(981\) −15.6564 −0.499870
\(982\) 43.2425i 1.37992i
\(983\) 7.81570i 0.249282i 0.992202 + 0.124641i \(0.0397779\pi\)
−0.992202 + 0.124641i \(0.960222\pi\)
\(984\) −29.8633 −0.952006
\(985\) 23.5862 41.8749i 0.751519 1.33425i
\(986\) 42.8989 1.36618
\(987\) 16.4710i 0.524277i
\(988\) 0 0
\(989\) −7.79310 −0.247806
\(990\) −18.3662 + 32.6074i −0.583716 + 1.03633i
\(991\) 23.5197 0.747126 0.373563 0.927605i \(-0.378136\pi\)
0.373563 + 0.927605i \(0.378136\pi\)
\(992\) 54.4269i 1.72806i
\(993\) 18.5157i 0.587577i
\(994\) −22.8465 −0.724648
\(995\) 9.38465 + 5.28593i 0.297513 + 0.167575i
\(996\) −38.7360 −1.22740
\(997\) 33.6395i 1.06537i −0.846313 0.532686i \(-0.821183\pi\)
0.846313 0.532686i \(-0.178817\pi\)
\(998\) 12.4240i 0.393276i
\(999\) −8.87275 −0.280721
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1805.2.b.e.1084.5 6
5.2 odd 4 9025.2.a.bx.1.2 6
5.3 odd 4 9025.2.a.bx.1.5 6
5.4 even 2 inner 1805.2.b.e.1084.2 6
19.18 odd 2 95.2.b.b.39.2 6
57.56 even 2 855.2.c.d.514.5 6
76.75 even 2 1520.2.d.h.609.2 6
95.18 even 4 475.2.a.j.1.2 6
95.37 even 4 475.2.a.j.1.5 6
95.94 odd 2 95.2.b.b.39.5 yes 6
285.113 odd 4 4275.2.a.br.1.5 6
285.227 odd 4 4275.2.a.br.1.2 6
285.284 even 2 855.2.c.d.514.2 6
380.227 odd 4 7600.2.a.ck.1.2 6
380.303 odd 4 7600.2.a.ck.1.5 6
380.379 even 2 1520.2.d.h.609.5 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
95.2.b.b.39.2 6 19.18 odd 2
95.2.b.b.39.5 yes 6 95.94 odd 2
475.2.a.j.1.2 6 95.18 even 4
475.2.a.j.1.5 6 95.37 even 4
855.2.c.d.514.2 6 285.284 even 2
855.2.c.d.514.5 6 57.56 even 2
1520.2.d.h.609.2 6 76.75 even 2
1520.2.d.h.609.5 6 380.379 even 2
1805.2.b.e.1084.2 6 5.4 even 2 inner
1805.2.b.e.1084.5 6 1.1 even 1 trivial
4275.2.a.br.1.2 6 285.227 odd 4
4275.2.a.br.1.5 6 285.113 odd 4
7600.2.a.ck.1.2 6 380.227 odd 4
7600.2.a.ck.1.5 6 380.303 odd 4
9025.2.a.bx.1.2 6 5.2 odd 4
9025.2.a.bx.1.5 6 5.3 odd 4